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Abstract

We consider the problem of designing a scene-specific

pedestrian detector in a scenario where we have zero in-

stances of real pedestrian data (i.e., no labeled real data or

unsupervised real data). This scenario may arise when a

new surveillance system is installed in a novel location and

a scene-specific pedestrian detector must be trained prior

to any observations of pedestrians. The key idea of our ap-

proach is to infer the potential appearance of pedestrians

using geometric scene data and a customizable database

of virtual simulations of pedestrian motion. We propose

an efficient discriminative learning method that generates

a spatially-varying pedestrian appearance model that takes

into the account the perspective geometry of the scene. As a

result, our method is able to learn a unique pedestrian clas-

sifier customized for every possible location in the scene.

Our experimental results show that our proposed approach

outperforms classical pedestrian detection models and hy-

brid synthetic-real models. Our results also yield a sur-

prising result, that our method using purely synthetic data

is able to outperform models trained on real scene-specific

data when data is limited.

1. Introduction

Consider the scenario in which a new surveillance sys-

tem is installed in a novel location and an image-based

pedestrian detector must be trained without access to real

scene-specific pedestrian data. A similar situation may arise

when a new imaging system (e.g. a custom camera with

unique lens distortion) has been designed and must be able

to detect pedestrians without the expensive process of col-

lecting data with the new imaging device. Both of these sce-

narios are ill posed zero-instance learning problems, where

an image-based pedestrian detector must be created without

having access to real data. Fortunately, in these scenarios

we have access to two important pieces of information: (1)

the camera’s calibration parameters, and (2) scene geome-

try. In this work, we show that with this information, it is

possible to generate synthetic training data (i.e. computer

Figure 1. Scene-specific and location-specific pedestrian detection

results using geometrically consistent computer generated data.

generated pedestrians) to act as a proxy for the real data.

Moreover, we show that by using this ‘data-free’ technique

(i.e., does not require real pedestrian data), we are still able

to train a scene-specific pedestrian detector that outperforms

baseline techniques.

Our goal is to develop a method for training a ‘data-

free’ scene-specific pedestrian detector which outperforms

generic pedestrian detection algorithms (i.e. HOG-SVM,

DPM). Generically trained pedestrian detectors are trained

over large data sets of real data and thus work robustly

across many scenes. However, generic models are not al-

ways best-suited for detection in specific scenes. In many

surveillance scenarios, it is more important to have a cus-

tomized pedestrian detection model that is optimized for a

single scene. Optimizing for a single scene however of-

ten requires a labor intensive process of collecting labeled
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Figure 2. Overview: For every grid location, geometrically correct renderings of pedestrian are synthetically generated using known

scene information such as camera calibration parameters, obstacles (red), walls (blue) and walkable areas (green). All location-specific

pedestrian detectors are trained jointly to learn a smoothly varying appearance model. Multiple scene-and-location-specific detectors are

run in parallel at every grid location.

data – drawing bounding boxes of pedestrians taken with

a particular camera in a specific scene. The process also

takes time, as recorded video data must be manually mined

for various instances of clothing, size, pose and location

to build a robust pedestrian appearance model. Creating

a situation-specific pedestrian detector enables better per-

formance but it is often costly to train. In this work, we

provide an alternative technique for learning high-quality

scene-specific pedestrian detector without the need for real

pedestrian data. Instead we leverage the geometric informa-

tion of the scene (i.e. static location of objects, ground plane

and walls) and the parameters of the camera to generate ge-

ometrically accurate simulations of pedestrian appearance

through the use of computer generated pedestrians. In this

way, we are able to synthesize data as a proxy to the real

data, allowing us to learn a highly accurate scene-specific

pedestrian detector.

They key idea of our approach is to maximize the ge-

ometric information about the scene to compensate for

the lack of real training data. A geometrically consistent

method for synthetic data generation has the following ad-

vantages. (1) An image-based pedestrian detector can be

trained on a wider range of pedestrian appearance. Instead

of waiting and collecting real data, it is now possible to gen-

erate large amounts of simulated data over a wide range of

pedestrian appearance (e.g. clothing, height, weight, gen-

der) on demand. (2) Pedestrian data can be generated for

any location in the scene. Taken to the extreme, a syn-

thetic data-generation framework can be used learn a cus-

tomized pedestrian appearance model for every possible lo-

cation (pixel) in the scene. (3) The location of static objects

in the scene can be incorporated into data synthesis to pre-

emptively train for occlusion.

