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Abstract Pervasive computing requires infrastructures that adapt to changes in
user behaviour while minimising user interactions. Policy-based approaches have
been proposed as a means of providing adaptability but, at present, require pol-
icy goals and rules to be explicitly defined by users. This paper presents a novel,
logic-based approach for automatically learning and updating models of users from
their observed behaviour. We show how this task can be accomplished using a non-
monotonic learning system, and we illustrate how the approach can be exploited
within a pervasive computing framework.

1 Introduction

Pervasive computing is enabled by the development of increasingly complex devices
and software infrastructures that accompany users in everyday life. Such systems
must autonomously adapt to changes in user context and behaviour, whilst oper-
ating seamlessly with minimal user intervention. They must, therefore, be able to
learn from sensory input and user actions. Yet user acceptance requires them to be
predictable, capable of explaining their actions, and providing some way for users to
understand and amend what has been learnt. This directs us towards techniques that
use logical rules for knowledge representation and reasoning. Even though some
statistical pre-processing of raw sensor data will inevitably be required, there are
considerable advantages in adopting a core logical formalism, such as simple and
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modular enforcement through policy frameworks [1, 18] and principled representa-
tions of space and time [23]. Logic programming is an ideal choice for knowledge
representation from a computational point of view and it also benefits from Induc-
tive Logic Programming (ILP) [17] tools that permit the learning of logic programs
from examples.

Learning rules of user behaviour through inductive reasoning poses several chal-
lenges. Learning must be incremental: as examples of user behaviour are continu-
ously added, the system must permit periodic revision of the rules and knowledge
learnt. Moreover, the system must cater for temporal aspects, expressing both persis-
tence and change through time, and exceptions to previously learnt rules. For this,
the system must be capable of non-monotonic1 reasoning [13]. The system must
reason with partial information whilst providing fine grained control of the reason-
ing process to satisfy appropriate user-defined language and search biases (such as
minimising the changes made to the initial theory).

This paper presents an algorithm for learning and revising models of user be-
haviour which makes use of a non-monotonic ILP system, called XHAIL (eXtended
Hybrid Abductive Inductive Learning) [19], that is capable of learning normal logic
programs from a given set of examples and background knowledge. The contribu-
tion of this paper is twofold. First a novel algorithm is presented that is able to
perform general theory revision by supporting automatic computation of new theo-
ries T

′
that are not necessarily extensions of original theories T , to correctly account

for newly acquired examples E. Second, an application of the algorithm to learning
rules describing behaviour of mobile phone users is presented by means of a simpli-
fied example consisting of learning the circumstances in which users accept, reject
or ignore calls. Once learnt, these rules can be periodically reviewed and amended
by the user and enacted automatically on the device avoiding user intervention. This
work is part of a larger project [2] that seeks to exploit the proposed approach in the
context of privacy policies.

The paper is structured as follows. Section 2 summarises relevant background
material on ILP. Section 3 describes the main features of the approach by intro-
ducing basic concepts, presenting a learning-based theory revision algorithm and
illustrating its application to the example. Section 4 relates our approach with other
existing techniques for theory revision. Section 5 concludes the paper with a sum-
mary and some remarks about future work.

2 Background

Inductive Logic Programming (ILP) [17] is concerned with the computation of hy-
potheses H that generalise a set of (positive and negative) examples E with respect
to a prior background knowledge B. In this paper, we consider the case when B and

1 A logical system is non-monotonic if given a theory (e.g. {bird(tweety). bird(X) ←
penguin(X). f ly(X)← bird(X),¬penguin(X).}), adding new information (penguin(tweety)) may
cause some conclusions to be retracted ( f ly(tweety)).
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H are normal logic programs [11], E is a set of ground literals (with positive and
negative ground literals representing positive and negative examples, respectively)
and H satisfies the condition B∪H � E under the credulous stable model semantics
[9]. As formalised in Definition 1 below, it is usual to further restrict the clauses in
H to a set of clauses S called the hypothesis space.

Definition 1. Given a normal logic program B, a set of ground literals E, and a set
clauses S, the task of ILP is to find a normal logic program H ⊆ S, consistent with B
such that B∪H |= E. In this case, H is called an inductive generalisation of E wrt.
B and S.

