Learning Script Knowledge with Web Experiments

Michaela Regneri
(joint work with Alexander Koller and Manfred Pinkal)
LORIA Nancy

Motivation

Motivation

Outline

- Our view on Scripts

- Script mining
- Evaluation
- Next steps

Scripts

- a script is a temporally ordered sequence of events associated with a certain scenario
EATING IN A
FAST FOOD
RESTAURANT
scenario

1. go to restaurant
2. enter restaurant
3. look at menu
4. decide what to eat
...
5. leave

- the „classical" view on scripts considers temporal event order, participants and causal linkS (Schank \& Abelson, 1977)
- we are focussing on the temporal event structures here

Scripts \& Implicit Knowledge

- some scripts can be learned from text
(Chambers \& Jurafsky 2008,2009)
- however, many scripts of every-day scenarios are usually not elaborated in detail (FAST FOOD RESTAURANT, SHOWERING...)
- people know those scripts very well (that's why there is no need to write them down)
- thus we asked people how they usually experience certain scenarios

Script Mining

1. Data collection

1. look at m 2. decide wh 3. order at	nu at you want ounter
7. eat food	1. walk into restaurant 2. find end of the line
1. enter restaurant 2. go to counter	
3. make selection 4. place order	16. get your drink
10. leave	

2. Sequence Alignment

enter restaurant	walk into restaurant	-
go to counter	find end of the line	-
-	stand in line	-
decide what you want	decide on food and drink	make selection
place order	tell cashier your order	order at counter
...		...
leave	go home	...

3. Temporal Script Graphs

Script Mining

1. Data collection

Data Collection

- we picked 22 scenarios
- we asked people via Amazon Mechanical Turk for temporally ordered events that they would expect in the scenario (25 people / scenario)
- they had to write at least 5 (and at most 15) events
- we asked them to use „bullet point style" (go to counter - take out credit card ...)

Data Collection

- some of the questions we asked:

- What happens when you eat in a restaurant?
- What happens when you eat in a fast food restaurant?
- How do you make scrambled eggs?
- What do you do when you take a train?
-What do you do when you go shopping?
- How do you pay (after buying something)?
- How do you pay with a credit card?

Eating in a Fast Food Restaurant

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink
17. look at menu
18. decide what you want
19. order at counter
20. pay at counter
21. receive food at counter
22. take food to table
23. eat food
24. walk to the counter
25. place an order
26. pay the bill
27. wait for the ordered food
28. get the food
29. move to a table
30. eat food
31. exit the place

Eating in a Fast Food Restaurant

1. walk into restaurant

2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink

1. look at menu

2. decide what you want
3. order at counter
4. pay at counter
5. receive food at counter
6. take food to table
7. eat food
8. walk to the counter
9. place an order
10. pay the bill
11. wait for the ordered food
12. get the food
13. move to a table
14. eat food
15. exit the place

Event Sequence Descriptions (ESDs)

Eating in a Fast Food Restaurant

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink
17. look at menu
18. decide what you want
19. order at counter
20. pay at counter
21. receive food at counter
22. take food to table
23. eat food
24. walk to the counter
25. place an order
26. pay the bill
27. wait for the ordered food
28. get the food
29. move to a table
30. eat food
31. exit the place

Eating in a Fast Food Restaurant

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. wait for number to be called
15. get your drink

1. look at menu
2. decide what you want
3. order at counter
4. pay at counter
5. receive food at counter
6. take food to table
7. eat food

1. walk to the counter
2. place an order
3. pay the bill
4. wait for the ordered food
5. get the food
6. move to a table
7. eat food
8. exit the place

Event Sequence Descriptions (ESDs)

Eating in a Fast Food Restaurant

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink
17. look at menu
18. decide what you want
19. order at counter
20. pay at counter
21. receive food at counter
22. take food to table
23. eat food
24. walk to the counter
25. place an order
26. pay the bill
27. wait for the ordered food
28. get the food
29. move to a table
30. eat food
31. exit the place