In our proposed approach, we simultaneously learn hun-

dreds of pedestrian detectors for a single scene using mil-

lions of synthetic pedestrian images. Since our approach

is purely dependent on synthetic data, the algorithm re-

quires no real-world data. To learn the set of scene-specific

location-specific pedestrian detectors, we propose an effi-

cient and scalable appearance learning framework. Our al-

gorithmic framework makes use of highly-efficient correla-

tion filters as our basic detection unit and globally optimizes

each model by taking into the account the appearance of a

pedestrian over a small spatial region. We compare our ap-

proach to several generically trained baseline models and

show that our approach generates a better performing scene-

specific pedestrian detector. More importantly, our experi-

mental results over multiple data sets show that our ‘data-

free’ approach actually outperforms models that are trained

on real scene-specific pedestrian data when data is limited.

Contributions: The contribution of our work is as fol-

lows: (1) the first work to learn a scene-specific location-

specific geometry-aware pedestrian detection model using

purely synthetic data and (2) an efficient and scalable algo-

rithm for learning a large number of scene-specific location-

specific pedestrian detectors.

2. Related Work

3D Models for Detection. The idea of using 3D syn-

thetic data for 2D object detection is not new. Brooks [8]

used computerized 3D primitives to describe 2D images.

Dhome et al. used computer generated models to recognize

articulated objects from a single image [10]. 3D computer

graphics models have been used for modeling human shape

[16, 7], body-part gradient templates [1], full-body gradient

templates [22] and hand appearance [27, 2, 28]. In addi-

tion to modeling people, 3D simulation has been used for

multi-view car detection [25, 24, 18] and 3D indoor scene



understanding [31, 21]. Sun and Saenko [34] used virtual

objects to train 2D object detector for real objects. Work

by Marin et al. [22] used a video game rendering engine to

generate synthetic training data. While they learned a single

pedestrian detector applied to a mobile scenario, we learn

hundreds of location sensitive models for a surveillance sce-

nario. Synthetic data can also be used for evaluation [35].

The main benefit of computer generated data is that it does

not require manual data labeling since the ground truth is

known. The second benefit is that large amounts of data can

be generated with little effort. We take advantage of both of

these benefits in our work.

Synthesis for Domain Adaptation. One effective use of

computer generated images is in the area of visual domain

adaptation [23, 26, 37]. First, large repositories of synthetic

2D data can be used to bootstrap detectors. Then, the data

or detectors can be adapted to real data by leveraging data

from the test distribution. Pishchulin et al. combined syn-

thesized real 3D human body models and a small number

of labeled pedestrian bounding boxes to learn a very robust

pedestrian detector [26]. Their work showed that augment-

ing the training set with the appropriate mix of synthetic and

real data can maximize test time performance. Vazquez et

al. [37] also showed how synthetic pedestrian data can be

combined with real pedestrian data to generate robust real-

world detectors. We address a different task than domain

adaptation, in that we are learning the synthetic pedestrian

model needed prior to the adaptation task.

Scene-Specific Adaptive Classifiers. Adaptive techniques

have been proposed for surveillance scenarios [5, 32, 29,

33]. The use of scene geometry, changes in background

over time and locality aware detectors can be used to greatly

improve the performance of detectors for a specific scene.

Our work is similar in that we use scene geometry and cam-

era calibration parameters to generate scene-specific syn-

thetic data. Our work is different in that we do not use real

data from the scene to adapt our detector.

Scene-Specific Domain Adaptation. Adapting pre-trained

models to a new domain has been an active area of research

[39, 38, 40, 42, 30]. The most recent approaches can adapt

detectors trained in another domain without the need for

new labeled data by bootstrapping a new detector with high

or low confidence detections in the new scene [43]. Our

work is distinct from work on domain adaption in that we do

not allow access to scene-specific real data. In domain adap-

tation a pre-existing pedestrian detector (or generic pedes-

trian data) is augmented with scene-specific real data to im-

prove performance. Our work is complementary to domain

adaptation work in that our proposed detector or data can be

used as an input to a domain adaptation algorithm.

In this work, we have limited ourselves to a surveillance

scenario where the camera is static and the scene is known.

