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Abstract

Background: Survival analysis is an important element of reasoning from data. Applied in a number of fields, it has
become particularly useful in medicine to estimate the survival rate of patients on the basis of their condition,
examination results, and undergoing treatment. The recent developments in the next generation sequencing open
new opportunities in survival study as they allow vast amount of genome-, transcriptome-, and proteome-related
features to be investigated. These include single nucleotide and structural variants, expressions of genes and
microRNAs, DNA methylation, and many others.

Results: We present LR-Rules, a new algorithm for rule induction from survival data. It works according to the
separate-and-conquer heuristics with a use of log-rank test for establishing rule body. Extensive experiments show
LR-Rules to generate models of superior accuracy and comprehensibility. The detailed analysis of rules rendered by
the presented algorithm on four medical datasets concerning leukemia as well as breast, lung, and thyroid cancers,
reveals the ability to discover true relations between attributes and patients’ survival rate. Two of the case studies
incorporate features obtained with a use of high throughput technologies showing the usability of the algorithm in
the analysis of bioinformatics data.

Conclusions: LR-Rules is a viable alternative to existing approaches to survival analysis, particularly when the
interpretability of a resulting model is crucial. Presented algorithm may be especially useful when applied on the
genomic and proteomic data as it may contribute to the better understanding of the background of diseases and
support their treatments.

Keywords: Survival analysis, Separate-and-conquer, Rule induction, Log-rank test, High throughput sequencing,
Cancer

Background
Modeling the impact of covariates on survival time is

an important task of survival analysis. The most popu-

lar approaches to this problem are parametric [1] and

semi-parametric statistical techniques like Cox propor-

tional hazards regression [2] and its extensions. How-

ever, restrictive assumptions made by these strategies and

difficulty in representing nonlinear interactions between

covariates are one of the motivations for developing

new methods based on machine learning techniques.

The application of machine learning to survival analy-

sis usually allows overcoming the limitations of statistical

methods. In this paper we investigate a nonparametric

rule-based approach to modeling survival data.
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Rule induction is one of the oldest and most frequently

used methods of machine learning. Although numerous

successful applications in a wide range of predictive and

descriptive data mining tasks, there is still a little research

on rule learning in survival analysis. Naturally, in the case

of absence of censored observations the standard rule-

based regression [3–5] techniques can be applied. How-

ever, as the overwhelming majority of survival datasets

contains censored instances, the methods able to han-

dle censored data are of great value. In this paper we

investigate rule induction algorithm in combination with

the log-rank statistical test [6]. This nonparametric test

is used to compare the survival distributions of two sam-

ples and is appropriate for censored data analysis. In our

study the test is used to establish the key factors affecting

overall survival time of observations covered by the rules

being induced. As the basis of rule induction method we

selected a separate-and-conquer (known also as covering)

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1693-x&domain=pdf
mailto: lukasz.wrobel@polsl.pl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Wróbel et al. BMC Bioinformatics  (2017) 18:285 Page 2 of 13

strategy [7, 8] which is one of the most common heuristics

for induction of classification rules.

Related work

Methods of survival analysis are mainly used in medical

studies. Although rule-based algorithms are often applied

in medical research, there is a relatively small number

of papers concerning the application of rule induction to

survival analysis.

Pattaraintakorn and Cercone [9] describe the rough set-

based intelligent system for survival analysis. The model

construction relies on a so-called minimal decision rule

induction algorithm for identification of the main factors

affecting survival time of patients. The survival time is

considered as a discrete variable with predefined values

(e.g. survival time between 56 and 73 months) dividing an

entire dataset into separate decision classes.

The rough set-based approach to survival analysis is also

the subject of the Bazan et al.’s work [10]. For each obser-

vation in the analyzed dataset, a prognostic index (PI)

based on the Cox’s proportional hazard model is calcu-

lated. A range of PI values is divided into three intervals,

thereby creating separate groups differing in the survival

rate, and the rules are induced for resulting classes.

Sikora et al. [11] applied rule induction algorithm to

the analysis of patients after bone marrow transplanta-

tion. The set of patients is divided into three groups: the

patients for whom at least 5 years have passed since the

transplantation (the class alive), the patients who died

within 5 years after transplantation (the class dead), and

the patients who are still alive but their survival time is

less than 5 years (the class alive-5). Rules are generated

for dataset containing alive and dead classes, whereas the

alive-5 is used for the post-processing of obtained rules.

Kronek and Reddy [12] proposed the extension of Log-

ical Analysis of Data (LAD) [13, 14] for survival analysis.

The LAD algorithm is a combinatorial approach to rule

induction. It was originally developed for the analysis of

data containing binary attributes, therefore the data pre-

processing by discretization and binarization methods is

usually required.

Liu et al. [15] adapted patient rule induction method to

the analysis of survival data. The method uses so-called

bump hunting which creates rules by searching regions in

covariates space with a high average value of the target

variable. To deal with censoring, the authors use deviance

residuals as the outcome variable. The idea of residual-

based approach to censored outcome is derived from

survival trees [16, 17].

Wróbel [18] proposed to use a survival tree for induc-

tion of an ordered set of rules (decision list) from survival

data. The core idea is to learn a survival tree, extract the

best rule from it, and remove observations which are cov-

ered by the rule. The procedure is recursively repeated for

remaining observations. This idea follows the approach

used by the PART [19] and M5Rules [3] algorithms for

learning classification and regression rules, respectively.

Wróbel and Sikora [20] investigated a separate-and-

conquer method of rule induction in combination with

a weighting scheme for handling censored observations.

Each observation is assigned an appropriate weight to a

positive or negative class. The positive class represents

observations with high risk of event occurrence, whereas

negative class includes potentially event-free ones. If

observation have experienced an event, then it belongs

to the positive class with weight equal to 1. Censored

instances are assigned to both classes, but with different

weights. The observations censored earlier receive higher

weight for the positive class than the observations cen-

sored later. In the experimental study the authors pay

special attention to rule quality measures [21–23] which

are one of the key elements of rule induction algorithms.