Eating in a Fast Food Restaurant

1. walk into restaurant
2. find the end of the line
3. stand in line
4. look at menu board
5. decide on food and drink
6. tell cashier your order
7. listen to cashier repeat order
8. listen for total price
9. swipe credit card in scanner
10. put up credit card
11. take receipt
12. look at order number
13. take your cup
14. stand off to the side
15. wait for number to be called
16. get your drink
17. walk into restaurant
18. find the end of the line
19. stand in line
20. look at menu board
21. tell cashier your order
22. listen to cashier repeat order
23. listen for total price
24. swipe credit card in scanner
25. put up credit card
26. take receipt
27. look at order number
28. take your cup
29. stand off to the side
30. wait for number to be called
31. get your drink
32. look at menu
33. decide what you want
34. order at counter
35. pay at counter
36. receive food at counter
37. take food to table
38. eat food
39. walk to the counter
40. place an order
41. pay the bill
42. wait for the ordered food
43. get the food
44. move to a table
45. eat food
46. exit the place

Event Sequence Descriptions (ESDs)

Data post-processing

- all kinds of participants were admitted, no restrictions on the input
- we got a lot of noise (spelling errors, bad grammar, people did not understand the task)
- we manually corrected spelling errors, and discarded instances that were not usable at all
- overall, 15% of the instances were discarded

Script Mining

1. Data Collection

2. Sequence Alignment

enter restaurant	walk into restaurant	-
go to counter	find end of the line	-
-	stand in line	-
-	look at menu board	look at menu
decide what you want	decide on food and drink	make selection
place order	tell cashier your order	order at counter
...
leave	go home	-

3. Temporal Script Graphs

Script Mining

1. Data Collection

2. Sequence Alignment

enter restaurant
go to counter

2. Sequence Alignment

	inhat vnil miant	at dorido nn fnod and drink	make selection
enter restaurant	walk into restaurant	order	order at counter
go to counter	find end of the line	-	...
-	stand in line	-	-
-	look at menu board	look at menu	
decide what you want	decide on food and drink	make selection	
place order	tell cashier your order	order at counter	
(...	
leave	go home	-	
go to counter find end of line	stand in line	decide what you want decide on food and drink make selection	

Sequence Alignment

- Sequence Alignment arranges two
sequences so as to align as many similar (equal) elements as possible
- compute the alignment with the lowest cost, given costs for
- gap introduction
- matching two items
- Multiple Sequence Alignment (MSA)
sequences
 generalizes this task for more than two sequences \square

Multiple Sequence Alignment

- align string sequences according our cost function

sequence 1	sequence 2	sequence 3
enter restaurant	\varnothing	\varnothing
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you
place an order	place order	order at counter
pay the bill	pay for food	pay at counter
wait for the food	\varnothing	\varnothing
get the food	pick up order	receive food at
move to a table	go to table	take food to table
eat food	consume food	eat

Multiple Sequence Alignment

- align string sequences according our cost function
- introducing gaps has a constant cost

sequence 1	sequence 2	sequence 3
enter restaurant	\varnothing	\varnothing
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you want
place an order	place order	order at counter
pay the bill	pay for food	pay at counter
wait for the food		
get the food	pick up order	receive food at
move to a table	go to table	take food to table
eat food	consume food	eat

Multiple Sequence Alignment

- align string sequences according our cost function
- introducing gaps has a constant cost
- every matching of strings has a cost depending on their semantic similarity
\(\left.$$
\begin{array}{|c|cc|}\hline \text { sequence 1 } & \text { sequence 2 } & \text { sequence 3 } \\
\hline \text { enter restaurant } & \varnothing & \varnothing \\
\text { go to counter } & \text { walk to counter } & \varnothing \\
\varnothing & \varnothing & \text { look at menu } \\
\text { make selection } & \varnothing & \begin{array}{c}\text { decide what you } \\
\text { want }\end{array} \\
\begin{array}{c}\text { place an order } \\
\text { pay the bill } \\
\text { wait for the food } \\
\text { get the food }\end{array} & \text { place order } & \text { pay for food }\end{array}
$$ \begin{array}{c}order at counter

pay at counter\end{array}\right]\)| \varnothing |
| :---: |
| move to a table |
| eat food |

