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Abstract

Word usage is domain dependent. A common word in one

domain can be quite infrequent in another. In this study we

exploit th~ property of word usage to improve document
routing. We show that routing queries (profiles) learned

only from the documents in a query domain are better than

the routing profiles learned when query domains are not

used. We approximate a query domain by a guerg zone.

Experiments show that routing profiles learned from a query

zone are 8–12~0 more effective than the profiles generated

when no query zoning is used.

1 Background

Document routing is an important problem in the field of

information retrieval. [12] When a user has marked several

articles as relevant to his/her information need, a system

should be able to automatically learn the user’s “profile”

and should be able to route (send) new, potentially inter-

esting, articles to the user. This problem has also been called

as selective dissemination oj information or information fiJ-

tering. [4]

Most current state of the art routing algorithms first

learn a user profile from the trahing examples, i.e., the

articles marked relevant by the user and the non-relevant

articles. This learned profile, also known as the routing

or the feedback query since it is obtained using user’s rele-

vance feedback, is then matched against all the new articles

that a system encounters (for example any new news stories,

. . . ). [5, 28, 2, 9] If a new article matches the user profile

adequately, then this article is sasumed to be of potential

interest to the user and is routed to the user.

The matching algorithm used by most systems to match

a new article to a user profile is relatively straight-forward.

Most current IR systems use their standard text matching

algorithms to match new articles to a profile. [8, 20, 3, 16]

For example, the Smut system uses the standard vector
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inner-product similarity computation to match user profiles

(which are term vectors in Smart) to the new articles (which

are also term vectors). [26] The effectiveness with which a

system routes new articles to users is, then, largely depen-

dent upon the quality of the profile generated by the sys-

tem. Profile creation becomes the most important step in

the routing process.

To create a user profile, moat routing algorithms learn a

set of features and feature relationships whose presence/abaence

indicates potential relevance/non-relevance for a user. Few

tures are usually single words, phrases, word cooccurrence

pairs, word proximity pairs, . . . Based on the occurrence

characteristics of these features in a new article, that article

is either considered potentially useful and is routed to the

user, or it is considered potentially irrelevant. Most current

routing algorithms also assign weights to the features in a

user profile. These weights indicate the relative importance

of the features in predicting relevance of art article. [6, 5, 21]

To learn the features and their weights, most routing al-

gorithms usually use the probabfity of occurrence (or some

variation of it) of a feature in the articles marked relevant

by a user and the non-relevant articles in the training cor-

pus. [22, 14] The central idea of this scheme is that if a few

ture occurs with a high probabfity in the relevant articles

but with a low probabtity in the non-relevant articles, then

it is a good indicator of relevance and should be assigned a

high weight in the profile. On the other hand, if a feature

occurs with high probabtity in the non-relevant documents

and does not occur often in the relevant documents, then it

is a poor indicator of relevance.

A user initially conveys his/her information-need to a

system in form of a query. Defining a query’s domain as

the set of articles that have some topical relationship to the

query, in this study we show that using a selected set of non-

relevant documents that belong to a query’s domain to learn

the feedback query yielda better feedback queries than us-

ing the entire non-relevant corpus. Results show that simple

strategies to select non-relevant articles for learning the feed-

back queries yield significantly better feedback queries. The

rest of this study ia organized as follows: Section 2 describes

Rocchio’s algorithm for learning routing queries, Section 3

introduces our hypothesis, Section 4 discusses the zoning

strategies that we usa, Section 5 dwusses other related re-

search, Section 6 describes the experiments, Section 7 has

the results and discussion, Section 8 concludes the study.
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Average Weight in Average We~ht m Feedback We@t

Word Relevant Documents Non-Relevant Documents a=tl/3=7

Entree Corpus Query l)omam Entne Corpus Query L)omam

weapon 4.607 0.069 2.557 4.538 2.051

missile 5.786 0.049 3.249 5.737 2.538

arms 2.646 0.096 2.017 2.549 0.629

defense 3.425 0.161 2.300 3.264 1.126

soviet 2.965 0.155 2.499 2.810 0.467

Table 1: Feedback weights of less important terms undesirably boosted due to use of entire non-relevant corpus.