It should be noted that the aforementioned studies

primarily concern the application of rule-based survival

analysis to usually one, particular dataset. Pattaraintakorn

and Cercone [9] mainly focused on geriatric data of Cana-

dian patients, Bazan et al. [10] analyzed data of patients

with various kinds of the head and neck cancer cases,

Sikora et al. [11] studied the effects of bone marrow trans-

plantation, Liu et al. [15] performed an analysis of kidney

cancer tissuemicroarray data. Kronek and Reddy [12] pro-

posed a more general approach, however they verified the

algorithm for only two real-life datasets. The exceptions

are our previous work [18, 20] where survival tree-based

and weighted separate-and-conquer algorithm for rule

induction were tested on over a dozen various survival

datasets.

There are also machine learning methods dedicated

to censored data analysis and not associated with the

rule induction. These are trees [16, 24–26], neural net-

works [27–29], bayesian networks [30, 31], support vector

machines (SVM) [32], and ensemble approaches [33–35].

Among all aforementionedmethods, themost widely used

are tree-based techniques called survival trees.

Survival trees are an adaptation of classification and

regression trees [36] to the problem of survival. In com-

parison to rule-based techniques, tree-based methods

receivedmuchmore attention in survival analysis [26]. On

the other hand, a tree can be easily represented in the form

of a set of rules where each path from the root to the leaf

of the tree corresponds to one rule, thus it can be con-

sidered as a special case of the rule-based model. The key

idea of the application of tree-based techniques to survival

data lies in the splitting criterion [37]. The most popu-

lar approaches are residual-based ones [16, 17] as well

as methods employing log-rank statistics [25, 38] for the

maximization of the difference between survival distribu-

tions of child nodes. While searching for optimal splitting
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point with the use of the log-rank criterion, resampling

methods are used too [39]. The extension of the deci-

sion trees idea are decision tree ensembles which includes,

for example, bagging [40] and random forests [41]. The

survival trees are also commonly employed in ensemble

methods like bagging [35, 42], boosting [33] and random

forests [34, 43, 44]. An extensive review and discussion on

the induction of survival trees and survival tree ensem-

bles can be found in [45]. In this work the merits and

limitations of these methods are discussed, along with the

available computer software.

One of important aspects of using the survival analy-

sis in medical sciences and bioinformatics is the neces-

sity to have easily interpretable results. This ability is

a crucial feature of survival trees and survival rules.

Both approaches divide the observations into subgroups

with different survivability characteristics. Importantly

enough, they allow not only the attributes that have sig-

nificant impact on the survival time to be identified, but

also non-linear dependencies and interactions between

the variables to be modelled.

While survival trees can be straightforwardly translated

to survival rules, the algorithms used for induction of

the latter directly from data have numerous advantages.

Firstly, divide-and-conquer (DnC) tree generation strat-

egy forbids examples to be covered by multiple rules.

Separate-and-conquer (SnC) heuristics for rules induc-

tion lacks this limitation often leading to discovering

stronger or completely new dependencies in the data. Sec-

ondly, generation of rules from the tree by following the

path from the root to leafs results in condition redun-

dancy. This is not the case in SnC, as each rule is induced

separately. The last feature is also useful when it is nec-

essary to modify the generated rules so that they could

better correspond to the domain knowledge. The SnC-

generated rules can be a preliminary set of hypotheses

which is then verified by an analyst (domain expert). By

adding or deleting elementary conditions from the rules,

or modifying their ranges, the analyst can carry out dif-

ferent variants of the analysis. Consequently, adding new

rules to the set does not interact with existing ones. The

tree, in contrast, should be treated as a whole. Therefore,

a change of a condition in a tree node involves the need to

modify or re-calculate the conditions in all its child nodes.

Objectives and outline

Themain goal of this paper is to present the separate-and-

conquer rule learning algorithm designed for survival data

analysis and to verify its effectiveness on the variety of sur-

vival problems. In contrast to most of the aforementioned

related work, we propose a more general solution rather

than the case-study approach. Moreover, as opposed to

[9, 10, 12], the presented strategy does not require data

pre-processing with the use of discretization methods. It

is particularly important for the quality of survival analysis

because discretization may cause the loss of information,

and the final performance of the model may strongly

depend on a selected discretization technique.

The key feature of our algorithm is the use of the

separate-and-conquer strategy and log-rank statistical test

for supervising the rule induction process. The log-rank

test is aimed at detecting the most powerful and impor-

tant factors affecting the expected survival time. There-

fore, the resulting rule-based data models should be

concise, easy to interpret by domain experts, and accurate

in the survival time prediction. The use of the log rank-

test requires neither the weight assignment to examples

nor defining decision classes (e.g. event, non-event). All

of these features distinguish the presented algorithm from

the other approaches.

The efficiency of our rule-based framework for sur-

vival analysis was verified on a collection of 18 survival

datasets describing a wide variety of real-life medical and

biological problems. We compared our solution with the

state-of-art survival trees algorithms.

In addition, we present the detailed analysis of rules

sets for German Breast Cancer Study Group 2 [46], Bone

Marrow Transplantation [47], Lung Adenocarcinoma

[48], and Papillary Thyroid Carcinoma [49] datasets. The

results show that the rule-based models generated by our

algorithm are useful and can provide interesting infor-

mation about the data, particularly when faced with the

recent development of bioinformatics technologies.

The algorithm is available at http://www.adaa.polsl.pl/

software.html.

Methods
Let D(A,T , δ) be the survival dataset of |D| observations

(examples, instances). Each example is characterized by

a set of covariates (attributes) A = {A1,A2, . . . ,A|A|},

an observation time T, and a censoring status δ. There-

fore, i-th example can be represented as a vector oi =

(ai1, . . . , ai|A|,Ti, δi). In the study we consider right-

censored data model which is the most common in the

survival analysis. Consequently, Ti denotes either the time

of the observation for event-free examples (δi = 0) or the

time before the occurrence of an event (δi = 1).