This stands in contrast to the large body of work focused

primarily on pedestrian detection from a mobile platform

[12, 13, 41, 11]. The mobile scenario describes a more

challenging problem where the camera is undergoing ego-

motion and the scene geometry is usually unknown. There

is also significant work regarding the choice of features and

detector for effective pedestrian detection [11]. For this

work, we limit our choice to the standard HOG feature. For

the classifier, we utilize a correlation filter based approach

[4, 19] over the standard SVM for computational efficiency

reasons as we are required to learn large numbers of tem-

plates for a scene.

3. Proposed Method

Figure 2 gives a pictorial illustration of our spatially-

varying scene-specific pedestrian detection framework. We

consider the surveillance setting where the following infor-

mation is available: (1) intrinsic and extrinsic parameters

of the static camera and (2) the geometrical layout of the

scene, i.e., semantic labels for all the regions (“pedestrian

region”) in the scene where a pedestrian could possibly ap-

pear and semantic labels for obstacles in the scene where

a pedestrian could either be occluded or physically cannot

be present. This information is leveraged along with syn-

thesized 3D pedestrian models to generate realistic simula-

tions of the appearance of pedestrians for every location of

the “pedestrian region”. We then learn a smooth spatially-

varying scene-specific discriminative appearance model for

pedestrian detection. During detection, unlike the conven-

tional approach where a single global detector is applied

across the entire image, hundreds of scene-specific location-

specific pedestrian detectors are applied to the scene.

3.1. Data Simulation

Most conventional pedestrian detection techniques re-

quire training images with high quality ground truth labels,

which in our case would be required at every location of

the “pedestrian region” of our scene. However, these labels

can be very expensive to obtain and annotate for pedestri-

ans at every location in the scene. Therefore in this paper,

we adopt a simulation-based approach to artificially render

the pedestrians in the scene taking into account the camera

parameters and the geometrical layout of the scene e.g., ob-

stacles and occlusions in the scene. We use a total of 36 dif-

ferent pedestrian models and at each location in the scene,

we simulate pedestrians with 3 different walking configura-

tions and 12 (every 30◦) different orientations1.

We use 3DS Max from Autodesk to recreate the geome-

try of the scene using the intrinsic parameters of the camera

and manually labeled scene points. Object locations such

as walls and obstacles are also labelled manually. Having

the correct camera parameters is important as it determines

1More details are included in the supplementary material



the amount of perspective distortion that is applied to the

synthetic pedestrians. For surveillance cameras with a wide

field-of-view and small focal length, there is a significant

amount of perspective distortion for people who are near

the camera. This must be learned by pedestrian detectors

to handle distorted (e.g., tilted pedestrians with big heads)

images of people.

In the extreme case of training a model for each pixel

location, a typical scene considered in this paper has about

100,000 locations and at each location we simulate about

4000 pedestrians with randomly chosen appearance, walk-

ing configuration and orientation for a total of about 400

million simulated pedestrians. In practice we learn only a

few hundred models with several million training images,

since performance plateaus after a certain spatial resolution

(more details in section 4.4).

3.2. Classifier Ensemble Learning

Since the detectors at each location in the image sig-

nificantly overlap with each other it is natural to impose

smoothness constraints between neighboring detectors –

neighboring detectors should be similar. Therefore, we

propose a joint detector learning approach while imposing

smoothness constraints between neighboring detectors. A

nice consequence of our framework is that the detectors are

implicitly calibrated since they are jointly trained. We base

our detector on the Vector Correlation Filter [4] formulation

where the detector design is posed as a regression problem.

Notation: For notational ease all expressions through the

rest of this paper are given for 1-D signals with K-channels.

Vectors are denoted by lower-case bold (x) and matrices

in upper-case bold (X). x̂ ← FK(x) and x ← F−1
K (x̂)

denotes the Fourier transform of x and the inverse Fourier

transform of x̂, respectively, where ˆ denotes variables in

the frequency domain, FK() is the Fourier transform op-

erator and F−1
K () is the inverse Fourier transform opera-

tor with the operators acting on each of the K channels in-

dependently. Superscript † denotes the complex conjugate

transpose operation.