+ Relevant hide A CMSiIIAQUay

_ Non-Relevant Arlicle A Fedwk Qwxy

Figure 1: Migration of the query in the vector space. The arrows
indicate the “moving away” of the query from the non-relevant doc-
uments and towards the relevant articles.

2 Rocchii’s Algorithm

A feedback query creation algorithm developed by Joe Roc-

chio in the mid-1960’s has, over the years, proven to be one of

the most successful proiile learning algorithms. [22, 23] Roc-

chio’s algorithm was developed in the framework of the vec-

tor space model. [27] The algorithm is based upon the fact

that if the relevance for a query is known, an optimall query

vector will m aximize the average query-document similarity

for the relevant articles, and will simultaneously minimize

the average query-document similarity for the non-relevant

documents. Rocch~o shows that an optimal query vector is

the difference vector of the centroid vectors for the relevant

and the non-relevant articles.

Where R is the number of relevant articles, and N is the

total number of articles in the collection. Also, all negative

components of the resulting optimal query are assigned a

zero weight.

In the vector space view, using Rocchio’s query formu-

lation amounts to moving the query vector away from the

non-relevant vectors and closer to the relevant vectors in the

vector space (see Figure 1). To maintain focus of the query,

researchers have found that it is useful to include the origi-

nal user-query in the feedback query creation process. Also,

coefficients have been introduced in RncchIo’s formulation

which control the contribution of the original query, the rel-

evant articles, and the non-relevant articles to the feedback

1s- [23] (p%, 315) for Rocchiols definition of ~ OPtim~ Wew

query. These modifications yield the following query refor-

mulation function: [25]

The feedback query created by RoccMo’s query reformu-

lation process (using the documents marked relevant by a

user) is now considered as the user profile. New incoming

documents are matched against this profile and are routed

to the user if they have a suitable match to the profile. The

hope in this process is that the relevant articIes in the new

set of articles will be quite like the articlea marked rele-
vant by the user, and the non-relevant articles will be like

the non-relevant articles in the training data. The user pro-

file, which is designed to differentiate between relevance and

non-relevance in the training set, will also do a good job of

differentiating relevance from non-relevance in the new set

of articles.

3 Hypothesis

Rocchio’s optimal query is designed to maximiie the aver-

age query-document similarity for all relevant articlea, and

to minimize the average query-document similarity for SU

known non-relevant articles. [23] The intereating part of this

algorithm is its use of all known non-relevant articles, which

means that an article which is completely unrelated to the

user query also has a say in what the final query vector

would be. This effect has its shortcomings.

Consider a query: which disk drive should I bug for my

Mac? For this query, the word “computer” would be a good

word to define the general domain of the query but would

probabIy not be a very good word to separate articles on disk

drives for Mats from other computer related articles. When

we use the entire set of non-relevant articles in the training

corpus to get the final weight for the word “computer*, its

average weight (occurrence density) in the non-relevant ar-

ticles will be quite low (due to its absence from numerous

non-relevant articles from domains other than computers).

On the other hand, since most articles on disk drives for

Mats will probably mention the word “computer”, the av-

erage weight for this word in the relevant articlea will be

reasonably high. In the final Rocchio formulation, the word

“computer” would appear as a very strong indicator of rel-

evancq whereaa in reality, as we mention above, it might

not be a very good word to separate relevant articles from

the non-relevant articles in the domain of computers. In

this case, the use of all non-relevant articles has boosted the

importance of a term that is possibly not very important.

This phenomenon is illustrated in Table 1. Table 1 shows

the weight distribution for several words pertaining to the



TREC-3 routing query (number 101): Design oj the “Star

Wars” Anti-m iaaile Defense S@em; Document will provide

information on the proposed configuration, wmponents, and

technology of the U.S.’s “star wars” anti-missile defense sys-

tem . . . For several words, Table 1 shows the average weight
in the relevant articles; the average weight in the non-relevant

articles when the entire non-relevant corpus is considered,

and when only the non-relevant documents in the query do-

main are used2. Table 1 also shows the resulting weights

of these words in the feedback query if the initial query is

ignored (a = O in Equation 1) and the relevant and the

non-relevant articles are given equal importance (~ = y)3.

