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Learning Rules for Neuro-Controller
via Simultaneous Perturbation

Yutaka Maeda,Member, IEEE,and Rui J. P. De Figueiredo,Fellow, IEEE

Abstract—This paper describes learning rules using simultane-
ous perturbation for a neuro-controller that controls an unknown
plant. When we apply a direct control scheme by a neural
network, the neural network must learn an inverse system of the
unknown plant. In the case, we must know the sensitivity function
of the plant to use a kind of the gradient method as a learning
rule of the neural network. On the other hand, the learning rules
described here do not require information about the sensitivity
function. Some numerical simulations of a two-link planar arm
and a tracking problem for a nonlinear dynamic plant are shown.

Index Terms—Dynamical systems, indirect inverse modeling,
neural networks, neuro-controller, simultaneous perturbation,
tracking problems.

I. INTRODUCTION

RECENTLY, neural networks (NN’s) have been well
studied and widely used in many fields. Also, in the

field of the control problem, NN’s are used as a controller,
an identifier, or an adjuster that gives some parameters in a
conventional controller [1]–[13]. Usually, it is very difficult to
treat a nonlinear objective function in control theory. However,
NN’s have an ability to map nonlinear functions on a compact
set. Therefore, we anticipate that NN’s will be able to handle
a nonlinear plant well. Actually, many feasible realizations
of neuro-controller have been reported [3], [6], [7], [9], [10],
[12], [13].

When we apply NN’s to a control problem, the direct control
scheme constitutes a simple approach. In order to use a NN
as a direct controller, the NN must be an inverse system of an
objective plant, that is, the NN must learn an inverse system
in so-called indirect inverse modeling. Then, the learning
rule plays a practical role, because it will be related to an
arrangement of overall system.

In the case of indirect inverse modeling, generally, we need
a plant model or a sensitivity function of the plant to acquire
the derivatives needed for learning like the backpropagation
(BP) method [14], because the error function is usually defined
not by an output of the NN but by that of the plant.
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Fig. 1. Basic arrangements for indirect inverse modeling.

Fig. 2. Two-link planar arm.

These requirement can be bypassed by using an estimator
of the derivative. The finite difference is a simple example.
Jabri et al. pointed out the usefulness of such a learning rule
[15]–[17]. However, that learning rule has a fault in that it does
not take good advantage of parallel processing of NN’s. In the
present technique, we add a perturbation to all weights one
by one and obtain corresponding values of an error function,
in order to use a difference approximation. Therefore, the
learning rule using the finite difference approximation requires

-times forward operation of the network to obtain modifying
quantities for all weights, where denotes the total number
of weights of the network. Thus, if the NN is large, we
cannot expect viability of the learning rule in the sense of the
operating speed. Accordingly, we need a kind of simultaneous
perturbation technique.

The basic idea of “simultaneous perturbation” was intro-
duced by Spall [18]. He reported applications of simultaneous
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Fig. 3. Implementation of the learning rule 1.

perturbation to the optimization problem, stochastic approx-
imation, adaptive control, and neural-network controller and
its applications [19]–[22]. He points out that simultaneous
perturbation type of methods are superior to the conventional
optimization techniques. Independently, the authors also have
reported a comparison between the simultaneous perturbation
type of learning rule of NN’s, the simple finite difference
type of learning rule and the ordinary BP method [23].
Simultaneous perturbation technique as a learning rule for
neuro-controllers is promising in the control problem as well
[21], [22], [24]. Alespectoret al. and Cauwenberghs also
proposed a parallel gradient descent method and stochastic
error-descent algorithm, respectively, which are identical to
ours [25], [26]. Moreover, Fujita proposed trial-and-error
correlation learning rule of NN’s. His learning rules include
these types of learning rule in a broad sense [27].

In this paper, we describe two learning rules via the simul-
taneous perturbation for the direct control scheme. By using
the learning rules provided here, the NN as neuro-controller
can learn an inverse of a plant without any information about
the sensitivity function of the objective plant.

