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Abstract

Identifying suitable image features is a central challenge

in computer vision, ranging from representations for low-

level to high-level vision. Due to the difficulty of this task,

techniques for learning features directly from example data

have recently gained attention. Despite significant bene-

fits, these learned features often have many fewer of the de-

sired invariances or equivariances than their hand-crafted

counterparts. While translation in-/equivariance has been

addressed, the issue of learning rotation-invariant or equi-

variant representations is hardly explored. In this paper

we describe a general framework for incorporating invari-

ance to linear image transformations into product models

for feature learning. A particular benefit is that our ap-

proach induces transformation-aware feature learning, i.e.

it yields features that have a notion with which specific im-

age transformation they are used. We focus our study on

rotation in-/equivariance and show the advantages of our

approach in learning rotation-invariant image priors and

in building rotation-equivariant and invariant descriptors

of learned features, which result in state-of-the-art perfor-

mance for rotation-invariant object detection.

1. Introduction

Despite having been extensively studied, the problem of

identifying suitable feature representations for images re-

mains a key challenge in computer vision today. This is

true in a diverse set of areas ranging from high-level tasks,

such as object classification and detection [2, 6, 17, 20] all

the way down to problems as low-level as image restoration

[22, 26, 27]. Due to the diversity of areas in which fea-

ture representations are crucial, the characteristics of what

makes a good feature representation also differ quite widely.

One common thread in the recent literature is the increase in

methods that learn suitable feature representations for spe-

cific tasks from example data [e.g., 12, 21]. One motiva-

tion for this is that devising well-performing feature repre-

sentations manually is a complex process, since it may not

be very intuitive which aspects of a feature representation

make it perform well in practice [6, 20]. Another is that
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Figure 1. Rotation invariance and equivariance. (b,c) Current

learned image priors (here [23]) are not rotation invariant and as-

sign different energies E depending on the image orientation. We

address this issue by learning image models with built-in invari-

ance to certain linear transformations, such as rotations. Further-

more, our approach induces transformation-aware features that al-

low to derive equivariant feature representations (a,d), i.e. it is pos-

sible to predict how a transformation of the input transforms the

feature activations: The feature response (a) for 8 orientations of a

learned feature for the image patch marked in red already tells us

the transformed feature response (d) when the input is rotated (c).

customizing the feature representation to the task at hand

may have significant benefits in practice.

An important shortcoming of many feature learning ap-

proaches is that they do not have the same desirable invari-

ances or equivariances with respect to transformations of

the input as do traditional hand-crafted representations. In

various use cases of object detection it is, for example, rea-

sonable to expect that an object can be detected no matter its

orientation in the image. Hand-crafted feature representa-

tions [e.g., 24] facilitate this by using a rotation-equivariant1

feature representation (see Fig. 1(a,d) for an illustration).

Feature learning techniques for recognition, on the other

hand, have mainly focused on addressing translation in-/

equivariance by using convolutional learning architectures

[18, 21], or on local rotation invariance [12].

Similarly, it is desirable that an image restoration algo-

rithm is equivariant to certain input transformations: If the

input image was shifted or rotated, one would expect that

the restored image is shifted or rotated the same way, but

otherwise unchanged. Yet while traditional regularizers,

such as total variation, are rotation invariant leading to equi-

1Formally, a function f is equivariant to a class of transformations T , if

for all transformations T ∈ T of the input x, we can predict a correspond-

ing transformation T
′ of its output, i.e. f(Tx) = T

′f(x). Moreover, f

is invariant to transformations T if f(Tx) = f(x) for all T ∈ T .
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variant denoising, image models based on learned features

are typically not (see Fig. 1(b,c)).

Here we aim to address invariance and equivariance to

linear image transformations beyond translation. Although

not limited to this setting, we particularly focus on rota-

tions, since for many applications this is the most important

transformation in-/equivariance beyond translation. We first

propose a general framework for incorporating transforma-

tion invariances into product models for feature learning.

We then demonstrate its application by extending Fields

of Experts (FoE) image priors [22, 23] to R-FoEs, which

are invariant to 90◦ rotations (or multiples thereof) in ad-

dition to being translation invariant. Moreover, we show

how the methodology can be used to extend convolutional

Restricted Boltzmann Machines (C-RBMs) [18, 21] to RC-

RBMs, which are translation and rotation invariant.