We pose the problem of jointly learning the n detectors

with mi training samples per detector as the following op-

timization problem:

min
w1,...,wn
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where ∗ denotes the correlation operation x
j
i is the j-th

training image for the i-th detector wi and g
j
i is the desired

correlation response. The second term captures the classi-

fier smoothness constraints for overlapping regions of the

classifier and cij captures the smoothness weights and λ is

the regularization parameter which trades-off the smooth-

ness term. We adopt the Alternating Direction Method of

Multipliers (ADMMs) [6] to solve the above optimization

problem efficiently. The problem is now posed as:
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s.t. W = H

where ρ is a regularization parameter. We now form and

optimize the Lagrangian for this optimization problem,
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1
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This problem can be solved by decomposing it into sub-

problems for W, H and Λ, each of which can in turn be

solved very efficiently.

Subproblem W:

Wl+1 = arg min
W

L(W,Hl,Λl) (4)

This sub-problem can be further decomposed into individ-

ual sub-problems for each of the locations in the scene in

closed form in the Fourier domain i.e,

wl+1
i = arg min

w
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= F−1
K {(D̂+ ρI)−1(ρĥl

i + p̂− Λ̂l
i)}

where we use the Parseval’s theorem to express the objec-

tive function in the Fourier domain. X̂
k†
j ĥk is the DFT (of

size NF ) of the correlation of the k-th channel of the j-

th training image with the corresponding k-th channel of



the CF template where the diagonal matrix X̂k
j contains the

vector x̂k
j along its diagonal and,
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Subproblem H:

Hl+1 = arg min
H

L(Wl+1,H,Λl) (6)

The solution for this sub-problem results in a closed form

solution which can be implemented very efficiently in the

spatial domain.

Hl+1 = arg min
H

λ

2

∑

(i,j)∈E

cij‖hi − hj‖
2
2

+
ρ

2
‖Wl −H‖2F +ΛlT (vec(Wl)− vec(H))

= arg min
H

λ

2
HTAH+

ρ

2
‖Wl −H‖2F

+ΛlT (vec(Wl)− vec(H))

= (λA+ ρI)−1(ρvec(W) + vec(Λ))

where A is a sparse adjacency matrix defining the con-

nectivity structure (defined by the scene geometry) of the

smoothness graph.

Subproblem Λ:

Λl+1 = Λl + ρ(Wl+1 −Hl+1) (7)

3.3. Detection Protocol

Given a video frame, pedestrian detection is performed

by running each of the spatially varying pedestrian detectors

at their corresponding locations resulting in a detection re-

sponse map over the entire image. To account for the height

variation among pedestrians we also evaluate the detectors

over a small range of scales at each location (0.95 to 1.05).

Finally we apply non-maximal suppression to filter the mul-

tiple overlapping detections for each instance of the object

obtained from the response map. We note that due to the

spatially varying nature of the pedestrian detector, detection

can no longer be performed efficiently using convolution.

4. Experimental Evaluation

4.1. Metrics

Datasets – We evaluate the efficacy of our proposed scene-

specific spatially-varying pedestrian detection framework

Figure 3. Three evaluation scenes with their corresponding geo-

metric labels. Town Center [3] (top), PETS 2006 [36] (middle)

and CMUSRD [17] (bottom).

on three different datasets: an outdoor dataset, a semi-

outdoor datatset and an indoor dataset.

Towncenter Dataset [3]: The town center dataset is a video

dataset of a semi-crowded town center with a resolution of

1920 × 1080 and a frame rate of 25fps. We down-sample

the videos to a standardized resolution of 640 × 360.

PETS 2006 Dataset [36]: The PETS 2006 datatset consists

of video (at a resolution of 720 × 576) of a public space in-

cluding a number of pedestrians. While the dataset consists

of videos captured by four different cameras we just use a

single camera view for our experiments since our approach

is based on a single camera. We down-sample the videos to

a standardized resolution of 640 × 512.

CMUSRD [17]: The Carnegie Mellon University Surveil-

lance Research Dataset is a new dataset for indoor surveil-

lance. The data is collected using multiple cameras inside a

building at the Carnegie Mellon University and consists of

several tens of different people as subjects. While the orig-

inal resolution of the data is 1280 × 960, we down-sample

the videos to a standardized resolution of 640 × 480.

Baselines – We evaluate and compare against the following

baseline approaches for the task of pedestrian detection.

G: A single HOG+SVM based pedestrian detector trained

on INRIA pedestrian dataset [9].