II. NEURO-CONTROLLER AND LEARNING

RULE USING SIMULTANEOUS PERTURBATION

There are many schemes to utilize NN’s in the field of
control problem [1], [2]. If an NN can learn an inverse system

of a plant, the NN can be used as a controller of the plant
as a direct controller. Fig. 1 shows the basic arrangement
for neuro-controller to learn the inverse system of the plant.
The arrangement shown in Fig. 1 is called indirect inverse
modeling. In this arrangement, it is possible for the NN to
work as a controller even during so-called learning process.

In this paper, we consider the direct control scheme by an
NN using the arrangement shown in Fig. 1. This is the simplest
arrangement to control the unknown plant and simultaneously,
to learn an inverse system of the plant. However, in the
arrangement, the error are obtained through the unknown plant.
Therefore, we need information about the plant. Next, we
explain this point.

For convenience, in this discussion, we assume a case
that an input of the plant and an output of the plant

are both scalar and a characteristic of the plant
is static. However, similar discussion is applicable to

multiinput–multioutput dynamic plant.
Now, denotes a weight vector of the

NN including thresholds. Superscript is transpose of a
vector. Ordinarily, an error function is defined as the
difference between an output of a plantand a desired output

for the plant in the arrangement shown in Fig. 1. We must
adjust the weights in the NN so that the NN must produce
an input of the plant that decreases the error. When we use
usual gradient method as a learning rule in this arrangement,
in order to update the weights, we need a gradient of the error
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Fig. 4. Implementation of the learning rule 2.

Fig. 5. Simulation results of two-link arm by the learning rule 1.

function. Namely, we must know the following quantity to
utilize the gradient method:

Define an error function as follows:

(1)

Thus, we have

(2)

where .

Fig. 6. Simulation result of two-link arm by the learning rule 2.

Then, we can measurethat is an error between the actual
output of the plant and the corresponding desired output.
Moreover, we can calculate as same as the error BP.

At the same time, we must know the sensitivity function
or, at least, the sign of the sensitivity function of

the plant. However, if the plant is completely unknown, we
can neither obtain the quantity nor the sign of
this quantity. Therefore, it is difficult to use gradient type of
learning rule in this arrangement. This is one of difficulties
that arises in the indirect inverse modeling scheme.

On the other hand, the difference approximation is a well-
known approach to obtain a derivative of a function. We can
utilize this kind of technique to our problem.
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Fig. 7. Configuration. A time-delay NN is used to handle the dynamic plant.

Fig. 8. Implementation of the learning rule 1.

We add a small perturbationto the th weight of the weight
vector, that is, we define as follows:

(3)

First, we can employ the difference approximation to obtain
overall. That is, by using the following quantity,

we can update the weights of the NN:

(4)

On the other hand, since, which is the output of the NN,
is a function of the weight vector, we obtain

(5)

Also by using (5), we can apply the gradient method to the
indirect inverse modeling scheme.

As a result, introducing the idea of the difference approx-
imation provides the possibility of using the indirect inverse
modeling scheme more easily. There is no need to know the
sensitivity function of the unknown plant. One of the authors
investigated a feasibility of this type of learning rule in the
control problem [17].

However, this simple idea described above needs much
more forward operations of the NN and the plant. Namely, we
must know for all to obtain the modifying
quantity for all weights. Therefore, we cannot expect parallel
operation of modifying the weights. If the NN is large, this
approach is not promising.
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Fig. 9. Simulation results using a time-delay NN for sinusoidal desired output by the learning rule 1.

Fig. 10. Simulation results using a time-delay NN for square desired output by the learning rule 1.

In order to overcome this difficulty, we introduce an idea
of a simultaneous perturbation.

First of all, we define the following perturbation vector
that gives small disturbances to all weights

(6)

where the subscript denotes an iteration.
The perturbation vector has the following properties.

[A1] is a uniformly random number in an interval
except an interval and is

independent with respect to timefor .
[A2] .
[A3]

if
if

denotes expectation. is a variance of the
perturbation .

Learning Rule 1: First, we estimate overall like (4),
then the th component of the modifying vector of the weights

is defined as follows:

(7)

Weights of the network are updated in the following manner:

where is a positive learning coefficient.
Learning Rule 2: Next, we estimate the first differential

coefficient of the unknown plant with respect to the weights of
the NN, then we can obtain the following modifying quantity:

(8)

where . Since the error can be easily
measured, in this learning rule, only is estimated by
means of the simultaneous perturbation.
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(a)

(b)

Fig. 11. Simulation results using a time-delay NN for random desired output by the learning rule 1.