While invariances can be learned directly from training

data, this may require inordinate amounts of data. But even

if the training data was sufficient to learn invariances with-

out any model provisions, then some of the learned fea-

tures would be transformed versions of others to account

for this invariance [26]. One important shortcoming of this

approach is that it is unclear how the different features are

related in terms of the image transformations between them.

This makes it difficult to build in-/equivariant feature de-

scriptors for invariant object recognition or detection from

them. A key property of our approach is that it allows to in-

duce transformation-aware features, i.e. we can predict how

the feature activations change as the input image is being

transformed, which we further exploit to define a rotation-

equivariant feature descriptor, called EHOF, based on fea-

tures learned with an RC-RBM. We also extend EHOF to a

fully rotation-invariant descriptor, IHOF.

We demonstrate the benefits of our approach in two ap-

plications. First, we show how learning a rotation-invariant

image prior benefits equivariant image restoration. Sec-

ond, we apply the learned features as well as the proposed

rotation in-/equivariant descriptors in the context of ob-

ject recognition and detection. We test our approach on

two challenging data sets for rotation-invariant classifica-

tion and detection, and in each case outperform state-of-

the-art methods from the recent literature.

2. Product Models & Linear Transformations

Many probabilistic models of images and other dense

scene representations, such as depth and motion, can be

seen as product models in which each factor models a spe-

cific property of the data that is extracted using a linear

feature transform. If we denote the vectorized image as

x ∈ R
n and F = {F(i) ∈ R

mi×n|i = 1, . . .} a set of linear

feature transformations, we can write an abstract product

model as

p(x) =
1

Z

|F|
∏

i=1

φi

(

F(i)x; θi
)

. (1)

Here, the φi are the individual factors (potentials) that

model the result of each linear feature transform F(i) based

on parameters θi, and Z is a normalization constant making

p(x) a proper density (from now on omitted for brevity).

Markov random fields (MRFs) [19] can be interpreted

as one instance of such a product model by defining “crop-

ping” matrices: C(i) crops out a single pixel i from x such

that C(i)x = xi, and C(k,l) crops out two neighboring pix-

els k and l such that C(k,l)x = (xk, xl)
T. Then

pMRF(x) ∝

n
∏

i=1

φi

(

C(i)x; θi
)

∏

(k,l)∈E

φkl

(

C(k,l)x; θkl
)

(2)

denotes a standard pairwise MRF, where φi are the unaries,

and φkl the pairwise terms for each edge (k, l) ∈ E.

If the feature transformation matrices F(i) are filters (row

vectors), i.e. F(i) = J
T
i ∈ R

1×n, that project into a 1D

subspace, then we also notice that Eq. (1) is a Product of

Experts (PoE) with linear feature transforms [10]:

pPoE(x) ∝

|F|
∏

i=1

φi

(

J
T
i x; θi

)

. (3)

We note that such PoEs with linear experts directly gener-

alize PCA, ICA, as well as Restricted Boltzmann Machines

(RBMs) [10] (see also Sec. 4).

Despite the notational similarity, there are two key differ-

ences between the pairwise MRF in Eq. (2) and linear PoEs

or RBMs as in Eq. (3). Pairwise MRFs have fixed feature

transformations, whereas they are learned from data in case

of linear PoEs and RBMs. Moreover, the primary goal of

MRFs is usually modeling the prior distribution p(x) itself,

e.g., for regularization, but linear PoE models and RBMs

often use the probabilistic model only as a tool for learning

the features F(i) for use in other tasks such as recognition.

2.1. Integrating transformation invariance

To see how product models can be made transformation

invariant, it is useful to study the MRF model from Eq. (2)

in more detail. MRFs in vision are typically made trans-

lation invariant by ensuring that the unary terms and the

pairwise terms are the same everywhere in the image (i.e.

φi and θi do not depend on i, and φkl and θkl only depend

on the relative position of pixels k and l). In other words,

translation invariance is achieved by taking a product of the

same unary and pairwise terms over all possible pixel loca-

tions. High-order MRFs [22, 27] and convolutional RBMs

[18, 21] do so analogously (cf . Secs. 3 & 4).



We here generalize this concept to arbitrary linear image

transformations. Given a finite set of linear image transfor-

mations T = {T(j)|j = 1, . . .} of one or more types, we

define a transformation-invariant product model w.r.t. T as

pT (x) ∝

|T |
∏

j=1

|F|
∏

i=1

φi

(

F(i)T(j)x; θi
)

. (4)

To achieve invariance, it is important that both the factor

φi and its parameters θi do not depend on T(j). However,

due to the necessarily finite representation of images and

the finite transformation class T , such invariances in most

cases only hold approximately.