We use the XHAIL system that, in a three-phase approach [21], constructs and
generalises a set of ground hypotheses K, called a Kernel Set of B and E. This
can be regarded as a non-monotonic multi-clause generalisation of the Bottom Set
concept [16] used in several well-known monotonic ILP systems. Like most ILP
systems, XHAIL heavily exploits a language bias, specified by a set M of so called
mode declarations [16], to bound the ILP hypothesis space when constructing and
generalising a Kernel Set. A mode declaration m ∈ M is either a head declaration
of the form modeh(s) or a body declaration of the form modeb(s) where s is a
ground literal, called scheme, containing placemarker terms of the form +t, −t and
#t which must be replaced by input variables, output variables, and constants of
type t respectively. For example modeb(in group(+contact,#contact list group))
allows rules in H to contain literals with the predicate in group; the first argument of
type contact must be an input variable (i.e. an input variable in the head or an output
variable in some preceding body literal), the second of type contact list group must
be a ground term. The three phases of the XHAIL approach are implemented using
a non-monotonic answer set solver. In the first phase, the head declarations are used
to abduce a set of ground atoms ∆ such that T ∪∆ � E. Atoms in ∆ are the head
atoms of the Kernel Set. In the second phase, the body atoms of the Kernel Set are
computed as successful instances of queries obtained from the body declarations in
M. In the third phase, the hypothesis is computed by searching for a compressive
theory H that subsumes the Kernel Set, is consistent with the background knowl-
edge, covers the examples and falls within the hypothesis space.

To represent and reason about dynamic systems, we use the Event Calculus
(EC) formalism [23]. EC normal logic programs include core domain-independent
rules describing general principles for inferring when properties (i.e. fluents) are
true (resp. not true) at particular time-points, denoted as holdsAT (F,T ) (resp.
notholdsAT (F,T )), based on which events have previously occurred (denoted as
happens(E,T )). In addition, the program includes a collection of domain-dependent
rules, describing the effects of events (using the predicates initiates(E,F,T ) and
terminates(E,F,T ), as well as the time-points at which events occur (using the
predicate happens).
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3 Learning User Behaviour

Pervasive computing requires infrastructures that adapt to changes in user behav-
iors while minimizing user intervention. For example the user’s actions on mo-
bile devices can provide precious information that applications can exploit in or-
der to operate autonomously and/or to improve usability and user acceptance. This
can be achieved by complementing applications with policy rules describing user-
behaviour. We adopt a declarative representation of the knowledge about user be-
haviour and perform continuous revision of this knowledge through learning from
instances of user actions. The system we propose learns and revises a user theory U
assumed to be accessible by applications (e.g. for mobile devices) or by policy man-
agement systems. U is a normal logic program defining conditions under which user
actions are performed. The application (or policy management system) can query U
to (autonomously) determine a response to events or requests. For example, on mo-
bile devices, U can be queried to determine if the user would allow access to his/her
current location in response to a request:

?−do(allow(current location,request id), time).

The answer to this query can be based on various conditions, defined by a back-
ground theory B about the domain knowledge of the application. These can be,
for instance, (a) properties of the request, such as the ID of the requester, the time
of the request, proofs of identity, etc., (b) contextual information at the particular
time, such as the location of the user, the profile active on the mobile phone or the
number of nearby devices, (c) logged actions and events and (d) other application-
specific knowledge. Learning new user-behavior rules means, in this example, elab-
orating from instances of allowing and disallowing access to location, general rules
that classify when access to location can be allowed. The user may, however, sub-
sequently override policy-based autonomous responses on its own device, thereby
generating instances of user actions that are not longer covered by the user theory
U . Revising existing user-behavior rules in U means identifying situations of over-
generalisation or of lack of coverage in U . This process is iterative. Each iteration
considers all the new examples which occurred since the last computation and op-
tionally previously computed examples based on a time based sliding window. The
computation within a single iteration is captured by Algorithm 3.1.