All words shown in Table 1 are words that get higher fi-

nal weights by using the entire non-relevant corpus than the

weights we would have assigned them if we were using the

non-relevant documents from the query domain only.

For example, in Table 1, the word “soviet” gets a high

final weight of 2.81 when the entire corpus of non-relevant

documents is considered. This shows that the occurrence

frequency of the word “soviet” is much higher in the relevant

documents than its occurrence frequency in the rest of the

corpus (which is visible from a high average weight — 2.97

— in the relevant documents and a very low average weight

— 0.15 — in the non-relevant documents); indicating that it

is a good word to isolate the general domain of anti-missile

defenee systemu from the rest of the corpus. But once we

are in the domain, the occurrence characteristics of the word
“soviet” is not very different in the relevant and the non-

relevant articles. The average weight of th~ word in the non-

relevant articles in the query domain is 2.50, which is much

closer to its average weight in the relevant documents (2.97).

This indicates that once we are in the generaI domain of anti-

missile defense sgstems, the word ‘soviet” is not a very good

discriminator of relevance for this query. Intuitively, this is
correct as the query is about “star wars”, a U.S. program.

A minor problem with using all non-relevant articles in

profile creation is that the weights of moderately good terms

can possibly be suppressed. Consider the domain of (say)

U.S. policy on Somalia which haa (hopefully) almost no con-

nection to a query on poaching of endangered species in Asia.

If we allow documents on U.S. polic~ on Somalia to affect

the Rocchio formulation for this query on poaching, we are

bound to confuse the algorithm which would assign mislead-

ing weights to some terms. An example would be a word like

“kMng” which might occur with reasonable chances in the

U.S. policy on Somalia domain. As this entire domain is
non-relevant, the average weight of the word %ilhng” in the

non-relevant documents will be boosted, yielding low impor-
tance for thk word in the final query. But in reality, this

word might be very important in the domain of poaching of

endangered species in Asia. In this scenario, by letting a

completely unrelated domain afect the final query vector,

we have undesirably suppressed the importance of a good

term.

The aim of a routing algorithm is to generate a profile

that discriminates between the potentially relevant and the

potentially non-relevant articles in the set of all the unseen

articles. A routing algorithm should learn how to make the
harder distinction between the relevant articles and the non-

relevant articles that relate well to the user quer~. The orig-

inal Rocchio proposal, with its use of all the non-relevant

articles to learn a feedback query, does a good job of dfler-

2 Hem the query domain is simulated by considering the toP 5,000

documents retrieved by the original query.

3 Documents are weighted using the Ltu weighting scheme of the
Smart system, [30]

. ------ --

- N,dtckvnm! Attick

Shmhl MI k ud in Rocddw,s funnuldim

Figure 2: Hypothesis: Only use documents in query domain
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Figure 3: A Query Zone

entiating the articles in the general domain of a query from

the articles that are not in the query domain; but it fails

to make the finer dwtinctions between the relevant and the

non-relevant articles in the query domain.

We therefore propose that we should learn user profiles

in the general domain of a query and not from the entire cor-

pus. This means that we should only use those non-relevant

documents in Rocchio’s formulation that have some connec-

tion to the user query. AU other non-relevant documents in

the corpus should be ignored in learning a user profile. This

process, as indicated above, would yield term weights that

are much better representatives of the actual term impor-

tance for the query under consideration. In the vector space

view, using only the non-relevant documents from the query

domain involves rejecting non-relevant documents that are

far away from the user query during the feedback query for-

mulation. This hypothesis is graphically illustrated in Fig-

ure 2, which proposes that articles from domains that are

completely unrelated to the query domain should not be

used in the feedback process.

4 Query Zone

If query domains were well defined sets of articles, then we

could have used only those articles in Rocclrio’s query re-

formulation. In absence of any formal definition of a query

domain, we approximate a query domain by a queW zone.