While Eq. (4) may seem like an innocuous change over

Eq. (1), it has several important properties: (1) the frame-

work generalizes a known mechanism for translation invari-

ance [21, 27] to arbitrary finite sets of linear transforma-

tions T , including rotations; (2) unlike other attempts to

achieve simultaneous invariance to several transformations,

e.g., translation and rotation [13], we treat all transforma-

tions equally, and do not introduce additional latent vari-

ables [8]; (3) the formulation is a special case of the generic

product model in Eq. (1), in which the factors model the

responses to the compound linear transformation F(i)T(j),

and the type and parameters of the factors are shared be-

tween all possible transformations in T ; (4) transformation

invariance can be added to a wide range of product models

without substantial modifications to their algorithmic back-

bone for learning and inference; (5) since the factors and

their parameters are shared between all transformations, this

leads to parsimonious representations with comparatively

few parameters that may also be easier to interpret; and fi-

nally, (6) this will later allow us to construct equivariant

descriptors with learned features, which in turn facilitate

rotation-invariant object detection.

3. Learning Rotation-Invariant Image Priors

Many problems in low-level vision require prior knowl-

edge. In image restoration tasks, such as denoising, deblur-

ring, or inpainting, image priors are crucial for recovering a

plausible image from noisy, blurred, or incomplete inputs.

While traditionally pairwise MRFs (Eq. (2)) have been the

prevalent probabilistic prior model of images [19], recent

years have seen an increased adoption of learned high-order

priors [22, 27]. They not only benefit from modeling com-

plex image structure in large patches (cliques), but also from

learning the model parameters from training data.

It is important to note that several popular image priors

can be seen as special cases of our transformation-invariant

learning framework. To that end we define a set of “convo-

lutional” transformations as

TC =
{

C · S(k,l)

∣

∣k = 1, . . . , r, l = 1, . . . , c
}

, (5)

(a) 2 features Ji × 4 rotations

−250 −200 −150 −100 −50 0 50 100 150 200 250

0.0004

0.003

(b) 2 factors (experts) φi

Figure 2. Learned R-FoE model with 2 experts and 4 rotations.

The features and corresponding expert shapes are color-matched.

where the linear transformation S(k,l) translates the image

such that pixel (k, l) is at the origin, and C crops a fixed

size image patch (e.g., 3×3 pixels) around the origin. Here,

S(k,l) achieves translation invariance, while C ensures that

the model complexity is independent of the image size.

It is now quite straightforward to see that the FRAME

model [27] and the Field of Experts (FoE) [22] are special

cases of Eq. (4) with T = TC. In FRAME, the feature

transformations F(i) are hand-chosen filters and the factors

φi are learned from data. The FoE additionally learns the

linear features F(i) = J
T
i from data.

However, the FoE is not explicitly designed to incorpo-

rate any invariances beyond image translations. Since the

features are unconstrained during learning, it is for exam-

ple not guaranteed that horizontal and vertical image struc-

ture is modeled equally, which can be argued is a desirable

property of an image prior: The quality of a restored image

should be the same, regardless of whether the image was re-

stored in portrait or landscape orientation. As Fig. 1 shows,

rotating an image by 90◦ may already substantially change

the energy of the image under the non-invariant prior.

We propose to additionally impose the desired invariance

to rotations into the model, and define the transformation set

as

TRC =
{

R(ω) ·C · S(k,l)

∣

∣

∣

ω∈Ω,
k=1,...,r, l=1,...,c

}

. (6)

Here R(ω) performs an image rotation of the cropped patch

by angle ω, and S(k,l) and C are defined as before. Using

the transformation set TRC – here with 90◦ rotation incre-

ments, i.e. Ω = {0◦, 90◦, 180◦, 270◦} – we train a rotation-

invariant FoE image prior (R-FoE)

pR-FoE(x) ∝
∏

ω∈Ω

∏

(k,l)

|F|
∏

i=1

φi

(

J
T
i ·R(ω) ·C ·S(k,l)x; θi

)

(7)

with |F| = 2 features (filters) Ji defined on 3 × 3 patches.