3.1 The Revision Algorithm

The algorithm consists of three phases: the pre-processing phase that “transforms”
the rules of the user theory U , into “defeasible” rules with exceptions, the learn-
ing phase that computes exception rules (if any), and the post-processing phase that
“re-factors” the defeasible rules into revised non-defeasible rules based on the ex-
ceptions rules learnt in the second phase. Informally, exception rules learned by
XHAIL are prescriptions for changes in the current user theory U in order to cover
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new examples of user actions. These changes can be addition or deletion of entire
rules, and/or addition or deletion of literals in the body of existing rules.

Input: B background theory; U user agent theory; E set of current examples; M mode declara-
tions

Output: U ′ revised theory according to current examples

/*Pre-processing phase */

Ũ = ∅;
foreach rule αi← δ i

1, ...,δ i
n ∈U do

S = {δ i
1, ...,δ i

n};
α∗i denotes the schema in the modeh declaration referring to αi;
Ũ = Ũ ∪{αi← try(i,1,δ i

1), ..., try(i,n,δ i
n),¬exception(i,αi) };

M = M∪{modeh(exception(#int,α∗i))}. ;
foreach δ i

j ∈ S do
Ũ = Ũ ∪{try(i, j,δ i

j)← use(i, j),δ i
j}∪{try(i, j,δ i

j)←¬use(i, j)} ;
end

end
Ũ = Ũ ∪{use(I,J)←¬del(I,J)} ;
M = M∪{modeh(del(#int,#int))} ;

/*Learning phase */

H = XHAIL(B∪Ũ ,E,M) ;

/*Post-processing phase */
U ′ = theory re f actoring(U,H);
return U ′;

Algorithm 1: Pseudo code of the algorithm.

The algorithm shows how XHAIL, which would normally be used to learn rules
from scratch, can be used to discover a minimal set of revisions to an initial set of
rules as well as new rules. The inputs are a set of mode declaration M, a background
knowledge B, a user theory U and a set of examples E. The former defines the the
atoms that are allowed to be head of new rules and part of the body of the rules. For
instance, body literals can be defined as to not contain conditions about GPS location
but to refer to higher-level location information (e.g. work, home) thus defining a
more appropriate hypothesis space. The background knowledge B, expressed in EC,
defines both static and dynamic domain-specific properties of the device and its
environment, in addition to the EC domain-independent axioms. The body of these
rules includes conditions expressed in terms of happens and holdsAt. The set E of
current examples is a set of do ground literals. The output is a revised user theory
U
′

that, together with B, covers the current examples E.
Pre-processing phase: During this phase the given user theory U is rewritten in a
normal logic program, Ũ , suitable for learning exceptions. This consists of the fol-
lowing two syntactic transformations. First, for every rule in U , every body literal
δ i

j is replaced by the atom try(i, j,δ i
j), where i is the index of the rule, j is the in-

dex of the body literal in the rule and the third argument is a reified term for the
literal δ i

j. Furthermore, the literal ¬exception(i,αi) is added to the body of the rule
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where i is the index of the rule and α is the reified term for the head of the rule.
Intuitively, this transformation lifts the standard ILP process of learning hypotheses
about examples up to the (meta-)process of learning hypothesis about the rules and
their exception cases. Second, for each try(i, j,δ i

j) introduced in the program, the
rules try(i, j,δ i

j)← use(i, j),δ i
j and try(i, j,δ i

j)←¬use(i, j) are added to the pro-
gram together with the definition use(I,J)←¬del(I,J) of the predicate use. Head
mode declaration for exception and del are added to M. This sets the learning task
to compute exceptions cases for rules in the current user theory U and instances of
body literals that need to be deleted.
Learning phase: This phase uses the XHAIL system. In the first phase of XHAIL, a
set ∆ of ground atoms of the form exception(i,αi) and del(i, j) are computed so that
B∪U ∪∆ |= E. This set indicates the definitions (i) of the predicates αi that need
exceptions, and the literals (with index j) in the rules i that need to be deleted for
the given set of examples E to be entailed by the user theory U . In the second phase,
XHAIL computes the body of the exception rules as instances of body declaration
predicates (e.g. holdsAt) that are derivable from U . In the third phase, the search
for maximally compressed (minimum number of literals in the hypothesis, [15])
hypothesis H such that E is true in a partial stable model ([10], [22]) of B∪Ũ ∪H,
guarantees minimal induced revisions of U .
Post-processing phase: The post-processing phase generates a revised theory U ′