The LR-Rules algorithm returns a set of survival rules.

A survival rule r has the form:

IF c1 ∧∧∧ c2 ∧∧∧ . . . ∧∧∧ cn THEN Ŝ(T |cj)

The premise of the rule is a conjunction of conditions. If

attribute Aj is of nominal type, condition cj has the form

Aj = aj; if Aj is numerical, Aj < aj or Aj ≥ aj conditions

are possible (with aj being an element of the Aj domain).

An observation is covered by the rule when it satisfies its

premise. The conclusion of r is an estimate Ŝ(T |cj) of the

survival function. Particularly, it is a Kaplan-Meier (KM)

http://www.adaa.polsl.pl/software.html
http://www.adaa.polsl.pl/software.html
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estimator [50] calculated on the basis of the instances cov-

ered by the rule, that is, satisfying all conditions cj (j =

1, . . . , n).

The induction of survival rules in LR-Rules follows

the separate-and-conquer heuristics. The algorithm adds

rules iteratively to the initially empty set. Every learned

rule has to cover at least mincov previously uncovered

examples from the input dataset. The iteration contin-

ues until entire dataset becomes covered by the rule set.

The pseudocode of the separate-and-conquer approach is

presented in Algorithm 1.

The aim of the induction algorithm is to obtain rules

of maximum quality. An extensive research on classifi-

cation rules [21–23] showed that proper selection of a

quality measure is of crucial importance for comprehen-

sibility and performance of output model. In the survival

analysis it is desirable for a rule to cover examples which

survival distributions differ significantly from that of other

instances. In presented algorithm, KM survival estimates

of the examples covered and uncovered by the rule are

derived from the data. A log-rank test statistics for those

estimates is then used as a quality measure. The log-rank

statistics is calculated as x2/y where:

x =
∑

t∈Tc∪Tu

(

dtu −
rtu

rtc + rtu
·
(

dtc + dtu
)

)

y =
∑

t∈Tc∪Tu

rtc · rtu ·
(

dtc + dtu
)

·
(

rtc + rtu − dtc − dtu
)

(

rtc + rtu
)2

·
(

rtc + rtu − 1
)

Tc and Tu are sets of event times of observations cov-

ered and not covered by the rule, dtc
(

dtu
)

is the number

of covered (uncovered) observations which experienced

an event at time t, and rtc
(

rtu
)

is the number of cov-

ered (uncovered) instances at risk, that is, which are still

observable at time t.

Algorithm 1 Induction of a survival rule set using

separate-and-conquer heuristics.
Input: D—survival dataset,mincov—minimum number of previously uncov-

ered examples that a new rule has to cover
Output: R—survival rule set
1: DU ← D ⊲ set of uncovered observations
2: R ← ∅
3: repeat
4: r ← GROW(D,DU ,mincov) ⊲ grow a new rule
5: r ← PRUNE(r,D) ⊲ prune the rule
6: R ← R ∪ {r}
7: DU ← DU \ COV(r,DU ) ⊲ COV(r, DU ) denotes a set of observations

from DU covered by the rule r
8: until DU = ∅

The induction of a rule is performed in two stages:

growing and pruning. The former consists in greedy

addition of elementary conditions to the initially empty

rule premise (Algorithm 2). At each step, the algorithm

searches exhaustively for the condition whose addition

Algorithm 2 Growing a survival rule.
Input: D—survival dataset, DU—set of uncovered observations, mincov—

minimum number of previously uncovered examples that a new rule has
to cover

Output: r—survival rule
1: function GROW(D, DU ,mincov)
2: ϕ ← ∅ ⊲ start from empty premise
3: repeat ⊲ iteratively add conditions
4: cbest ← ∅ ⊲ current best condition
5: qbest ← −∞ ⊲ current best quality
6: Dϕ ← COV(ϕ, D) ⊲ observations from D satisfying ϕ
7: for c ∈ GETCONDITIONS(Dϕ ) do
8: ϕc ← ϕ ∧ c ⊲ premise ϕ with condition c added
9: Dϕc ← COV(ϕc , D)
10: if |Dϕc | ≥ mincov then
11: q ← LOGRANK(Dϕc , D \ Dϕc )
12: if q > qbest then
13: cbest ← c, qbest ← q
14: end if
15: end if
16: end for
17: ϕ ← ϕ ∧ cbest
18: until cbest = ∅

19: Ŝ ← the KM estimate calculated on the set COV(ϕ, D)

20: return r ≡ IF ϕ THEN Ŝ
21: end function

Algorithm 3 Generating conditions for rule growing.
Input: D(A,T , δ)—survival dataset
Output: C—set of conditions
1: function GETCONDITIONS(D)
2: C ← ∅
3: for Aj ∈ A do ⊲ for each attribute from A
4: if Aj is of nominal type then
5: AD ← values of attribute Aj in set D
6: for aj ∈ AD do
7: C ← C ∪ {(Aj = aj)}
8: end for
9: else ⊲ attribute Aj is of numerical type
10: VD ← sorted list of attribute Aj values in set D
11: for i ∈ {1, 2, . . . , |VD| − 1} do
12: aj ← (VD[ i]+VD[ i + 1] )/2
13: C ← C ∪ {(Aj < aj), (Aj ≥ aj)}
14: end for
15: end if
16: end for
17: return C
18: end function

Algorithm 4 Pruning a survival rule.
Input: r—survival rule, D—survival dataset
Output: r′—survival rule after pruning
1: function PRUNE(r, D)
2: ϕ′ ← ϕ
3: repeat ⊲ iteratively remove conditions
4: cremoval ← ∅ ⊲ candidate to remove
5: Dϕ′ ← COV(ϕ′ , D)
6: qcurrent ← LOGRANK(Dϕ′ , D \ Dϕ′ )
7: for c ∈ ϕ′ do
8: Dϕ′ ← COV(ϕ′ \ c, D)
9: qc ← LOGRANK(Dϕ′ , D \ Dϕ′ )
10: if qc ≥ qcurrent then
11: cremoval ← c, qcurrent ← qc
12: end if
13: end for
14: ϕ′ ← ϕ′ \ cremoval