The factors (experts) φi are modeled as Gaussian scale mix-

tures, and learning is done using contrastive divergence [10]

and Gibbs sampling. Fig. 2 shows the 2 learned features

with their 4 implicitly induced rotations (as an effect of the

R(ω)), and the corresponding experts. Note that the 4 differ-

ent rotations share the same expert (and parameters), which

ensures that the learned model is fully invariant to image

rotations in 90◦ increments. While finer-grained invariance

with smaller angular increments is in principle possible, this



necessitates larger filters, which remains challenging due to

filters and experts being learned simultaneously.

4. Learning Rotation-Aware Image Features

Besides transformation-invariant image models, our sec-

ond main goal is to learn transformation-aware image fea-

tures that will later allow us to derive transformation in-/

equivariant feature descriptors for object detection. A

widely used model for feature learning is the Restricted

Boltzmann Machine (RBM) [10]. For a binary image x and

a set of binary hidden variables h ∈ {0, 1}K it is defined as

pRBM(x,h) ∝ exp
(

c
T
x
)

K
∏

i=1

exp
(

hi

(

w
T
i x+ bi

)

)

. (8)

If the image x is real-valued, a Gaussian RBM is used in-

stead and defined as

pGRBM(x,h) ∝ exp(−‖x‖2/2) · pRBM(x,h). (9)

By marginalizing out the hidden variables h it is possible to

rewrite this as a generic product model as in Eq. (1):

pRBM(x) ∝ exp
(

c
T
x
)

|F|
∏

i=1

φi

(

F(i)x; bi
)

, (10)

where the feature transformations F(i) = w
T
i ∈ R

1×n are

single image features (filters) written as a row vector, and

φi(y; bi) = 1 + exp(y + bi) with biases bi of the hidden

variables. We keep the biases c of the visible variables sep-

arate and do not make them part of the feature transform.

Standard RBMs are not transformation invariant, but aim

to learn pertinent invariances out of the training data, which

requires large amounts of data. Moreover, the learned fea-

tures are not transformation-aware, i.e. it is unclear if and

how different features relate in terms of image transfor-

mations, which makes it difficult to build in-/equivariant

feature descriptors from them. Our goal here is to learn

transformation-aware features. The most straightforward

invariance/awareness to integrate is w.r.t. image transla-

tions. For this we apply our framework from Sec. 2.1 with

T = TC (see Eq. (5)) to the RBM as given in Eq. (10) and

obtain the known convolutional RBM (C-RBM), which has

recently been introduced by several authors [18, 21]. C-

RBMs naturally extend RBMs to arbitrarily-sized images.

Our contribution is now to generalize C-RBMs to be also

invariant to image rotations, which in turn allows to learn

features that are both translation- and rotation-aware. To

that end we apply our framework to the basic RBM, and

use the transformation set T = TRC from Eq. (6):

pRC-RBM(x) ∝ exp
(

c
T
x
)

·

∏

ω∈Ω

∏

(k,l)

|F|
∏

i=1

φi

(

w
T
i ·R(ω) ·C · S(k,l)x; bi

)

. (11)
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(a) MNIST handwritten digits [1]

90°0° 45° 135° 180° 225° 270° 315°

F. 1

F. 3

F. 2

F. 4

(b) Natural images (whitened)

Figure 3. Translation- and rotation-aware 11 × 11 image fea-

tures. Each row shows one of 4 features, each column one of 8

implicitly induced feature rotations.

This RC-RBM can also be generalized to continuous-valued

images following Eq. (9). Note that the bias terms bi are

shared across all image locations and orientations. If the

biases c of the visible variables differ across the image,

Eq. (11) will not be invariant to global image rotations. This

is not an issue if the goal is to extract locally equivariant fea-

tures. If global invariance is desired, we can define c = c·1.

To train the RC-RBM model, we adapt the contrastive

divergence-based learning algorithm for C-RBMs of [21].

No tiling is used; each visible unit corresponds to one pixel.

In the examples shown in Fig. 3, we learn 4 features of

11 × 11 pixels on MNIST binary handwritten digit images

(a) and on whitened natural images (b). We use 8 equidis-

tant rotation angles Ω = {0◦, 45◦, 90◦, . . . , 315◦} for a

more fine-grained rotation invariance. The matrices R(ω)

rotate each image patch using bilinear interpolation. To

avoid interpolation artifacts in the corners, we only define

the feature inside a circular area (visible in Fig. 3(a)).