G+: A single HOG+SVM based pedestrian detector trained

on the INRIA pedestrian dataset augmented with negative

background patches from the corresponding specific scene.

SS: A single HOG+SVM based pedestrian detector trained

on real data from the corresponding specific scene.

DPM: The deformable parts based [14, 15] pedestrian de-



tector trained on the PASCAL VOC person class.

DPM+: We build upon the pioneering work by Hoeim

et.al.,[20] to leverage the known ground truth scene geom-

etry and camera location/viewpoint at the inference stage

using the DPM pedestrian detector as our base detector.

SSV: A single HOG+SVM based pedestrian detector

trained only on virtual pedestrians whose appearance is

simulated in the specific scene under consideration.

SSV+: A single HOG+SVM based pedestrian detector

trained on both real and virtual pedestrians whose appear-

ance is simulated in the specific scene under consideration.

This baseline is similar in spirit to the approach in [37].

SLSV(Ours): Our proposed scene-specific pedestrian de-

tection framework with a spatially varying pedestrian ap-

pearance model. This model is learned entirely from virtual

pedestrians whose appearance is simulated in the specific

scene under consideration. In the experiments that follow

we train a detector for each 16× 16 image patch. The num-

ber of models learned for the Town Center, PETS 2006 and

CMUSRD is 640, 879 and 348, respectively. Each model is

trained using 4000 examples (2000 positive and 2000 nega-

tive). This translates to roughly 2.5 million synthetic images

used to train the detectors for the Towncenter scene.

4.2. 2D Bounding Box Evaluation

We compare our proposed model to all baselines using

the standard 50% overlap metric used for pedestrian detec-

tion [11]. In addition to this metric, we also include re-

sults of the 70% overlap criteria to show the 2D localiza-

tion power of our approach. Results are summarized as PR

curves in Fig. 5. The curves show that our approach has a

significantly better recall rate due to the ability to learn ac-

curate location specific detectors. The qualitative examples

are given in Fig.4 also illustrate the ability of our method to

accurately localize pedestrians. Failure cases also show that

our model is not able to detect pedestrians occluded by other

pedestrians since this type of occlusion was not generated

during training. Table 1 shows the mean average precision

Table 1. Average precision by bounding box overlap criteria

0.5 overlap 0.7 overlap Change

G [9] 0.70 0.44 37%

G+ 0.71 0.45 37%

DPM [14] 0.73 0.41 44%

DPM+ [20] 0.86 0.51 41%

SS 0.71 0.42 40%

SSV 0.69 0.34 50%

SSV+ [37] 0.68 0.37 46%

SLSV (Ours) 0.90 0.70 22%

(AP) over all three datasets. Our proposed approach using

purely synthetic data outperforms all baselines with an AP

of 0.90. The DPM+ which uses the same geometry and

camera information as our approach performs second best
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Figure 5. Precision-recall curves for differing overlap ratio criteria.

with an AP of 0.86 followed by vanilla DPM with an AP

of 0.73. All other models fall closely behind the DPM. The

main difference between our approach and the other mod-

els is that specific detectors are learned for each location

in the scene. Furthermore unlike DPM+ which leverages

known scene geometry and camera parameters at inference

our model uses the same information at the training stage.

More importantly, we observe that our approach is re-

silient to a more stringent criteria. Across all three datasets,

the standard HOG+SVM model G drops by 37% (0.70 →
0.44) and the DPM+ model performance drops by 41%
(0.86 → 0.51). In contrast, the performance of the pro-

pose method only drop by 22% (0.90 → 0.70) under the

tighter criteria. We will examine the localization power of

our approach further in section 4.5.

4.3. Effect of the smoothness constraint

We have formulated a joint learning problem to ensure

that appearance models vary smoothly over space. Figure

6 shows how overall performance is effected by changing

the weight of the smoothness term λ in Equation (2). For



Figure 4. Sample detections of DPM (top) and our proposed method (bottom), green denotes true positives and red denotes false positives.

the CMUSRD dataset, the smoothness constrain improves

performance by 8 points (0.89 → 0.97). We obtain opti-

mal performance at a value of λ = 0.10 for the CMUSRD

dataset which we used for all experiments in this paper.
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Figure 6. AP on CMUSRD for different smoothing values (λ).