15: until cremoval = ∅ ∨ |ϕ′| = 1

16: Ŝ ← the KM estimate calculated on the set COV(ϕ′ , D)

17: return r′ ≡ IF ϕ′ THEN Ŝ
18: end function
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renders rule of the highest quality. If several conditions

lead to the same value of the log-rank statistics, the one

covering more examples is selected. The set of all the pos-

sible conditions which might be added to the rule is cre-

ated on the basis of examples currently covered by the rule

(Algorithm 3). In the case of nominal attributes, condi-

tions in the formAj = aj for all values aj from the attribute

domain are considered. For continuous attributes, Aj val-

ues that appear in the observations covered by the rule are

sorted. Then, the possible split points aj are determined

as arithmetic means of adjacent elements and conditions

Aj < aj and Aj ≥ aj are evaluated. Te prevent from gen-

eration of too specific rules, conditions whose addition

would cause the rule to cover less than mincov previously

uncovered examples are discarded. The growing stops

when no conditions satisfying aforementioned criterion

remain.

Growing stage is followed by pruning (Algorithm 4).

The procedure iteratively removes conditions from the

premise, each time making an elimination leading to the

largest improvement in the quality. The procedure stops

when no conditions can be deleted without decreasing

the log-rank statistics or when rule contains only one

condition.

Finally, for comprehensibility, the output rules are post

processed by merging conditions based on the same

numerical attributes. For example, the conjunction: Ai ≥

x ∧∧∧ Ai < y is transformed into a single condition Ai ∈

〈x, y).

Figure 1 illustrates the idea of rule growing supervised

by the log-rank criterion. Let r be the input rule with two

Fig. 1 Growing a survival rule supervised by the log-rank criterion.
Among two possible refinements ra and rb of the rule r, the ra is
selected as it maximizes the difference between survival curves of the
observations covered and not covered by the rule (lines labelled with
ra and ra , respectively)

possible refinements ra and rb. The figure shows the KM

curves of all these rules. Additionally, the graph presents

the survival curves of the observations not covered by the

rules ra and rb, labelled with ra and rb, respectively. The

log-rank statistics calculated for the rule ra (rb) reflects

difference between survival curves labelled with ra (rb)

and ra (rb). The difference between ra and ra is greater

than for the pair rb–rb. Therefore, the refinement ra of the

rule r better discriminates observations according to the

survival rate, thus it is selected as the current best form

of the rule which is expanded with new conditions in the

subsequent iterations.

In order to deal with missing attribute values, LR-

Rules employs an ignored value strategy in which rules

are built based only on known values of observations. It

is performed straightforwardly by skipping missing val-

ues during search of possible conditions. The observation

having a missing value of an attribute tested by the rule

is considered to be uncovered by this rule. In contrast to

imputation methods [51], this strategy does not require

any additional computations and, as was shown in [52], it

performs similarly to more advanced and computationally

expensive approaches to handling missing values.

A valuable property of LR-Rules is also the ability to

handle datasets with weighted observations. In this case,

the value of log-rank test is calculated on the basis of

weights and mincov parameter indicate the sum of obser-

vations weights to be covered by a newly generated rule.

The learned rule set can be applied for an estimation

of the survival function of new observations based on the

values taken by their covariates. The estimation is per-

formed by rules covering given observation. If observation

is not covered by any of the rules then it has assigned the

default survival estimate computed on the entire train-

ing set. Otherwise, final survival estimate is calculated as

an average of survival estimates of all rules covering the

observation (see Fig. 2 for an example).

Results and discussion

Experimental setting

The LR-Rules algorithm was investigated on 18 sets

listed in Table 1 using 10-fold stratified cross-validation

repeated ten times for each set. The stratification of

survival data was performed according to the censoring

status, that is, the proportion of events to censored obser-

vations in each fold was the same as in the entire training

set. Additionally, the detailed analysis of survival rules

was performed on four selected sets. These were GBSG2

(German Breast Cancer Study Group 2) [53], BMT-Ch

(Bone Marrow Transplantation – Children) [20, 47], LAC

(Lung Adenocarcinoma) [48], and PTC (Papillary Thyroid

Carcinoma) [49].

GBSG2 is a well-known dataset which describes patients

with primary node positive breast cancer. It was used,
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Fig. 2 Averaging survival curves. When the observation is covered by
multiple rules (r1 and r2 in this case), its survival function (solid line) is
obtained as an average of the rule functions (dashed lines)

inter alia, in [12, 31, 39] to test different modeling tech-

niques. Each observation is described by the following

attributes: hormonal therapy (horTh), age, menopausal

status (menostat), tumour size (tsize), tumour grade

(tgrade), number of positive nodes (pnodes), progesterone

Table 1 The characteristics of 18 sets used in the experimental
studies: the number of observations (#obs), the number of
conditional attributes (#att), the percentage of missing values
(%mv), the percentage of censored observations (%cs), and the
research subject

Set #obs #att %mv %cs Subject of research

actg320 [63] 1151 11 0 92 HIV-positive patients

BMT-Ch [47] 187 37 1 55 Bone marrow transplant

cancer [64] 228 7 4 28 Advanced lung cancer

follic [65] 541 4 0 36 Follicular lymphoma

GBSG2 [53] 686 8 0 56 Breast cancer

hd [65] 865 6 0 51 Hodgkin’s disease

LAC [48] 86 113 0 72 Lung adenocarcinoma

lung [66] 1032 7 3 26 Early lung cancer

Melanoma [67] 205 7 0 65 Malignant melanoma

mgus [68] 241 9 20 24 Monoclonal gammopathy

PTC [49] 421 24 41 93 Papillary thyroid carcinoma

pbc [69] 418 17 15 61 Primary biliary cirrhosis

std [70] 877 21 0 60 Sexually-trans. diseases

uis [63] 575 13 0 19 Drug addiction treatment

wcgs [71] 3154 10 <1 92 Coronary artery disease

whas1 [63] 481 7 0 48 Myocardial infarction ed1

whas500 [63] 500 13 0 57 Myocardial infarction ed2

zinc [72] 431 55 57 81 Esophageal cancer

receptor (progrec), estrogen receptor (estrec). An event in

survival analysis is cancer recurrence.