The RC-RBM has several advantages: It yields

transformation-aware features, which allow to predict how

the feature activations change when the input is shifted or

rotated. It also encourages separate features not to be trans-

lations and rotations of one another, since these are already

implicitly induced. In this way it leads to a parsimonious

and statistically efficient representation [cf . 3]. Note that

feature extraction with RC-RBMs also does not lead to a

higher computational cost than with C-RBMs, since a com-

parable number of effective features are used in practice.

Other related work. Kivinen and Williams [13] generalize

C-RBMs toward rotation-equivariant feature learning, but

treat translations and rotations differently – translations in a

product framework and rotations using a mixture model. In

contrast, our approach is generic and treats all transforma-

tions consistently, which for example allows us to rely on

existing learning and inference algorithms. Moreover, we

apply our method to rotation-equivariant image restoration

and object detection. Welling et al. [26] and Kavukcuoglu

et al. [12] learn topographic representations, which allow to

assess when two features correspond to similar transforma-

tions (e.g., similar rotation angles). By combining feature

learning with pooling functions [12], one can obtain locally

invariant features. It is not straightforward to extend this to

global transformation-equivariance, as is achieved here.



5. Rotation In-/Equivariant Image Descriptor

A simple approach for rotation-invariant object recogni-

tion or detection is to model the object class at a canon-

ical orientation and then search over all possible orienta-

tions of/in the given image. In practice this is generally

not feasible, since at least a traditional feature descriptor

would have to be computed at every rotation that is being

searched over. At the other end of the spectrum are rotation-

invariant image features, which avoid costly computation at

many orientations. Unfortunately, these features are usu-

ally less powerful at describing the image content, since the

class of features that can be considered is restricted. A triv-

ial example is simply using the image intensities or color

values. Another approach are annular histogram bins de-

fined by the area between two concentric circles, which al-

low for rotation-invariant spatial pooling of image features,

a strategy for example used by RIFT [17], but known to

limit expressiveness [24].

Equivariant features. A tradeoff between the two ex-

tremes is offered by rotation-equivariant image features,

where a rotation of the input image results in a predictable

transformation of the feature activation, which can usu-

ally be carried out with little computational effort (e.g.,

circular shift operations, see Fig. 1). Hence, a rotation-

invariant comparison between two image descriptors can be

performed quite efficiently (e.g., used by RIFF-Polar [24]).

Standard oriented gradient features, as used by many im-

age descriptors [e.g., 6, 20], have this desirable rotation-

equivariance property, which is often exploited. One can,

for example, describe the orientations of gradients relative

to the dominant orientation at the center of the image patch,

thus making the descriptor rotation invariant (e.g., used by

RIFT [17]). However, this relies on the assumption that

there is a dominant gradient orientation at the patch cen-

ter, which is true for interest points, but not necessarily for

dense feature computation, which is common in sliding-

window object detection.

Conventional learned features are difficult to use in this

way, since it is not known if and which learned features

are rotations of each other, and thus difficult to predict the

feature activations given a particular rotation of the image.

We now describe a powerful rotation-equivariant descriptor

that leverages our rotation-aware RC-RBM features. Note

that additional details beyond what can be covered here are

available in a separate supplemental material.

Equivariant descriptor (EHOF). After extracting features

using the RC-RBM from Sec. 4 densely at all locations and

orientations (45◦ increments), we perform non-maximum

suppression (NMS) over all orientations for each feature

and location. This is akin to standard oriented gradient

computation (e.g., in HOG [6]) and significantly increases

performance. We then spatially pool (histogram) the NMS
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Figure 4. Simplified descriptor example. The spatial polar grid

(red, left) is divided into R = 2 rings with C = 4 cells each,

besides the central cell, which is treated differently (see text); local

images features are computed at O = 12 orientations (blue, right).

After feature extraction and spatial pooling, the histogram values

from all rings can be arranged in a single table (bottom, only one

ring shown). The rotation of the image and thus the polar grid

(here 90
◦) results in a cyclical 2D translation of the values in the

table, as indicated by the colors and regions denoted A–D.

results on a polar grid covering the whole image or bound-

ing box, with the intention of converting image rotations

to spatial translations of the descriptor. Similar to Takacs et

al. [24], we use equidistant cell centers (in angle and radius)

in polar coordinates (Fig. 4, top left); please note that we al-

low for an arbitrary number of rings R, cells C, and feature

orientations O. The orientation histogram bins in each cell

correspond to the rotation angles of the image features; it is

important to arrange the histogram bins in order and with

equidistant rotation angles apart (Fig. 4, top right).