In the vector space model, a query zone can be envisioned

as a volume of the vector space, or a cloud in the vector

space, around a query vector (see Figure 3). In practice, a

query zone for a user query can be simulated by considering

a set of articles that have some reasonable similarity to the

query.

The aim then is to select a set of non-relevant articles
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(in the training set) that relate well to the user query to

be used in Rocchlo’s formulation. In this study we explore

several possible definitions of a query zone, and compare

the feedback query generated by the use of a query zone to

the feedback query generated if the entire corpus wss used

in Rocchio’s formulation. The definitions of the query zone

that we explore are :

● No-QZ: No query zoning. Thk acts as the base-

line for aU comparisons. All non-relevant documents,

i.e., all documents judged non-relevant as well as aU

the unjudged documents4, are used to learn a routing

query.

Parameters involved: a, /3, ~ (see Equation 1).

● QZ-1: All documents in the top If documents

as ranked by the original query and any miss-

ing relevant documents. Rank the training data

according to the original query, and assume that the

top K (say 5,000) documents form the query zone. If

some relevant document is ranked below the top K

documents, include it in the query zone. This strategy

was used in our TREC-5 participation. [7]

Parameters involved: a, ~, 7, and K.

● QZ-2: All documents with similarity to the orig-

inal query greater than some threshold (S). Queries
can have narrow or broad domains. A query from a
very narrow domain should have a smaUer query zone

than a broad query. To capture this notion, we use

similarity thresholds to simulate query domains, the

assumption being that if a query has, in general, low

similarity to the documents, then it is a narrow query,

and vice-versa. Urider this assumption, aU documents

that pass a certain similarity threshold (say S) are

considered to be in the query zone. If some relevant

document does not psm the similarity threshold, it is

included in the query zone.

Parameters involved: a, ~, -y, and S.

● QZ-3: Dynamic query zoning. This strategy is

motivated by Buckley and Salton’s dynamic feedback

optimization (DFO ) technique. [5] DFO aims at im-

proving feedback weights obtained from a feedback

technique (like Rocchlo) by changing individual term

weights and studying the effect of the change, ret-

rospectively, on the training set of documents. In

essence, DFO selects the best feedback query vector

from a set of feedback query vectors (it generates the

set of vectors it explores using a simple iterative al-

gorithm). In dynamic query zoning, we use multi-

ple zoning schemes to get multiple feedback queries

and measure the retrieval effectiveness of the result-

ing queries on the training corpus, selecting the best

query (in effect the best zoning strategy). Dynamic

query zoning is not as computationaUy expensive as

the current DFO techniques. For the same user query,

we generate multiple feedback queries by using differ-

ent rank cut-offs in QZ-1. We then run these queries

on the training corpus retrospectively and select the

query that has the best average precision performance

on the training corpus.

Parameters involved: cr, /3, 7, and a list of rank cut-

offs.

4This situation~SeS in TR,E)C because poollng is used for RI+

vance judgments, [11, 12] We assume that all the unjudged documents
sre non-relevant.

5 Related Work

In [15] Hull, and in [28] Schutze, Hull, and Pedersen want to

reduce the dimensionality of the feature space dramatically

for use with strong learning methods. They use singulru val-

ued decomposition (SVD) of the document space (actuaUy

the documents–to-features matrix) to obtain a smaU num-

ber of LSI factors to be used with their learning methods.

Since SVD is extremely computationaUy intensive, they re-

duce the number of documents they use in their document

space, and instead work in a “local region”. In [15] Hull uses

only the relevant documents for a query to learn the LSI fac-

tors. In [28] Schutze, Hull, and Pedersen use the top 2,OOO

documents retrieved by a query generated using Rocchio’s

feedback to learn the LSI factors needed in their classifiers.

The main motivation in these studies is to reduce the size

of the training data for it to be usable with computation-

aUy intensive SVD methods. In [28] they mention that iocal

LSI also has the advantage of using the non-relevant articles

that are most difficult to distinguish from the relevant docu-

ments (see [28] page 233), but have not explicitly measured

the advantages from their local LSI technique vs. a global

one.