BMT-Ch describes 187 patients (75 females and 112

males) at the age of 0.6 to 20.2 years (median 9.6) admit-

ted to the Department of Pediatric Bone Marrow Trans-

plantation, Oncology and Hematology, Wrocław Medical

University, Poland. Disease spectrum included 155 malig-

nant disorders (i.a. 67 patients with acute lymphoblastic

leukemia, 33 with acute myelogenous leukemia, 25 with

chronic myelogenous leukemia, 18 with myelodysplastic

syndrome) and 32 nonmalignant cases (i.a. 13 patients

with severe aplastic anemia, 5 with Fanconi anemia, 4

with X-linked adrenoleukodystrophy). The procedure of

unmanipulated allogeneic unrelated donor hematopoietic

stem cell transplantation was performed in each case,

according to the European protocols or the guidelines

of the European Blood and Marrow Transplant Inborn

Errors Working Party with worldwide accepted modifica-

tions based on disease and/or patient’s condition status

prior transplantation. Each patient was characterized by a

set of 42 conditional attributes. Table 2 presents interpre-

tations of selected ones. Patient’s death is considered as an

event.

LAC dataset concerns gene expression profiles of 86

lung cancer patients [48]. Expressions weremeasured with

Affymetrix hu6800 microarrays (7 129 probe sets) and

normalized from raw .CEL files by RMAExpress. In the

experiments we considered 100 genes with greatest effect

on survival rate according to Beer et al. [48]. Due to

name discrepancies, three genes were excluded from the

investigation as they did not map to any probe. On the

other hand, some genes had multiple probes assigned. As

a result, LAC dataset contains 113 conditional attributes

with patient’s death being considered as an event.

PTC gathers information about 492 papillary thyroid

cancer patients. They are characterized by clinical as well

as genome-related features like single nucleotide poly-

morphisms (SNP), copy number alterations (CNA), gene

expressions determined with RNA-seq, DNA methyla-

tion, protein expressions obtained by reverse phase pro-

tein arrays (RPPA), etc. Data table available at [54] was

processed by filtering out patients with missing informa-

tion about survival status or survival time. As we wanted

to focus this study on the genetic background of thyroid

cancer, corresponding features were selected for further

analysis (Table 3). We assumed recurrence of a cancer to

be an event in the survival analysis.

The results of the LR-Rules algorithm were compared

with results achieved by the KM estimator, our earlier

CW-Rules algorithm [20], and two implementations of

survival trees (CTREE, RPART). The CTREE algorithm

[39] buildsmodel from survival data using a splitting crite-

rion based on the log-rank statistic. The RPART algorithm

[55] fits time variable into exponential model, and then
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Table 2 Selected conditional attributes of BMT-Ch (Bone Marrow
Transplantation) dataset

Name Description

RecipientRh Presence of the Rh factor on recipient’s red
blood cells

RecipientAge Age of the recipient of hematopoietic stem
cells at the time of transplantation

RecipientBodyMass Body mass of the recipient of hematopoietic
stem cells at the time of transplantation

CMV_status Serological compatibility of the donor and
the recipient of hematopoietic stem cells
according to cytomegalovirus infection
prior to transplantation

RecipientABO ABO blood group of the recipient of
hematopoietic stem cells

DonorABO ABO blood group of the donor of
hematopoietic stem cells

ABOmatch Compatibility of the donor and the recipient
of hematopoietic stem cells according to
ABO blood group

DonorAge Age of the donor at the time of
hematopoietic stem cells apheresis

HLAmatchCompatibility Compatibility of antigens of the main
histocompatibility complex of the donor
and the recipient of hematopoietic stem
cells (10/10, 9/10, 8/10, 7/10 allele/antigens)
according to ALL international BFM SCT
2008 criteria

Relapse Reoccurrence of the disease

GvHD_III_IV Development of acute graft versus host
disease stage III or IV

extcGvHD Extensive chronic graft versus host disease

CD34 (106/kg) CD34+ cell dose per kg of recipient body
weight

CD3 (108/kg) CD3+ cell dose per kg of recipient body
weight

CD3/CD34 CD3+ cell to CD34+ cell ratio

it applies Poisson regression to such modified data. It

leads to method equivalent to the deviance residual-based

approach of LeBlanc and Crowley [16].

The performance of rule sets was evaluated with a use

of the integrated Brier score (IBS) [56, 57]. The Brier score

at time T⋆ for i-th observation is given by:

BSi(T
⋆) =

⎧

⎪

⎨

⎪

⎩

1

Ĝ(Ti)
·[ 0 − Ŝ(T⋆)]2 if Ti ≤ T⋆, δi = 1

1

Ĝ(T⋆)
·[ 1 − Ŝ(T⋆)]2 if Ti > T⋆

0 in other cases

The Brier score BSi(T
⋆) represents the squared differ-

ence between true event status at time T⋆ and predicted

event status Ŝ(T⋆) at that time. The true event status for

i-th observation is equal to 0 if an event occurred for this

observation before or at the time T⋆, and it is equal to 1 if

Table 3 Selected conditional attributes of PTC (Papillary Thyroid
Carcinoma) dataset

Name Description

BRAFV600ERAFClass Flag indicating if tumor is driven by BRAF or
RAS genes

BRAFV600E_RAS_score Continuous score from (−1, 1) interval
describing to what extent a tumor
expression profile resembles BRAF- or
RAS-mutant profiles

mRNA_cluster_number Number of mRNA expression cluster (1–5)

miRNA_cluster_number Number of microRNA expression cluster
(1–6)