Multiple Sequence Alignment

- align string sequences according our cost function
- introducing gaps has a constant cost
- every matching of strings has a cost depending on their semantic similarity
- we assume all event descriptions in a row to be paraphrases

sequence 1	sequence 2	sequence 3
enter restaurant	\varnothing	\varnothing
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you want
place an order	place order	order at counter
pay the bill	pay for food	pay at counter
wait for the food	\varnothing	\varnothing
get the food	pick up order	receive food at counter
move to a table	go to table	take food to table
eat food	consume food	eat

Semantic Similarity

get food
predicate object
get' food'
receive meal
predicate object
receive' meal'

- compare verbs and nouns with WordNet
- compute a similarity score (high score = low cost)
- synonyms > hypernyms > other relations
- similar verb > similar nouns

Script Mining

1. Data Collection

2. Sequence Alignment

enter restaurant	walk into restaurant	-
go to counter	find end of the line	-
-	stand in line	-
-	look at menu board	look at menu
decide what you want	decide on food and drink	make selection
place order	tell cashier your order	order at counter
...
leave	go home	-

3. Temporal Script Graphs

Script Mining

1. Data Collection

Temporal Script Graphs

- A Temporal Script Graph (TSG) is a directed graph representing events and temporal precedence constraints
- a node (~ event) is a set of event descriptions (event paraphrases)
- an edge means that the source event typically happens before the target event

MSA \quad -
 Temporal Script Graphs

s1	s2	s3
enter restaurant	\varnothing	enter restaurant
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you want
place an order	place order	order at counter

MSA \quad -
 Temporal Script Graphs

$\left.\left.\begin{array}{|ccc|}\hline \text { s1 } & \text { s2 } & \text { s3 } \\ \hline \begin{array}{c}\text { enter } \\ \text { restaurant }\end{array} & \varnothing & \begin{array}{c}\text { enter } \\ \text { restaurant }\end{array} \\ \hline \text { go to counter } & \begin{array}{c}\text { walk to } \\ \text { counter }\end{array} & \varnothing \\ \hline \varnothing & \varnothing & \text { look at menu }\end{array} \right\rvert\, \begin{array}{ccc}\text { decide what } \\ \text { you want } \\ \text { order at } \\ \text { counter }\end{array}\right]$.

MSA \quad -
 Temporal Script Graphs

s1	s2	s3
enter restaurant	\varnothing	enter restaurant
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you want
place an order	place order	order at counter

MSA \quad -
 Temporal Script Graphs

$\mathbf{s 1}$	s2	s3
enter restaurant	\varnothing	enter restaurant
go to counter	walk to counter	\varnothing
\varnothing	\varnothing	look at menu
make selection	\varnothing	decide what you want
place an order	place order	order at counter

TSG post-processing

- MSA with our setup tends to produce too many nodes
- we merge nodes if they meet certain structural and semantic constraints
- semantically, the event descriptions of the nodes have to be similar enough
- structurally, we may not introduce temporal constraints that do not fit our input data

TSG - example

Evaluation

- we evaluate the two core features of our algorithm:
- recognizing event paraphrases
- generalizing over the temporal constraints in the input (and introducing new, valid constraints)

Gold Standard

- 10 scenarios that were not used for development
- 5 from our Mechanical Turk data
- 5 from the OMICS corpus
- OMICS data is very similar to ours
- more instances per scenario, but restricted to indoor scenarios

Gold Standard

- two evaluation sets per scenario
- the paraphrase set:
- 30 event description pairs our system classified as paraphrases,
- 30 random pairs
- the happens-before set:
- 30 event description pairs whose events had a follow-up relation in our graph
- 30 random pairs
- all 60 pairs in reverse order