AUan et al. use a technique which only considers the top

R non-relevant articles to learn a routing query, where the

query has R relevant articles in the training set. [3] This is

motivated by the need to have a balance between the number

of the positive and the negative examples in Rocchio’s learn-

ing of feedback queries. [1] We experimented with a similar

strategy which selects the top k x R non-rdeuant (where k is

an integer, we used 1, 2, 4, 6, 8, 10, 12, 14, and 16) articles

for a query that has R relevant articles in the trainhg set.

Space restrictions prohibit us from discussing the results in

detail but this particular zoning strategy yields very similar

results as QZ-1 and QZ-2 (presented in Section 7). Using

the top 6 x R non-relevant documents was the best from

TREC-3, and using the top 14 x R non-relevant documents

was best for TREC-4.

Our techniques can also be thought of sa sampUng tech-

niques that selectively use non-relevant documents for train-

ing. Sampling techniques are well studied in the machine

learning community. Our techniques come closest to uncer-

taint~ sampling of Lewis and Gale [18), which is motivated

by the query by committee technique of Seung, Opper, and

Sompolinsky. [29] In uncertainty sampling, only the training

examples whose class membership is uncertain (given the

current classifier) are proposed to a user for membership

judgment. Most Sampling techniques in machine learning

aim at reducing the size of the training set [19] and are not

motivated by improving the claadcation accuracy (except

for a few like [10]). Our zoning techniques, on the other

hand, are specifically aimed at improving the routing effec-

tiveness and are not motivated by the size of the training

corpus.

Recently Kwok and Grunfeld have used a sampling tech-

nique based on genetic rdgonthms that selects the best train-

ing subset of the relevant articles to be used in creation of a

feedback query. [17] Since we have a smaU number of relevant

articles (positive examples) for a typical routing query, we

did not consider ignoring any of those in our training phase.

Also Kwok and Gmnfeld did not obtain very encouraging re-

sults by ignoring some of the relevant articles. [17] It might

be possible to combhe sampling techniques for the relevant

articles (like Kwok’s) and our techniques for sampUng the

non-relevant articles to obtain an even richer set of trainiig

data.
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(x=8

Y=32 7=64 ‘y = 128 7 = 256

/3=16 0.3870 0.3872 0.3794 —

/3=32 0.3931 0.3973 0.3955 0.3932

~=64 0.3860 0.3914 0.3967 0.3962

1P
= ]~8 — 0.3790 0.3863 0.3915

Table 2: Average precision for different a, D, ~: TREC-3, no query
zoning.

Cr 8

-Y= 128 7 =756 -f= .512 7 = 1024

/3=32 0.3496 0.3339 0.3068 —

/!?=64 0.3509 0.3551 0.3349 0.3090

19= 128 0.3366 0.3510 0.35s5 0.3346

@ = 256 — 0.3341 0.3495 0.3543

Table 3: Average precision for different a, j3, -T: TREC-4, no query
zoning.

6 Experiments

We test the effectiveness of the routing queries learned using

zoning (QZ-1, QZ-2, QZ-3) by comparing them to the rout-

ing queries learned when query zoning is not used (No-QZ).

We use two benchmark routing tasks for all our experiments

— the TREC-3 routing task, queries: TREC topics 101-150,

training corpus: disks 1 and 2, test corpus: disk 3; and the

TREC-4 routing task, queries: fifty TREC topics, training

corpus: disks 1, 2, and 3, test corpus: 804 Mbytes of text

from Ziff, FR 1994, and the Internet. [11, 12] We select a

reasonable set of Rocchio parameters (a, ~, ~) for No-QZ.

To avoid multi-dimensional tuning of parameters, we select

a good set of Rocchio parameters for K = 5,000 for QZ- 1

and use the same a, ~, ~ across oii query zoning strategies.

Document vectors are individually weighted using the Ltu

weighting scheme of the Smart system. [30]

Table 2 shows the average precision results obtained by

using various a, ~, 7 values for the TREC-3 routing task

when no query zoning is used. Table 3 shows the same

tuning for the TREC-4 routing task. Since we don’t have
the luxury of retrospectively tuning Rocchio parameters, we

should select one set of parameters to be used across tasks.

