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SAGE is an adaptive production system model of strategy learning. The system begins 
a task with weak, overly general operators and uses these to find a solution to some 
problem by trial and error. The program then attempts to resolve the problem, using 
its knowledge of the solution path to determine blame when an error occurs. Once 
the faulty operator has been found, the system employs a process of discrimination 
to generate more conservative versions of the rule containing additional conditions. 
Such variants are strengthened each time they are relearned, until they come to 
override their precursors. The program continues to learn until it can solve the problem 
without errors. SAGE has learned useful heuristics in the domains of the slide-jump 
puzzle, solving simple algebra equations and seriating blocks of different lengths. 

1. Introduction 

U p o n  first coming to a problem, a novice can use only weak, general methods,  such 

as heuristic search and means-ends  analysis. After  considerable experience, he draws 

on much more  powerful, domain-specific techniques for directing his search. Chase 

& Simon (1974) have repor ted evidence for such a distinction between expert  and 

novice chess players, while Larkin, McDermott ,  Simon & Simon (1980) have modeled 

similar differences between experienced and inexperienced physics problem-solvers.  

In recent years, researchers in Artificial Intelligence and Cognitive Science have paid 

considerable attention to expert behavior but have largely ignored the process by 

which novices become experts as the result of experience. In the following, I present 

a theory that explains the transition from weak, general methods to domain-specific, 

powerful strategies. 

One  goal of science is to develop general theories of behavior, and from this 

viewpoint a major  drawback of expert systems is their reliance on domain-specific 

knowledge. In contrast, a learning theory should be able to explain the shift f rom 

novice to expert  in a general, domain- independent  fashion. Langley & Simon (1981) 

have proposed a set of basic principles that such a learning theory should incorporate.  

Generation of alternatives. The learning system must  be able to produce new behaviors; 

the best way to learn is to make mistakes. 

Knowledge of results. The learning system must be able to distinguish between good 

and bad (or better  and worse) performance.  

Causal attribution. The learning system must be able to attribute correctly good or 

bad performance to specific components  of the performance system. 

Hindsight. The System must be able to modify its behavior based on its knowledge 

of results and causal attributions. 
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Given components  that are instantiations of these principles, an AI system should be 

able to improve its performance as a function of experience; in other words, it should 

be able to learn. Other forms of learning are possible; for example, one can learn 

new procedures by being told, or by deducing them from known relations. However,  

the above principles would appear necessary if one is to learn from experience, although 

the particular incarnations of those principles might differ considerably from system 

to system. 

In this article I describe SAGE,  a system that incorporates these principles to 

improve its behavior as a result of experience. SA G E stands for Strategy Acquisition 

Governed by Experimentation, and though the system is not intended as a detailed 

model of human learning, it is intended as a general theory of mechanisms that are 

sufficient for strategy acquisition. The program is presented with a set of legal operators 

for solving some task, and its goal is to discover a revised set of heuristically useful 
operators that will let it solve the problem (and others like it) with little or no search. 

SAGE has learned useful heuristics in three rather different domains-- the  slide-jump 

puzzle, algebra problems in one variable and a length seriation task. However,  before 

moving on to the details of the system and its learning techniques, we should first 

review some related work on strategy learning. 

2. Previous research on strategy learning 

Although learning would seem to have considerably intrinsic interest, few researchers 

have at tempted to construct strategy learning systems until quite recently. The delay 

seems to have been due partly to the lack of a "learnable" representation for strategies. 

As we shall see, most of the recent systems represent strategies as sets of relatively 

independent rules, and rule-based formalisms such as production systems are relatively 

young as AI representations go. Below, I consider five systems that improve their 

problem solving strategies as a function of experience, and that employ some or all 

of the basic principles described above. Although excellent work has been done on 

constructing programs from sample traces, this paradigm seems different enough from 

the current approach that I will not focus on it here. 

2.1. LEARNING ALGEBRA FROM EXAMPLES 

Neves (1978) has developed ALEX,  a program that learns strategies for solving simple 

algebra problems. This system is initially presented with examples of legal operators 

for moving between states, such as adding the same number  to both sides of an 

equation. From these examples, A L E X  creates rules for recognizing future examples 

of those operators.  Once it has become familiar with algebraic operators, the system 

is presented with sample solutions to selected algebra problems. Based on these sample 

solutions, A L E X  constructs rules for solving similar problems in different contexts. 