We then unroll the 3-dimensional histogram H3 ∈
R

R×C×O (2 spatial and 1 feature orientation dimension)

into the 2-dimensional histogram H2 ∈ R
R·C×O: All spa-

tial cells are assigned a unique ordering by arranging cells

from different rings but with neighboring radii together in

the rows of the feature matrix H2 (i.e., first cell 1 from all

rings, then all 2nd cells, etc.). The columns of H2 corre-

spond to the histogram orientation bins.

This descriptor layout now has the desired property that a

rotation of the image corresponds to a 2-dimensional cycli-

cal translation of the matrix contents (Fig. 4, bottom). If the

image is rotated by a multiple of the angular distance be-

tween neighboring cell centers in the polar grid, this prop-

erty holds exactly, and approximately in case of all other ro-

tations. To reduce aliasing artifacts in case of rotations that

are not aligned with the polar grid, we use bilinear interpo-

lation in polar coordinates for the spatial pooling. Also, the

number of cells per ring should be a multiple of the number

of histogram orientation bins (or the other way around), oth-

erwise the translations of rows and columns do not match.

An important property of this construction is that a rotation

of the input image – and thus translation of the matrix H2

– does not destroy the relative distribution of spatial loca-

tions and different orientations. Note that the central cell is

a special case, since it does not change its spatial location



(a) Noisy, 18.67dB

(σ=30)

(b) FoE, 25.81dB (c) FoE, 26.18dB

(90◦ rot.)

(d)
〈

∆(b,c)2
〉

=11.63 (e) R-FoE, 26.19dB (f) R-FoE, 26.19dB

(90◦ rot.)

(g)
〈

∆(e,f)2
〉

=1.24

Figure 5. Denoising example (cropped). (b,e) show the results of denoising (a). The results in (c,f) are obtained by rotating (a) by 90
◦,

denoising the rotated version, and rotating the result back. The results of the non-invariant FoE [23] in (b,c) are sensitive to orientation,

both visibly and quantitatively (PSNR difference 0.37dB). The difference between the orientations is shown in (d). The proposed rotation-

invariant R-FoE (e,f) does not suffer from these problems; any difference in (g) is due to sampling-based inference. Best viewed on screen.

when the input is rotated; only its histogram orientation bins

undergo a 1-dimensional cyclical translation.

We term this descriptor an equivariant histogram of ori-

ented features (EHOF) to emphasize that it can be built

from any locally rotation-equivariant feature, including im-

age gradients and steerable filters [7], to yield a globally

rotation-equivariant representation.2

Invariant descriptor (IHOF). To perform rotation-

invariant recognition or detection with this rotation-

equivariant descriptor, we could compare two descriptors by

defining a custom distance metric as the minimum over all

cyclical, 2-dimensional translations between two descrip-

tors (where one of the two is held fixed) that are consis-

tent with an image rotation. A similar strategy is pursued

by [24], but since rotation-invariant features are used there,

the search reduces to 1-dimensional cyclical shifts of their

descriptor vector. An obvious disadvantage is the computa-

tional cost for this search (for EHOF over several cyclical,

2-dimensional shifts of the feature matrix). Another issue of

embedding rotation invariance in the distance computation

is that classification algorithms need to be adapted to this

case. A preferable solution is thus to make the descriptor

itself invariant. To that end, we compute the 2-dimensional

discrete Fourier transform (DFT) of the descriptor matrix

and only retain its magnitude, which is well-known to be

invariant to cyclical shifts; the same can be done in 1D for

the central cell. We term the resulting descriptor an invari-

ant histogram of oriented features (IHOF). Exploiting the

translation invariance of the DFT magnitude has the desired

advantage of reducing the computational effort, since it only

has to be computed once. Moreover, the IHOF descriptor

can be directly used in existing classification frameworks.2

While the IHOF descriptor is invariant to rotated inputs,

we note that it also remains unchanged for other input trans-

formations, which are presumably unlikely for real images

as our experimental findings indicate (Sec. 6).