4.4. Effect of gridsize resolution

While we observe from comparative experiments that a

single generic detector is not flexible enough to cover the

entire scene, we would like to understand how many de-

tectors are needed to effectively cover all appearance vari-

ations. We evaluated the effect of the grid-size on system

performance using a small portion of the Towncenter scene

to understand how appearance is affected by location. Table

2 shows how AP performance changes with respect to the

grid size (number of learned detectors). The results indicate

that a smaller grid size of 8×8 patches perform better which

means that pedestrian appearance is in fact varying signifi-

cantly by location. Our results show a plateau effect starting

at 16× 16 so we use this setting for all our experiments.

4.5. Localization in 3D

Pedestrian detection is often used as a pre-processing

step for tracking, action recognition or activity analysis. In

Table 2. Average precision by number of detectors

Patch Size Number of Detectors AP

8× 8 371 0.802

16× 16 102 0.798

32× 32 30 0.764

these scenarios, it is helpful to know the precise 3D location

of a person in the environment. To evaluate the performance

of 3D localization we use a minimum distance metric where

a detection is considered valid only if it is within 90 cm of

the ground truth location. Table 3 shows mean AP scores

over all three dataset. Our proposed approach performs best

with a AP of 0.91. The second best is the SS model trained

on real scene-specific data with an AP of 0.70, followed by

other models trained on scene-specific data with SSV at an

AP of 0.66 and SSV+ at an AP of 0.65.

Table 3. Average precision by 3D distance criteria

90 cm 50 cm Change

G [9] 0.62 0.56 10%

G+ 0.62 0.56 10%

DPM [14] 0.62 0.40 35%

DPM+ [20] 0.79 0.55 30%

SS 0.70 0.63 10%

SSV 0.66 0.57 13%

SSV+ [37] 0.65 0.58 11%

SLSV (Ours) 0.91 0.84 8%

We also evaluate our approach with a much tighter cri-

teria of 50 cm. Our proposed approach is most resilient

to the tighter criteria with a performance drop of only 8%
(0.91 → 0.84). The performance of all other models,

with the exception of DPM and DPM+, drops between

10% ∼ 13%. The performance of DPM and DPM+ drops

by a large 35% and 30% respectively, which indicates that

the vertical localization of the DPM model is noisy.

Figure 7 compares the 3D trajectories of our proposed

approach and the DPM model. Bounding box results are



Figure 7. 3D localization trajectories of DPM (top) and our proposed method (bottom) in red, while the ground truth is in black.

projected to the ground plane using the center of the bottom

of the box. Since our proposed approach is able to accu-

rately localize pedestrians in the image plane, the projected

3D trajectories are smooth and very close to the ground

truth 3D trajectories. The DPM result projected into 3D

is quite jagged as the bounding box tends to move up and

down during detection.

5. Conclusion

We have presented a purely synthetic approach to train-

ing scene-specific location-specific pedestrian detectors.

We showed that by leveraging the parameters of the cam-

era and known geometric layout of the scene, we are able

to learn customized pedestrian models for every part of the

scene. In particular, our proposed approach took into ac-

count the perspective projection of pedestrians on the im-

age plane and also modeled pedestrian appearance under

synthetic object occlusion. Our proposed algorithm jointly

learns hundreds of pedestrian models using an efficient al-

ternating algorithm, which fine tunes each pedestrian detec-

tor while also enforcing spatial smoothness between mod-

els. Our experiments showed that our model outperforms

several baseline approaches in terms of image plane local-

ization and as well as localization in 3D.

Synthesis-based training techniques are well suited for

the current paradigm of data-hungry object detectors. Al-

though, we have focused primarily on the use of scene ge-

ometry for synthesis, it is only the first step in maximiz-

ing prior scene knowledge for synthesis. We have yet to

explore the more high-level semantic interpretation of the

scene which can be used to generate a wider range of hu-

man poses. For example, functional attributes of the scene

provide strong priors on walking direction, probable pose

and likely occlusion patterns which can be used to gener-

ate a wider range of synthetic images of people. We be-

lieve that advances in functional scene understanding and
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Figure 8. Precision-Recall Curves on Town Center, PETS 2006

and CMUSRD for different amounts of distance.

improvements in human rendering techniques will enable

more powerful models using our detection-from-synthesis

approach.
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