Gold Standard

- we used Mechanical Turk and asked 5 annotators per pair (majority decision)
- question for the paraphrase task:

Imagine two people, both telling a story about SCENARIO. Could the first one say [event2] to describe the same part of the story that the second one describes with [event ${ }_{1}$?

```
EATING IN A FAST FOOD
RESTAURANT
1: make selection
2: decide what you want
```

- question for the happens-before task:

Imagine somebody telling a story about SCENARIO in which the events [event ${ }_{1}$] and [event ${ }_{2}$] occur. Would [event1] normally happen before [event2]?

```
EATING IN A FAST FOOD
RESTAURANT
1: enter restaurant
2: eat food
```


Clustering Baseline

- tests the contribution of MSA
- for each scenario, we take all input event descriptions and cluster them using our similarity measure
- event descriptions in the same cluster \rightarrow paraphrases
- temporal order is derived from clusters and input

s1	s2	s3
\ldots	\ldots	\ldots

Levenshtein Baseline

- tests the contribution of our similarity measure
- we use our system, but exchange our similarity measure for Levensthein distance
- we use (character-wise) Levenshtein distance, normalized over the string length

Upper bound

- an upper bound approximating human performance (compared to the Gold Standard)
- for each pair in a task, we pick a random annotator's decision
- we compare this virtual random annotator to the gold standard

Results: Paraphrase Recognition

Results: Temporal Ordering

Future Work

- extract Script participants

Future Work

- find a new way for data collection (a game)
- automate preprocessing
- find a way to select new candidate scenarios automatically
- dealing with loops, alternatives and events that don't have a fixed order, see example...

undress	disrobe	take off clothes	take clothes off	remove clothing	get naked
		turn on water	turn on hot water		start water
step in shower	enter shower	go into shower	get in shower	get in shower	
turn on water	turn on water				
soap		rub with soap	apply soap		use soap
	shampoo hair		shampoo hair	shampoo hair	shampoo
rinse		rinse body	rinse	rinse hair	rinse
	rub with soap			rub with soap	
shampoo hair		shampoo hair		shampoo hair again	
rinse	rinse	rinse hair		rinse everything	

rinse	rinse body	rinse	rinse hair

| rub with
 soap | | rub with
 soap |
| :---: | :--- | :--- | :---: |

| shampoo
 hair | shampoo
 hair | shampoo
 hair again |
| :---: | :---: | :--- | :---: |

rinse	rinse	rinse hair	rinse everything

	undress	disrobe	take off clothes	take clothes off	remove clothing	get naked
easy	-	\longrightarrow	turn on water	turn on hot water		start water
	step in shower	enter shower	go into shower	get in shower	get in shower	
	turn on water	turn on water				
	soap		rub with soap	apply soap		use soap
maybe not so easy	\longrightarrow	shampoo hair		shampoo hair	shampoo hair	shampoo
	rinse		rinse body	rinse	rinse hair	rinse
		rub with soap			rub with soap	
	shampoo hair		shampoo hair		shampoo hair again	
	rinse	rinse	rinse hair		rinse everything	

Summary

- Scripts, and their temporal layer
- Data collection of script instances
- Multiple Sequence Alignment to find event paraphrases
- Graph mining to get a convenient representation
- system outperforms two well-informed baselines
- nice basis for future work

Thank you!

introduce
speaker
speaker begins talk

speaker concludes
talk
questions, discussion
everybody w. audience leaves

References

- Nathanael Chambers and Dan Jurafsky. 2009. Unsupervised learning of narrative schemas and their participants. In Proceedings of ACL-IJCNLP 2009.
- Michaela Regneri, Alexander Koller and Manfred Pinkal: Learning Script Knowledge with Web Experiments. In Proceedings of ACL 2010.
- Roger C. Schank and Robert P. Abelson. 1977. Scripts, Plans, Goals and Understanding. Lawrence Erl- baum, Hillsdale, NJ.
- The OMICS corpus: http://openmind.hri- us.com/