Other related work. Using the magnitude of the 1-

dimensional DFT to build rotation-invariant descriptors is

used by Ahonen et al. [2] for local binary pattern histograms

2MATLAB code is available on the authors’ webpages.

with applications to classification and recognition. Em-

ploying a log-polar transform to convert rotation and scale

changes of an image patch to 2D descriptor translations is

commonplace in image registration [cf . 28]; this includes

using the 2D-DFT to retain invariance to rotation and scale

variations. Kokkinos and Yuille [14] use the 2D-DFT of the

log-polar transform to obtain rotation and scale-invariant

image descriptors. One difference of such previous ap-

proaches to ours is that they work around sparse (interest)

points in the image, where the log-polar region only de-

scribes the local structure. In contrast, we obtain a globally

rotation-invariant image descriptor with fine-grained spatial

binning. We use the 2D-DFT to achieve simultaneous in-

variance to changes of the spatial and feature dimensions,

caused by an in-plane rotation of the whole image.

6. Experiments

We show the benefits of our framework for (1) learning

rotation-invariant image priors, and (2) for learning equiva-

riant features for recognition and detection, both with and

without explicit rotation invariance. Please see the supple-

mental material for additional experimental details.

Invariant image denoising. In order to demonstrate the

advantage of building explicit invariance to (multiples of)

90◦ image rotations into learned image priors, we denoise

10 images (from [23]) both in their original orientation, as

well as after rotating them by 90◦. We compare the FoE

implementation of [23] (8 unconstrained features with 3×3
pixels), which does not explicitly enforce rotation invari-

ance, to the R-FoE model proposed in Sec. 3 (8 effective

features obtained from 2 learned filters with 3× 3 pixels in

4 rotations); denoising is performed using sampling-based

MMSE estimation in both cases.

We find that the average performance (PSNR) of an FoE

without built-in rotation invariance deteriorates on the ro-

tated images from 32.88dB to 32.77dB (σ=10) and from

28.91dB to 28.75dB (σ=20). In contrast, our rotation-

invariant R-FoE achieves exactly the same denoising results

of 32.80dB (σ=10) and 28.89dB (σ=20) on original and ro-

tated images, as expected. Both models achieve comparable



results, despite the R-FoE having only 2
8 as many parame-

ters. Fig. 5 visualizes the difference between both models.

Handwritten digit recognition. To establish a perfor-

mance baseline for the rotation-aware features learned us-

ing the proposed RC-RBM, as well as for the rotation in-/

equivariant descriptors, we compare against other feature

learning approaches, and also use oriented image deriva-

tives (“gradients”) with our descriptors. We always use our

descriptor with 1 ring and 8 cells (plus central cell) and

extract features at 8 orientation angles. The correspond-

ing EHOF descriptors for each of the 4 learned features

(Fig. 3(a)) have 72 dimensions, which we concatenate to

represent each digit. We train the RC-RBM on the MNIST

handwritten digit dataset [1], which contains 60000 binary

training and 10000 test images, and use an rbf-SVM for

classification. Tab. 1 gives the recognition results for our

method and various competing approaches from the liter-

ature. Despite having a parsimonious representation and

only using a single model “layer”, our approach (EHOF)

is competitive with multilayer feature learning approaches,

including deep belief networks; somewhat surprisingly, this

even holds for simple image derivatives as the sole image

feature (akin to HOG [6]). Combining learned features

with gradients results in an additional improvement, show-

ing that different properties of the data are captured by each

of them. For reference, we also report results with IHOF

for MNIST and observe reduced performance, as expected,

since MNIST digits do not appear at arbitrary orientations.

Otherwise, we see similar behavior, although the RC-RBM

features give much better results in this scenario as com-

pared to gradients.

In order to show the benefits of making the rotation-

equivariant EHOF descriptor rotation-invariant by using

its DFT magnitude, we evaluate the performance on the

MNIST-rot dataset [15], containing 12000 images for train-

ing and validation, and 50000 test images, in which digits

appear at all orientations. Tab. 1 gives the results (following

the protocol of [15]) and compares to state-of-the-art tech-

niques from the literature. Even with the EHOF descrip-

tor, we achieve superior results than competing approaches

since the rbf-SVM is able to learn necessary invariances

from the data. Gradients yield better results than RC-RBM

features with EHOF, although the situation is reversed when

comparing IHOF performance. Either way, in both cases

we gain a substantial improvement when combining im-

age gradients with our learned features. It is important to

note that the learned features (alone and combined with gra-

dients) always yield superior results with IHOF. Combin-

ing the IHOF descriptors computed from RC-RBM features

and image derivatives results in a competitive test error of

3.98%, which is about 50% lower than the previous best

result that we are aware of.