RPPA_cluster_number Number of protein expression cluster (1–4)

meth_cluster DNA methylation pattern (one of four)

Arm_SCNA_cluster Chromosomal arm-level copy number
alterations pattern (one of four)

nmut_APOBEC Mutation density (mutations/Mb) associated
with APOBEC cytidine deaminases

nmut_CpGT Mutation density (mutations/Mb) of CpG
islands

person_gender Gender

race_category Race (Black/White/Asian/American Indian)

ethnicity_category Ethnicity (Hispanic/Non-Hispanic)

survival time Ti of the observation is greater than T⋆. The

censoring is taken into account by weighting the squared

differences by the inverse of the estimate Ĝ of the censor-

ing survival function. The Ĝ estimate is calculated as the

KM estimator based on training observations with censor-

ing status set to (1−δ). If observation was censored before

time T⋆ then its weight is equal to 0. However, such obser-

vations have indirect contribution to final score because

they are considered in calculation of Ĝ estimate.

The IBS summarizes the prediction error over all n

observations and over all times in a test set:

IBS =
1

maxTi

∫ maxTi

0
BS(T⋆)dT⋆

where

BS(T⋆) =
1

n

n
∑

i=1

BSi(T
⋆)

Lower IBS values correspond to better prediction accu-

racy.

In the experimental study, the algorithms were com-

pared on multiple datasets with the use of statistical tests

recommend by Demšar [58]. For comparison of two algo-

rithms on multiple datasets we used the Wilcoxon signed

rank test, while the comparisons of all algorithms with

each other were preformed with a use of the Friedman test

followed by the post-hoc Nemenyi test.
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Experimental evaluation

The first experimental step was to investigate the influ-

ence of mincov parameter on the results of the LR-Rules

algorithm. This parameter specifies the minimum num-

ber of uncovered observations that must be covered by

a newly generated rule during the growing phase. The

minimum value of this parameter is 1, which corresponds

to the case when each induced rule must cover at least

one yet uncovered example. The greater the value ofmin-

cov, the higher is the coverage of resulting rules. This

decreases the cardinality of the final rule set.

In the study, mincov values ranging from 1 to 7 were

examined. The upper bound of seven was selected as

this is a default value of the minbucket parameter, which

defines the minimum number of observations in the

leaves of CTREE and RPART trees. Detailed results, i.e.,

Brier scores and numbers of rules for different mincov

values are presented in Additional file 1: Tables S1 and S2.

The analysis ofmincov effect on IBS with a use of Fried-

man test, revealed that at least one of the investigated

parameter values generated models of significantly differ-

ent accuracy than the others (p-value of 0.0478). However,

the results of the Nemenyi’s post-hoc test (summarized in

Additional file 1: Figure S1 as a critical difference diagram)

showed no statistical significance at 0.05 level.

The different situation was in the case of the size of

resulting rule sets. As presented in Fig. 3, increasing min-

cov parameter caused noticeable reduction in the number

of rules. Importantly enough, the greater the initial model,

the larger decrease was observed. The comparison of

parameter values with a use of the Friedman test rejected

the null hypothesis about all parameter values generat-

ing same number of rules with p-value close to zero. A

summary of the Nemenyi post-hoc test (Additional file

1: Figure S2) revealed the lack of significance only within

groups of three neighbouring mincov values. The strong

dependency between mincov and the model size was also

confirmed statistically: the Pearson’s correlation between

the parameter value and the rank was close to −1.0.

Setting mincov parameter to 7 resulted in the most

compact models: for the majority of survival datasets con-

taining hundreds of observations, the algorithm generated

less than eight rules. For this reason, and due to lack of

significant effect of the parameter on the accuracy, 7 was

set as the default mincov value in LR-Rules and was used

in further experiments, unless specified otherwise.

The next part of the study was to compare LR-Rules

to CW-Rules, CTREE, RPART, and the KM estimator in

terms of the accuracy and the model size. The results for

particular datasets are presented in Fig. 4 as bubbles with

horizontal coordinates corresponding to IBS (lower = bet-

ter) and diameter proportional to the logarithm of the

number of rules. The results in the numerical form can be

found in Additional file 1: Tables S3 and S4.

Fig. 3 Influence of themincov parameter on the LR-Rules model size.
The model size for each dataset is defined as the number of rules
normalized by the number of rules formincov = 1 (given in the
legend)

The Friedman test showed statistically significant differ-

ences between the LR-Rules, CW-Rules, CTREE, RPART

and KM algorithms in terms of the IBS criterion (p-value

< 10−4). The visualization of Nemenyi’s post-hoc test at

the 0.05 significance level is presented in Fig. 5. LR-Rules

was in the group of three best algorithms together with the

CW-Rules and CTREE. The worst results were obtained

by the KM estimator. Interestingly, the Nemenyi’s test

indicated no difference between KM, RPART and LR-

Rules. Nevertheless, as this test is often too conservative

to show the difference [59], an additional comparison

between LR-Rules and the competitors was carried out

using the Wilcoxon test with the Finner correction [60].

The test showed our algorithm to be superior to the KM

estimator in terms of IBS (pcorrected = 0.0062). In contrast,

the comparison with CTREE and RPART revealed lack

of significance (both uncorrected and corrected p-values

were noticeably greater than 0.05). CW-Rules achieved

lower prediction error on the investigated data than LR-

Rules (corrected p-value equaled to 0.0051).

As Additional file 1: Table S4 shows, superior accu-

racy of CW-Rules was obtained at the cost of the model

size: for all analyzed datasets it generated several times

greater rule sets than other methods. This was confirmed

by the statistical analysis. While LR-Rules, CTREE, and

RPART generated models of similar complexity (lack of
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Fig. 4 Comparison of the algorithms on the investigated datasets. Horizontal axis corresponds to the prediction accuracy (IBS), bubble diameters
are proportional to the logarithm of the number of rules

significance at 0.05 level), CW-Rules induced significantly

more rules (Additional file 1: Figure S3).