The first step in this process is to identify which operator  is responsible for each 

transition, and the operator recognizing rules prove indispensable in this task. In some 

cases, no single operator  is sufficient to account for a transition, and A L E X  is forced 

to employ means-ends analysis to find a sequence of known operators to account for 

the change. In the extreme case, this method can be used to find a solution to the 

entire algebra problem; the resulting trace can be used in the same manner as one 

provided by a tutor. 
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ALEX is stated as an adaptive production system. That is, its initial performance 

component  is composed of a set of condition-action rules called productions, and 

learning consists of the addition of new rules that result in new behaviors. However,  

before ALEX can construct rules for applying the operators found in the sample 

sequence, it first has to discover the conditions under which those operators should 

be applied. To this end, Neves employs two simple heuristics: 

the symbols affected by an operator probably play a role in the condition; 

symbols involved in more severe changes should be preferred as conditions; for 

example, removal of a symbol is more severe than its transformation. 

This learning method is sufficient to find the correct conditions on a number of algebra 

operators. In addition, Neves constructed a similar program (Neves & Anderson, 

1981) that learned list processing algorithm s (such as reversing a list) through an 

analogous method. 

Thus, Neves' system incorporates two of the four learning principles discussed 

above. ALEX has the ability to generate behaviors of its own, as well as to accept 

sample sequences from a tutor. The program is certainly able to modify its behavior 

on the basis of past experience, so we can conclude that it possesses hindsight. However,  

since the system assumes that all rules it creates are correct at the outset, it possesses 

no mechanisms for achieving knowledge of results or assigning credit. In other  words, 

A L E X  provides no means for recovering from an error if an incorrect rule is learned, 

and this must be considered a serious shortcoming of the program. 

2.2. IMPROVING STRATEGIES ON THE TOWER OF HANOI 

Anzai (1978a, b) has reported on a program that improves its strategies for solving 

the Tower of Hanoi puzzle. The system begins by solving the problem with a depth-first 

search strategy, retaining information about previous states it has encountered and 

previous moves it has made. As with ALEX, Anzai's program is stated as an adaptive 

production system; various learning heuristics look for patterns in the trace informa- 

tion, and create new condition-action rules when these patterns occur. Once these 

rules have been constructed, they can be used to help direct the search process in a 

more intelligent manner. One of the most interesting features of Anzai 's system is 

that certain of its learning rules cannot be used at the outset; simpler forms of learning 

must occur before these more sophisticated techniques may come into play, so that 

the system evolves through a number of distinct stages. 

The first of these simple heuristics notes when an action leads to a state that has 

occurred before. A closely related rule notes cases in which two separate operator 

sequences (one longer than the other) lead to the same state. In both of these situations, 

the system constructs a rule to avoid applying the responsible operators in the future. 

In the first case, the undesirable operator  is the one leading back to the previous 

state; in the second case, it is the last operator  applied in the longer of the two paths. 

The conditions placed on these rules include information about the states and operators 

involved in the noted paths; also, the system knows enough about the Tower  of Hanoi 

task to generalize across the disks involved in the patterns. 

The rules learned in this fashion can only suggest moves that should be avoided, 

but they are enough to direct the search toward an initial solution. After  a solution 

path has been found, more powerful learning heuristics can be applied. For example, 
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Anzai's system begins with only partial descriptions of the final goal state, but once 

the exact solution is known, the system constructs a more complete description that 

can aid the search process in future attempts. Another  heuristic leads to the creation 

of rules for asserting subgoals. This applies when the system has been unable to satisfy 

a goal at some state (s 1) because the necessary action (a 1) violates some constraint 

of the problem, and later, another action (a2) leads to a new state (s2) in which that 

constraint is no longer violated. The result is a new rule that suggests s2 as an 

appropriate subgoal whenever s 1 is desired. Such a rule is more powerful than the 

avoidance rules, since it leads to positive suggestions in place of negative ones. 