semantically equivalent to Ũ ∪H (and thus consistent with E). The algorithm is
computationally simple. Informally, for each del(i, j) fact in H the correspond-
ing condition j in rule i in U is deleted. For each exception rule in H of the form
exception(i,αi)← c1, ...,cn, the corresponding rule i in U is substituted with n new
rules, one for each condition ch, 1 ≤ h ≤ n. Each of these rules (h) will have in the
head the predicate αi and in the body all conditions present in the original rule i in
U plus the additional condition ¬c(h). An exception with empty body results in the
original rule i to be deleted.

3.2 Example

This section illustrates Algorithm 3.1 with a simple case study where we aim to
learn rules that define the context in which a user accepts incoming calls on a mobile
phone. This is part of a larger test case in which user actions and contextual data are
derived from real data on mobile phone usage collected in the Cityware project [4].
We used data collected over three days, running a revision step at the end of each
day. Due to space limitations only the outcome of the third day is shown here.
A user theory U is revised up to the end of the second day:

U = { do(accept call(CallId,From),T )←T ≥ 07:30∧ in group(From,college).

do(accept call(CallId,From),T )←T ≥ 07:30∧¬holdsAt(status(location(imperial)),T ). } (1)
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The set of examples collected in the third day is diagrammatically presented in Fig-
ure 1.

Fig. 1 Example scenario (C, H and F denote incoming calls from the user’s college, home, and
friends contact lists respectively. Refused calls are marked with a “ � ”)

Figure 2 displays a subset of the background knowledge B used in the scenario.

at_location(imperial, W, N) :- W > 95, W < 100, N > 75, N < 82.
...
happens(gps(57, 10), 07:30).
happens(gps(99, 78), 10:30).
...
happens(bluetooth_scan(desktop), 11:00).
happens(bluetooth_scan(daniel_laptop), 11:00).
...
in_group(bob, home).
in_group(alice, friends).
in_group(charles, college).
...
%Event Calculus
holdsAt(F,T+1) :- holdsAt(F,T), not stopped(F,T).
holdsAt(F,T+1) :- not holdsAt(F,T), started(F,T).
stopped(F,T) :- happens(E,T), terminates(E,F,T).
started(F,T) :- happens(E,T), initiates(E,F,T).
initiates(gps(W,N),status(location(P)) ,T) :- at_location(P, W, N).
initiates(bluetooth_scan(Dev),status(bluetooth_near(Dev)), T).
...

Fig. 2 A simplified sample of the background knowledge B used in the scenario.

U must be revised, since two calls from contacts not included in the College contact
list are answered while at Imperial2), but no rule in U covers this case. The pre-
processing phase transforms the user theory U into the following theory Ũ :

2 do(accept call(bob),13:00) and do(accept call(alice),13:05), respectively H4 and F1 in
Figure 1. The contact lists of bob and alice are defined in B by the following facts:
in group(bob,home) and in group(alice, f riends).



466 Domenico Corapi, Oliver Ray, Alessandra Russo, Arosha Bandara, and Emil Lupu

Ũ = { do(accept call(CallId,From),T )← try(1,1,T ≥ 07:30)∧ try(1,2, in group(From,college))∧
¬exception(2,do(accept call(CallId,From),T )).

do(accept call(CallId,From),T )← try(2,1,T ≥ 07:30)∧ try(2,2,¬holdsAt(status(location(imperial)),T ))∧
¬exception(2,do(accept call(CallId,From),T )).

try(1,1,T ≥ 07:30))← use(1,1)∧T ≥ 07:30.

try(1,1,T ≥ 07:30))←¬use(1,1).

try(1,2, in group(From,college))← use(1,2)∧ in group(From,college).

try(1,2, in group(From,college))←¬use(1,2).

try(2,1,T ≥ 07:30))← use(2,1)∧T ≥ 07:30.