Table 4 provides detailed characteristics of the models

generated by LR-Rules. The output rules usually con-

tained from 1 to 7 elementary conditions, but majority

of them had at most 3 conditions. Each of rules covered

on average 36% of the observations from the training set.

Importantly, the greater the number of rules in a set, the

lower the coverage: the Pearson correlation coefficient

between those variables equaled to −0.9135 . The signif-

icance of rules was assessed statistically by performing

log-rank test between Kaplan-Meier estimators of obser-

vations covered and uncovered by investigated rule. To

control false discovery rate, the Benjamini-Hochberg cor-

rection was applied [61]. As it is shown in Table 4, the

percentage of statistically significant rules at 0.05 level was

close to 100%.

Case studies

In order to demonstrate the rules induced by the pre-

sented algorithm, the detailed analysis of GBSG2, BMT-

Ch, LAC, and PTC was performed. To obtain the most

comprehensible models for the investigated datasets,min-

cov parameter was set to 3, 5, 7, and 12, respectively.

The rule set induced by the algorithm for the whole

GBSG2 dataset consisted of 10 rules. Four of them are

presented below:

R1: progrec ≥ 108.0

R2: pnodes < 5.5∧∧∧ progrec ≥ 16.5∧∧∧ age ≥ 39.5

R3: pnodes ≥ 4.5∧∧∧ progrec < 23∧∧∧ age ∈ [41.5, 59.5)

∧∧∧ estrec ∈ [0.5, 37.0)

R4: pnodes ≥ 4.5∧∧∧ progrec < 28.5

The KM survival curves for observations covered by

the R1-R4 rules are presented in Fig. 6a. The graph addi-

tionally includes a default curve representing the KM

estimate for the entire GBSG2 dataset. The significant dif-

ference can be observed between the survival estimates

determined by R1-R2 rules, which are above the default

estimate, and R3-R4, which are placed below. Neither of

the 10 induced rules had horTh attribute, indicating that

the patient was a subject to the hormonal therapy. This

result is consistent with the conclusions of the work [46],

stating that: No significant difference in recurrence-free

survival was observed with respect to hormonal therapy.

The rule set induced by the algorithm for the entire

BMT-Ch data consisted of 7 rules. The motivation of

this study was to identify the most important factors

Fig. 5 Statistical analysis of the prediction accuracy. Critical difference diagram comparing LR-Rules, CW-Rules, CTREE, RPART algorithms, and the KM
estimator in terms of the integrated Brier score (IBS) at the significance level 0.05 over 18 datasets. Average ranks are shown in parentheses (lower =
better). The groups of algorithms which are not significantly different are connected with bold lines
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Table 4 The characteristics of rule sets generated by LR-Rules:
the value of the integrated Brier score (IBS), the number of
generated rules (#rules), the average rule length, the average rule
coverage (%cov), a percentage of significant rules (p-value of
log-rank test with FDR adjustment below 0.05; %sign)

Dataset IBS #rules Length %cov %sign

actg320 0.0597 13.1 3.7 28 99.18

BMT-Ch 0.2231 4.3 3.3 48 98.40

cancer 0.1538 7.3 3.4 40 97.35

follic 0.1896 5.0 1.8 38 99.32

GBSG2 0.1783 7.7 2.7 36 99.75

hd 0.2185 4.6 1.3 44 99.43

LAC 0.2116 2.8 6.8 41 100.00

lung 0.1472 5.1 1.0 45 100.00

Melanoma 0.1823 6.2 2.6 33 99.69

mgus 0.1719 7.4 3.2 34 99.70

PTC 0.1426 18.7 3.0 22 79.69

pbc 0.1502 3.7 1.1 45 100.00

std 0.2220 17.8 6.5 25 98.74

uis 0.1539 5.5 1.2 41 100.00

wcgs 0.0432 21.8 5.2 19 98.95

whas1 0.2130 3.8 1.3 43 100.00

whas500 0.2046 4.6 1.2 40 100.00

zinc 0.0931 7.1 2.5 31 98.42

influencing the success or failure of the transplantation

procedure. In particular, verification of the research

hypothesis that increased dosage of CD34+ cells/kg

extends overall survival time without simultaneous occur-

rence of undesirable events affecting patients’ quality of

life [11, 47]. Four of the induced rules are presented below:

R5: DonorAge ∈ [31, 41.7)∧∧∧ CD34 ≥ 10 · 106

∧∧∧ CD3/CD34 ≥ 3.4∧∧∧ RiskGroup = Low

∧∧∧ RecipientBodyMass < 69.5

R6: extcGvHD = No

R7: DonorABO = 0+∧∧∧ Relapse = No

∧∧∧ CD34 < 11.84 · 106 ∧∧∧ CD3/CD34 ≥ 6.83

R8: DonorAge ≥ 20.4∧∧∧ CD34 ≤ 10

∧∧∧ RecipientAge ∈ [14.05, 19.5)

Figure 6b presents the KM survival curves for observa-

tions covered by the R5-R8 rules, as well as the default

estimate for the entire dataset. As in the previous case, the

R5-R6 curves are above the default estimate, while R7-R8

are below.

The CD34 attribute occurred often in the induced rules.

It can be seen that lower doses of the CD34 cells affected

the shorter survival time, while higher doses increased

this time. In the paper [47] the impact of CD34 doses

on the overall survival time was analyzed by dividing the

value ofCD34 into two intervals:≤ 10 and> 10. The rules

induced by the proposed algorithm are consistent with

[47] and they additionally clarify the conditions under

which the doses of CD34 are even more important for

the survival time. It should also be noted that the rule

R6 states that patients without a chronic form of GvHD

are characterized by the shorter survival time. This is also

consistent with medical knowledge.

Another experiment concerned LAC dataset for which

presented algorithm induced 3 survival rules. Each of

them incorporate expression levels of 8 up to 10 genes.