The set of parameters a = 8, /3 = 64, y = 256 is a reasonable

compromise when no query zoning is used. Using a = 8, ~ =

64, y = 256, the results for TREC-3 and TREC-4 (average

precision vahes 0.3962, and 0.3551, respectively) are very

close to the results obtained if the best set of parameters was

used for both the tasks (0.3973, and 0.3555, respectively).

We use this set of parameters as the baseline run in all our

comparisons.

Tables 4 and 5 show the results from using query zoning

QZ-1 with K = 5,000 for the two tasks. We observe that

Rocchio parameters a = 8, ~ = 64, 7 = 64 yield the best

results for the TREC-3 task (see Table 4) when query zoning

is used. For the TREC-4 task, the best set of parameters is

a =8,/3= 32, ~ = 32 (see Table 5). Once again, since we

cannot retrospectively learn these parameters, we select one

set (a = 8, @ = 64, ~ = 64) as a reasonable set and use it

across query zones.

We use a = 8, /3 = 64, y = 64 in al! our query zon-

ing experiments. This reduces the number of parameters

I (Y=8 I

Table 4: Average precision for different a, P, -y: TREC-3, QZ- I
(K = 5,000)

Table 5: Average precision for different a, P, y: TREC-4, QZ-1
(K = 5,000).

involved in QZ-1 and QZ-2 to just one (K and S, respec-

tively). QZ-3 involves only a list of rank cut-offs but then

automatically picks the best cut-off on a per query basis. So

QZ-3, in effect, has no parameter to train for. We use the
following rank cut-offs for QZ-3: 1,000, 2,000, 4,000, 6,000,

8,000, and 10,000. We compare all the results from query

zoning to NGQZ results with a = 8, ~ = 64, ~ = 256. Also,

in all our experiments, we retain the highest weighted 100

single terms and 10 phrases in a feedback query, as weighted

by the Rocchio formulation.

7 Results and Dkcussion

We use our three query zoning strategies on the two routing

tasks.

QZ-1: The average precision figures for QZ-1 for vari-

ous rank cut-offs K are shown in Table 6. We immediately

observe that the profiles learned from query zone QZ-1 are

generally better than the profiles learned when no query

zoning is used. The improvements from using a query zone

are more marked for the TREC-3 routing task (where we

get an improvement of 8-12%). The improvements for the

TREC-4 routing task are not as marked (where we get an
improvement of 5–6~o).

Table 6 shows that a “tight” query zone (small number of

top documents) is more useful for the TREC-3 task, where-

a “loose” query zone (large number of documents) is more

useful for the TREC-4 task. The main reason for this, we

believe, is the similarities/differences in the charactenstica

of the training and the test datasets in the two tasks. Roc-

chio’s formulation (or any other routing method, in its own

way) “models” the relevant articl~ for a query (by averaging

the relevant vector and coming-up with a canonical relevant

vector), and it also ‘models” the non-relevant articles. The

closer the test set is to the model built by a routing algo-

rithm, the bet ter is the routing effectiveness of the feedback

query. If the test set is widely different from the training

set, then routing algorithms are known to perform poorly5.

The TREC-3 test dataset (disk 3) resembles the training

dataset (disks 1 and 2) to a very large extent — major-

ity of documents in the two sets have the same source for

documents: WSJ, AP, and ZIFF. The test set does have

5.Thi~is one of the main reasons why the general F@formmce ‘n

the TREC-4 and the TREC-5 routing tasks in much lower than the
performance for the TREC-3 routing task. [12, 13]
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I K (rank cut-off) I

t 1,000 I 2,000I 4,000 6,000 8,000

TRE c-3 I I

I
Average

I
0.4368

I
0.4415

I
0.4326

I
0.4279

I
0.4235

Pre&lon

! vs. N-QZ ! +10.2% ! +11.4% I + 9.2% ! + 8.0% I + 6.9%

1(o.3962j I I I I
c-4 I

Average 0.3223 0.3535 0.3735 0.3’777 0.3776
Precision

TRE c-4

vs. No-QZ -9.2% -0.5% + 5.2% + 6.4% + 6.3%
(0.3551)

Table 6: Average precision for different rank cut-offs: QZ-1.