Fig. 12. Implementation of the learning rule 2.
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Fig. 13. Simulation results using a time-delay NN for sinusoidal desired output by the learning rule 2.

Fig. 14. Simulation results using a time-delay NN for square desired output by the learning rule 2.

Let us consider the quantity described in (7). Expanding
at , there exists certain point such that

(9)

The point exists in a hyper-cube with a diagonal line
connecting and . Taking expectation of the above
equation, from the assumptions [A1]–[A3] of properties of the
perturbation, we have the following relation:

(10)

This means that if the perturbation is sufficiently small,
the second term of the right-hand side of (10) is small. Then
the right side of (10) is nearly equal to the derivative of
the error function in the sense of the expected

value. Therefore, we can find the learning rule (7) a type of
stochastic gradient methods. If we would like to prove the
convergence of this type of algorithm, we need conditions
for the perturbation, the error function, and so on. Moreover,
we have to a reducing learning coefficient into account,
especially, under a stochastic environment. Detailed strict
convergence conditions are described by Spall [20]. We can
obtain a similar result for (8) as well.

Basically, these learning rules are concrete implementations
of simultaneous perturbation technique by Maeda [17], Spall
[20], and Alespectoret al. [25] for neuro-controllers.

III. SIMULATION RESULTS

In this chapter, we examine a viability of these learning rules
by numerical simulations. NN’s used in these simulations are
three-layered feedforward networks with ten neurons in their
hidden layers. The weights and the thresholds of the NN’s are
randomly initialized in the interval [1 1]. The perturbations
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(a)

(b)

Fig. 15. Simulation results using a time-delay NN for random desired output by the learning rule 2.

used these simulations are randomly generated in the interval
[ 0.01 0.01] except [ 0.001 0.001]. That is,
and . A characteristics of each neuron is the
ordinary sigmoid function except the input layer.
This layer is linear.

Simulation 1: First, we handle a simple static problem. We
consider a two-link planar arm shown in Fig. 2. and
denote length of the arms. and represent angles shown
in the figure. Top of the arm is . and are represented
as follows using arm length , , and angles ,

(11)

Then, we would like to find and so as to agree
with a desired position . A NN used here has two
inputs and two outputs. Open circles in Fig. 2 show the desired
positions.

Implementation:We prepare ten positions to be learned. We
assume that we can measure a position of the top of the arm.
Thus, we obtain an squared error for bothand axes for
the th position

(12)

Fig. 16. Recurrent NN.

If we use the learning rule 1 and modify the weights every
sets of the desired positions, we can define the total error
function for the ten desired positions as follows, and can use
the learning rule 1 of (7) directly

(13)

That is, the error function is a sum of a squared error of
both axes for ten desired positions.
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Fig. 17. Simulation results using a recurrent NN for sinusoidal desired output by the learning rule 1.

Fig. 18. Simulation results using a recurrent NN for square desired output by the learning rule 1.

The desired positions in- axes are applied to the network.
The NN outputs two values in [0 1]. These values are
converted to [0 2], then applied to the system. We measure
a position of the top of the arm and calculate the squared
error. We repeat the same procedure for all desired positions
and obtain the total error. Next, with perturbation, we reiterate
the same procedure. Then, we obtain the total error similarly.
After that, the weights of the NN were updated by the learning
rule 1 of (7). The details are shown in Fig. 3.

In case of the learning rule 2 of (8), we do not use the total
error function like (13). The objective system has two outputs
of and axes. Therefore, by using errors and

, we can derive the following rule corresponding to
the learning rule 2 of (8):

(14)

where and denote positions when we added the perturba-
tion vector to the weights.

When a desired position are applied to the NN, we can
measure a position of the arm and calculate errors
and . Next, we add the perturbation to the NN. We re-
iterate the same procedure for the same desired position. Then,
we obtain a position of the arm. Using (14), we calculate mod-
ifying quantities for the weights. We accumulate these for one
cycle. Modification of the weights of the NN are carried out for
every cycle. The details of this procedure are shown in Fig. 4.