try(2,1,T ≥ 07:30))←¬use(2,1).

try(2,2,¬holdsAt(status(location(imperial)),T ))← use(1,1)∧T ≥ ¬holdsAt(status(location(imperial)),T ).

try(2,2,¬holdsAt(status(location(imperial)),T ))←¬use(1,1).

use(I,J)←¬del(I,J). }

Given Ũ , it is only possible to prove the examples set E by abducing the predicates
exception and del. The former is to be abduced to explain calls rejected or ignored
by the user and the latter is to be abduced to explain calls the user accepts (currently
not covered by U). Since XHAIL computes a minimal number of exception and del
clauses, U will be minimally revised. Thus the learning phase at the end of the third
day gives the hypothesis:

H = { exception(2,do(accept call(CallId,From),T ))←
holdsAt(status(bluetooth near(desktop computer)),T ).

del(2,2). }

The post-processing phase will then give the following revised user theory

U ′ = { do(accept call(CallId,From),T )←
T ≥ 07:30∧ in group(From,college).

do(accept call(CallId,From),T )←
T ≥ 07:30∧¬holdsAt(status(bluetooth near(desktop computer)),T ). } (2)

Note that the choice between learning a new rule or revising an existing one, when
both solutions are acceptable, is driven by minimality. In this way, we can preserve
much of the knowledge learnt from previous examples. In the above case study, each
revision computed by XHAIL took a couple of seconds on a Pentium laptop PC.

4 Discussion and Related Works

Although statistical techniques [6] may be necessary to process, classify and aggre-
gate raw sensor data upstream, the core logical methodology described in this paper
is well suited to learning user rules. For the application point of view it enables the
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computation of declarative rules that can be automatically formulated into struc-
tured English description policies which the user can validate, query and amend [3].
At the same time they can be automatically encoded into executable policies to en-
able dynamic, autonomous adaptation to user behaviour and context change. From
a theoretical point of view, the approach proposed here shows that theory revision
can be supported by integration of non-monotonic abductive and inductive reason-
ing. This is made possible by the use of the recently developed non-monotonic ILP
system, XHAIL, that has several advantages over other state-of-the-art ILP systems.
Among these, Progol5 [16] and Alecto [14], which also employ abduction to learn
non-observed predicates, do not have a well-defined semantics for non-monotonic
programs and their handling of negation-as-failure is limited. Compared to other
first-order theory revision systems, like INTHELEX [8], Audrey II [25] and FORTE
[20], the use of XHAIL allows for a more expressive language, more efficient in-
consistency detection and exploits existing background knowledge to accurately
constrain the computation of possible revisions. None of the above three revision
systems can succeed in expressing contextual conditions in dynamic system behav-
ior rules and in constructing compact rules using negated conditions. For example
revised rules like (1) and (2) would not be obtained by FORTE as it can only learn
Horn clauses (i.e. no negated literals in the body).

5 Conclusions and Future Work

We have proposed an algorithm, based on non-monotonic learning, that supports
incremental learning and revision of user behavior rules. Rules are learnt based on
past examples, which consist of positive and negative conditions under which the
user performs actions. This work is part of a more ambitious effort to learn privacy
policies on mobile devices, where the learning task is complemented with statistical
learning and classification of raw data, and policy enforcement [18]. Larger scale
experiments planned in the project [2], will give us insights on the scalability of the
proposed approach.

Further work includes the development of components for efficient access to sen-
sory data, caching and acceleration of the learning process, handling of noisy data
and windowing techniques for the examples, mindful of existing solution for con-
cept drift (e.g. [7], [24]). The changing nature of the concepts modelled demands
for techniques able to reduce the complexity of the rules after repeated revisions.
We are currently investigating probabilistic extensions [5] to address concept drift
and two other open issues: establishing a preference criteria to choose the best be-
tween a set of minimal solutions and balancing the exploitation of the learned rules
with the exploration of revisions. Finally, we are mindful of the complexity of the
implementation of such algorithms but we will use valuable lessons and experience
acquired through work on policy enforcement and distributed abductive reasoning
on mobile devices [12] to improve the scale-down and efficiency of our current im-
plementation.
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