3
10,000

0.4213

+ 6.3%

3

0.3773

+ 6.3%

Q% 1 Size 1,000 2,000 4,000 6,000 8,000 10,000

Retrospective (Thnung Dat a 0.3192 0.3317 0.3282 0.3244 0.3205 0.3171

Pre&ctwe Test Data) 0.3223 0.3535 0.3735 0.3777 0.3776 0.3773

Table 7: Retrospective and predictive performance of feedback queries learned from QZ-1 of different sizes: TREC-4 task.

some new type of articles (U.S. Patents) but they are very
few (only 6,711 out of 336,310). In such a scenario, one

can aford to “aggressively” build a restricted model for the

non-relevant documents by using the top few non-relevant

documents only. Since the test set will be very close to this

model, the performance of the feedback query will be good.

On the other hand, when the test set has a very different

composition than the training set — as is the case with the

TREC-4 routing task where the test set (Ziff, FR, and In-

ternet material) haa many articles (113,205 out of 329,780)

from internet news-groups, IR digest, and virtual worlds,

which have completely different characteristics than the ar-

ticles in the learning set (disks 1, 2, and 3) — then we cannot

use a restrictive set of non-relevant documents to model the

non-relevant documents that will be encountered in the test

set. If we do, we tend to overfit our feedback queries to the

training data. This can be observed in Table 7 which shows

the retrieval effectiveness of the feedback queries learned

from query zones of different sizes (tight — 1,000-2,000

documents — to loose — 8,000-10,000 documents) retro-

spectively on the training dataaet and predictively on the

test dataset for TREC-4 routing queries. We observe in Ta-

ble 7 that by using a loose query zone (top 6,000 documents)

in place of a tight query zone (top 2,oOO documents), even

though the resulting queries perform worse on the training

dataaet, the performance improves noticeably on the test

dataset. This indicates that even though building a re-

st ricted model of the non-relevant articles is good for the

training data, since the test data has dtiering characteris-

tics, a more general model of the non-relevant documents is

=tually better. Results in Table 6 also show that when we

use a very strict query zone of top 1,000 documents only,

we badly overfit our feedback queries to the training data

and get routing queries which are, in effect, noticeably worse
that using the complete set of non-relevant articles.

QZ-2: Some queries might cover a broad topic or even

multiple topics, whereas other queries might be very specific.

The notion of a fixed size query zone for every query does

S(’sundanty threshold )
0.15 0.20 0.25 0.30

TRE c-3
Average 0.4202 0.4332 0.4408 0.4218

Preckion I I I I
TREG 3

VS. N*QZ I + 6.1%0I + 9.3% I +11.3~o I + 6.5~o
(0.3962) I I I I
TRE c-4

Average 0.3717 0.3731 0.3699 —

Precision

TREC -4
VS. No-QZ + 4.7yo + 5.lyo + 4.2~o —

(0.3551)

Table 8: Average precision for different thresholds: QZ-2.

not capture this essence of user queries. To take this reality

into account, we can define that a document belongs to a

query zone only if it exhibits a certain degree of semantic re-

latedness to a query. In the vector space model, we simulate
thw by including in a query zone all documents that pass a
certain similarity threshold with the query. A low airdarity

threshold will result in a loose (or large) query zone and vice

versa. Suppose the similarity threshold is S, if a query haa

a narrow domain, not too many documents might have a

similarity > S with the query; whereas for a broad query,

many documents might cross the aimihrity threshold of S.