Model / Features MNIST MNIST-rot

Multilayer C-RBM, SVM [18] 0.82% –

Multilayer C-RBM, rbf-SVM [21] 0.67% –

Deep belief network [11] 1.20% –

Deep belief network (best from [15]) – 10.30%

SDAIC [16] – 8.07%

Gradients EHOF 0.97% 5.20%

RC-RBM EHOF 0.85% 6.36%

RC-RBM+Gradients EHOF 0.62% 4.75%

Gradients IHOF 5.82% 8.13%

RC-RBM IHOF 2.66% 5.47%

RC-RBM+Gradients IHOF 2.26% 3.98%

Table 1. Test error on MNIST [1] and MNIST-rot [15].

Aerial car detection. Most feature learning approaches

from the literature, [21] being a notable exception, only re-

port results for object classification. In contrast, we demon-

strate the use of our RC-RBM features and the IHOF image

descriptor for rotation-invariant object detection, specifi-

cally for finding cars in satellite imagery. We use the dataset

introduced by [9], which consists of 30 images, containing

a total of 1319 cars that occur at arbitrary orientations and

are only annotated with axis-aligned bounding boxes. We

perform 5-fold cross validation and report average results

across all folds.

Based on a simple and efficient linear SVM classifier, we

train a sliding-window detector [6] with fixed window size

of 40 × 40 pixels. We use an RC-RBM trained on natural

images to extract 4 translation- and rotation-aware features

(Fig. 3(b)), each pooled in the EHOF descriptor on a polar

grid with 3 rings and 16 cells per ring (plus central cell), and

a histogram over 8 feature orientations for each cell. The

combined EHOF descriptors have 1568 dimensions in this

case. The rotation-invariant IHOF descriptor is obtained us-

ing the 2D-DFT magnitude.

As Fig. 6 shows, our IHOF descriptor substantially in-

creases the detection performance over a standard HOG de-

scriptor (also with a linear SVM) from 54.5% average preci-

sion (AP) to 72.7%. For reference, we also report the results

of using the EHOF descriptor, which underline the benefits

of using the rotation-invariant IHOF descriptor for this task.

Since the learned RC-RBM features are not as localized as

the gradient features used in the successful HOG descrip-

tor, we also evaluated the use of simple gradient features

in the rotation-invariant IHOF descriptor. This leads to an

improved performance of 74.7% AP, which is close to the

recent approach of Vedaldi et al. [25]. Their approach is

much more complex and uses structured output SVM re-

gressors and non-linear kernels to achieve 75.7% AP. Note

that we also clearly outperform the context-based approach

of Heitz and Koller [9]. More importantly, the RC-RBM

features again contain information that is complementary

to gradient features. Combining both boosts the perfor-

mance to 77.6%, which is a clear improvement over the

best performance reported in the literature (75.7% AP [25]).
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(b) False positives per image (FPPI) vs. Recall
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Figure 6. Aerial car detection. (a) Example of detections with the IHOF descriptor encoding RC-RBM+Gradients features, where green

boxes indicate correct detections and red boxes incorrect ones. (b,c) Common performance measures.

Still, we expect to obtain even better results with more ad-

vanced variants of RBMs [e.g., 5], or through stacking to

obtain deep models. Furthermore, adapting descriptors to

features plays an important role for recognition/detection

performance, which so far has mostly been explored for

gradient features. Hence, an interesting avenue for further

research is descriptor learning [e.g., 4].

7. Summary

We proposed a framework for transformation-invariant

feature learning using product models, demonstrated how

popular translation-invariant models are special cases, and

studied its application to inducing rotation invariance.

We extended a learned image prior to be (90◦) rotation-

invariant, and showed its advantages over a conventional

prior. We also applied our framework to make convolu-

tional RBMs rotation invariant, and used this RC-RBM for

translation- and rotation-aware feature learning. Finally, we

employed the learned features, or other oriented features,

to build a globally rotation-equivariant image descriptor

(EHOF), which can be made rotation-invariant (IHOF) us-

ing the 2D-DFT magnitude. We demonstrated state-of-the-

art results on two challenging datasets for rotation-invariant

recognition and detection.
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