The analysis of Fig. 6c confirms that obtained rules effec-

tively distinguish patients’s survival rates on the basis of

their expression profiles. The example survival rule has

the following form:

R1: SLC20A1 < 10.2∧∧∧ ITGA2 < 8.7

∧∧∧ VEGF < 10.5∧∧∧ REG1A < 10.8

∧∧∧ SLC2A1 < 8.9∧∧∧ SCGB2A2 < 8.1

∧∧∧ S100P ≥ 8.7∧∧∧ ATP2B1 < 9.9

When applied on PTC dataset, LR-Rules gen-

erated 16 rules. Most common attributes were

BRAFV600E_RAS_score and nmut_CpGT (11 and 9

occurrences, respectively) which had been previously

associated with thyroid cancer development [49]. Selected

survival rules are presented below.

R1: nmut_CpGT ≥ 4.5

∧∧∧ mRNA_cluster_number = 5

∧∧∧ BRAFV600E_RAS_score ∈ (−0.976,−0.698)

R2: RPPA_cluster_number = 3

∧∧∧ mRNA_cluster_number = 5

∧∧∧ BRAFV600E_RAS_score < −0.868

R4: meth_cluster = classical 2

∧∧∧ Arm_SCNA_cluster = Quiet

∧∧∧ miRNA_cluster_number = 6

∧∧∧ nmut_CpGT < 5.5

∧∧∧ BRAFV600E_RAS_score ∈ (−0.974,−0.889)

R8: Arm_SCNA_Cluster = Quiet

∧∧∧ nmut_CpGT ≥ 1.5

∧∧∧ BRAFV600E_RAS_score ≥ 0.573

R14: nmut_CpGT < 6.5

∧∧∧ BRAFV600E_RAS_score ∈[ 0.676, 0.919)

As Fig. 6d shows, the corresponding survival curves

differ noticeably. Obtained rules model complex relation-

ships between attributes and their influence on the sur-

vival time. For instance, BRAFV600E and RAS were proven

to be driver genes in many cancers including PTC [62].

Nevertheless, the effect of mutations in those genes on

probability of recurrence is altered by other attributes.

Particularly, BRAF-like tumors (those characterized by

low values of BRAFV600E_RAS_score) may differ signif-

icantly in survival rate (compare R1, R2, and R4 rules).

The same situation was in the case of RAS-driven cancers

(rules R8 and R14).
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Fig. 6 Analysis of the rules induced for GBSG2 (a), BMT-Ch (b), LAC (c), and PTC (d) datasets. The charts demonstrate the Kaplan-Meier survival
curves for the observations covered by selected rules. The dashed (default) curves represent the KM estimates of the entire datasets

Conclusions
The experiments confirmed LR-Rules to perform signif-

icantly better than the KM estimator and similarly to

survival trees CTREE and RPART in terms of prediction

error. The comparison of LR-Rules and CW-Rules shows

that the latter tends to get lower IBS values than our algo-

rithm. This, however, is obtained at the cost of model

complexity: CW-Rules always generated more rules than

the competitors. In contrast, LR-Rules produces compact

sets of rules of similar size as the tree models CTREE and

RPART.

Superior performance and model comprehensibility

make LR-Rules an effective alternative or a complement

to survival trees, such as CTREE and RPART. Although

every tree may be presented as a set of rules, the divide-

and-conquer strategy used for tree construction usu-

ally leads to different rule sets than those generated by

LR-Rules employing separate-and-conquer approach. In

accordance with the strategy of tree building, every obser-

vation can be covered by exactly one rule, while the

covering approach used by LR-Rules allows observations

to be covered by multiple rules. The absence of this

restrictive limitation in the presented algorithm may lead

to the discovery of new or stronger patterns than those

found by survival trees.

A characteristic feature of rule sets derived form a tree

is the redundancy of conditions, particularly of the ini-

tial one that appears in every rule. In contrast, LR-Rules

has the ability to induce rules with unique attributes. For

example, when analysing BMT-Ch set, our algorithm gen-

erated a rule with only one condition: “extcGvHD = No”.

In order to derive such a rule from a tree, an attribute

extcGvHD would have to appear in the root, and thus, all

the other rules would have to also take it into account.

An important advantage of the rule sets returned by

the LR-Rules algorithm is also the fact that each rule can

be considered independently from the others. This fea-

ture can be useful if modification of the generated rules

is required, for example, in order to reflect the domain

knowledge in a better way. The rules automatically gener-

ated by LR-Rules may constitute an initial set of hypothe-

ses for the analyst. The expert, by adding/removing the

rule conditions or by modifying their ranges, is allowed

to carry out the different variants of the analysis. New

rules can also be added to an existing set straightfor-

wardly. In contrast, trees have to be treated as a whole
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in order to preserve the disjointed nature of the rules.

Thus, the change of a condition in a node involves the

need for modification of the conditions in all of its child

nodes. Similarly, adding new rule to the tree requires its

reconstruction.

We expect that the importance of survival analysis

in medicine and biology will increase due to dissami-

nation of high througput sequencing. Establishing how

patients’ survival rate is affected by the presence of

genetic variants, DNA methylation, or expressions of

genes, microRNAs, and proteins will become of centeral

interest. The application of LR-Rules on LAC and PTC

datasets revealed interesting dependencies between

genome/transcriptome/proteome-related features and

their influence on the survival.

One of the greatest challenges to be faced when analyz-

ing bioinformatics data is excessive dimensionality. High

throughput technologies are able to produce hundreds

of thousands of raw attributes which is prohibitive for

machine learning strategies. Therefore, the application

of all investigated survival analysis algorithms including

LR-Rules has to be preceded by dimensionality reduc-

tion phase, i.e., construction, extraction and/or selection

of features.

Additional file
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values with respect to IBS, Figure S2: CD-diagrams comparing different
mincov values with respect to the number of rules, Figure S3: CD-diagrams
comparing algorithms with respect to the number of rules. (PDF 875 kb)
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