Query document similarity is dependent on the docu-

ment length sa well as the query length, and we do normalise

the document vectors for length, [30] for a similarity thresh-

old based scheme to be effective across queries, we will need

to length-normalize the query vectors as well. Since our sim-
ilarit y formulation is linear, normalizing a query vector by

the sum of the individual (unnormalized) term weights is
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No Query Zoning Qz- 3

EC-3 0.3962 0.4440

+12.1%

C-4 0.3551 0.3868

+ 8.9~0

Table 9: Average precision for dynamic query zoning: QZ-3

a reasonable solutione. Using sum-normalized queries, the

results from using similarity threshold baaed query zoning

are shown in Table 8. We observe in Table 8 that there

is no noticeable difference in using a threshold baaed query

zone (QZ-2) and using a fixed size query zone (QZ-I, see

Table 6). Once we select a compromise parameter value

(K= 4,000 for QZ-1 and S = 0.20 for QZ-2), both strate-

gies yield above 9% improvement for TREC-3 queries and

above 5% improvement for TREC-4 queries over using no

query zoning.

These improvements are important, especially in light

of the fact that there is not much extra effort involved in

doing query zoning over not doing it. To use QZ-1, a routing

algorithm can periodically modify a user profile by retrieving
top 4,000–5,000documents and creating a profile vector.

Maintaining a profile is even easier for QZ-2. As and when

an article passes the similarity threshold with the initial user

query, dependhg upon its relevance, it can be added to a

“sum vector” for the relevant or the non-relevant articles.

A profile can then be created ‘on the fly’ by just dividing

the current sum vectors by the nnmber-relevant and the

number-non-relevant figures and taking a vector difference.

QZ-S: If we somehow did know that a certain query

zone size will be the best for a given query, then we can

obtain better results than the results obtained from using a

compromise parameter value across queries. For example, if

we use a compromise query zone size of 4,000 for QZ-1, the

average precision for the TREC-3 task is 0.4326 (Table 6);

if we somehow knew that for this query set, a query zone

of 2,000 documents will be better, we could have obtained

slightly better results. Motivated by dynamic feedback op

timization of Buckley and Salton, [5] we try to “learn” a

good query zone size on a per query basis from the train-

ing data. To do this, we generate various profiles for a user

query by using query zones of different sizes. For a given
user query, we generate several feedb=k queries by using

QZ-1 with top 1,000, 2,000, 4,000, . . . . 10,000 documents
retrieved. We then evaluate the retrieval effectiveness of

each feedback query retrospectively on the training data.

The best feedback query for that user query is then used in

a predictive setting for actusJ document routing. It is thus

possible that one user’s profile is built from a query zone

of size 1,000 whereas another user’s profile is built from a
query zone of size 10,000.

This query zoning scheme does not require any param-

eter, instead, it learns the parameter involved in QZ-1 au-

tomatically on a per query basis. The results from using

such dynamic query zoning are listed in Table 9. Table 9

shows that by using dynamic query zoning, the results for

the TREC-3 task (average precision 0.4440) are marginally

better than the best parameter setting in QZ-I (average

precision 0.4415 for K = 2, 000) as well as in QZ-2 (aver-

6 In the Coume of our experiments, we also used the well-known

cosine normalization scheme for the queries, [24]but sum-based nor-
malization yields more consistent results scrom query sets,

age precision 0.4408 for S = 0.25). Also, for the TREC-

4 task, dynamic query zoning (average precision 0.3868)

is marginally better than the best settings for both QZ- 1
(0.3777 for K = 6, 000) and QZ-2 (0.3731 for S = 0.20).

The results obtained from this query zoning strategy are

impressive. Important improvements over not using query

zoning are obtained for both the routing tasks, and there is

no parameter involved. These improvements are especially

impressive given the fact that the comparison baseline for

these results is quite high.

8 Conclusions

Learning routing queries by using a restricted set of non-

relevant documents in place of the entire set of non-relevant

docnments is effective. We snggeat the use of dynamic query

zoning. For the TREC-3 routing task, routing queries ob-

tained by using query zoning perform 12% better than not

using query zoning. This improvement is 9% for the TREC

4 task. These improvements are important, especially given

the fact that using a query zone does not involve much ex-

tra work for a system. Our results show that a routing

algorithm should learn to discriminate between the relevant

articles and the non-relevant articles that do have norne re/a-

tiorwhip to the user query. Learning to discriminate between

the relevant articles and all non-relevant articles including

those that are completely unrelated to a user query will not

yield very effective routing queries.
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