Simulation results are shown in Figs. 5 and 6. Gradually,
the top of the arm is approaching to the desired position as
the learning proceeds. Then, the NN learns an inverse mapping

at those ten positions.
Simulation 2: Next, we deal with a tracking problem. An

objective plant has the following dynamics with a nonlinear
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Fig. 19. Simulation results using a recurrent NN for sinusoidal desired output by the learning rule 2.

Fig. 20. Simulation results using a recurrent NN for square desired output by the learning rule 2.

term:

(15)

where .
We would like to find an optimal input so that an output of

the plant agrees with a desired output.
Implementation:Overall configuration are shown in Fig. 7.

We use so-called time-delay feedforward NN with ten neurons
in the hidden layer. The time-delay NN’s consists of an or-
dinary feedforward NN’s and unit time-delay elements. Feed-
forward NN’s can handle static problems only, because they
have no memory elements. However, by adding time-delay
elements, they can deal with dynamic problems, virtually.

In this example, inputs and outputs of the plant are con-
nected to the time-delay feedforward NN. Using unit time-
delay elements, inputs to the network are
and . In addition, the desired output is also one of the
inputs to the network. Therefore, the network converts these
five inputs to manipulated variable.

The desired output of the plant are sinusoidal, square,
or random waves, for example, shown in Fig. 9. One cycle
consists of 40 iterations. Output [0 1] of the NN is linearly
converted to [ 2.5 2.5].

When we utilize the learning rule 1, we define a total error
function as follows:

(16)



MAEDA AND DE FIGUEIREDO: LEARNING RULES FOR NEURO-CONTROLLER 1129

where denotes the sampling time in each repetition and
represents a desired output of the plant. That is, the total
error function is the sum of the squared error between a
practical output and a desired output of the plant for every
one cycle.

First, we can measure a series of outputs of the plant for one
cycle. Thus, we obtain a value of the total error function as a
sum of the squared error at each sampling time. Next, we add
the perturbation vector to the weight vector of the NN. Then,
we repeat the same procedure. As a result, we obtain a value
of the total error function under the perturbation. We apply the
learning rule 1 shown in (7). Modification of the weights is
carried out for every cycle. The details of the procedure are
shown in Fig. 8.

Consider the learning rule 2. In this learning rule, we have
to calculate the modifying quantities of the weights for every
sampling time. Of course, we can sum up these quantities and
update for every cycle as well. In this simulation, we update
every sampling time.

A desired output applies to the NN, the NN outputs an input
for the plant. Then, we can measure an output of the plant. We
add the perturbation to the NN and repeat the same procedure.
We obtain an output of the plant for the same desired output
under an effect of the perturbation. By using the outputs of the
plant, we utilize (8) and update the weights of the NN. The
details are shown in Fig. 12.

The results of the simulations are shown in Figs. 13–15.
Also in these examples, the more the learning proceeds, the
more the accuracy improved.

The results of the simulations are shown in Figs. 9–11. The
outputs of the plant are close to the desired outputs after
enough learning.

We tried the same simulation for a different architecture
of NN. Instead of the time-delay NN in Fig. 7, we apply a
recurrent NN shown in Fig. 16. The setting of these simula-
tions is as same as the previous examples. The simulation
results by the learning rule 1 and the learning rule 2 are
shown in Figs. 17–20. These results show that the learn-
ing rules using simultaneous perturbation is applicable to
recurrent NN’s.

IV. CONCLUSION

When we use an indirect inverse modeling by NN’s, in
order that we let the NN learn an inverse of an plant, we
must know a sensitivity function of the plant, which may not
be available. Using the difference approximation technique,
we can apply a gradient-like learning rule to this scheme
without information about the sensitivity function of the plant.
This paper provides a difference approximation type learning
rule using the simultaneous perturbation, which is a stochastic
gradient-like learning rule, for the indirect inverse modeling
by NN’s. Two learning rules are described. These rules need
only twice operations to obtain the modifying quantities of
all weights.

In order to confirm a feasibility of the scheme, we examined
two examples; a two-link planar arm and a tracking problem
of a nonlinear dynamical system.
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