In summary, Anzai's system begins by generating a search tree for the Tower of 

Hanoi task. Along the way, it learns rules for pruning the tree by avoiding undesirable 

moves. Once it has reached the solution to the puzzle, it learns rules that establish 

subgoals, enabling it to generate only those portions of the search tree that lie on the 

solution path. Thus, one can see that the program incorporates all four of the 

components discussed earlier, since it generates alternatives, determines whether 

behavior is desirable, assigns credit to particular operators and constructs rules to 

avoid or  prefer these operators in the future. 

However,  Anzai's model of strategy acquisition contains some undesirable features 

as well. First, the system employs considerable knowledge of its task domain to aid 

the learning process. Anzai & Simon (1979) have discussed the general principles 

behind the model, but this is no substitute for a generalized program. Anzai (1978c) 

has shown that very similar techniques can be used to learn seriation strategies, but 

again this was a separate program from the Tower of Hanoi  learner. Second, Anzai 

(like Neves) assumes that all learned rules are correct, and that no need for error  

recovery will ever arise. This assumption could lead to serious problems if an incorrect 

avoidance rule were constructed, since it might tell the system to avoid a move 

necessary to solving the problem. 

2.3. BRAZDIL'S ELM 

Brazdil (1978) has described ELM, a P R O L O G  program that learns heuristics for 

solving problems in the domain of arithmetic and simple algebra. The system is 

provided with a set of legal operators for solving such problems, but does not initially 

know in which order to apply them. When ELM is presented with a sample solution, 

it attempts to replicate the solution path by trying all applicable operators. Since only 

one operator  agrees with the solution trace, that rule is given priority over its 

competitors. In the future, it will be preferred to other operators that may also be 

applicable. The result is a partial ordering among operators that ELM can use to 

direct its search in profitable directions. 

Occasionally, the system encounters a problem that indicates that operator A should 

be preferred to operator B, while another  problem suggests exactly the opposite. In 

such cases, ELM searches for some predicate that was true when A should have been 

applied, but that was false when B was the correct move. Upon discovering such a 

predicate, the program creates a variant rule A' that includes the predicate as an 

additional condition. The same process is applied to B, resulting in a variant on this 

operator as well, say B'. Both A' and B' are placed above A and B in the partial 

ordering, so that if either of the more specific rules is true, it will be preferred to the 
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original versions of the operator.  This approach has much in common with the approach 

to strategy learning taken in the current paper. 

From this description, one sees that Brazdil 's system can determine when its 

performance has improved, that it assigns credit and blame to responsible operators, 

and that it modifies its behavior based on this knowledge. However, ELM must rely 

on a benevolent tutor  to provide sample solutions, since it does not generate new 

behaviors on its own. The method for generating a more specific variant on an operator 

does provide some means for error recovery, so that if an incorrect ordering is 

established, this can effectively be corrected at a later date. Still, there is no provision 

to handle cases in which spurious conditions are added to an operator,  except to 

construct ever more specific versions and to give them priority. 

2.4. IMPROVING HEURISTICS FOR SYMBOLIC INTEGRATION 

Mitchell, Utgoff, N u d e l &  Banerji (1981) and Mitchell, Utgoff & Banerji  (1982) have 

described LEX, a computer  program that discovers heuristically useful conditions on 

operators for solving problems in symbolic integration. Like Brazdil's (1978) system, 

LEX begins with legal operators for searching a space, but does not know how to 

apply these rules in an intelligent fashion. The system begins by solving integration 

problems with a form of best-first search and,  once it has found a solution path, it 

uses this path to identify good and bad instances of the operators that were applicable 

along the way. For example, if the application of an operator led to a state on the 

solution path, this would be considered a good instance. However,  if some other 

operator  could have been applied at the same point, this portion of the tree is expanded 

in an attempt to find another route to the answer; if no alternative path can be found 

with reasonable effort, the initial move in this branch would be treated as a bad 

instance of the alternative operator.  

Once it has identified good and bad instances of an operator,  LEX employs Mitchell's 

(1977) version space technique to identify the heuristically useful conditions on its 

application. New good instances lead the system to determine that certain potentially 

relevant conditions are actually unnecessary, while bad instances tell it that other 

conditions must be true for the operator to be selected. However,  even before the 

exact form of the heuristic is determined, LEX can use its partial description to decide 

on the relevance of this operator  compared to others; this allows the program to 

improve its performance steadily as it is mastering the correct form of the various 

heuristics. 

In LEX,  we see a strategy learning system that incorporates all four of the principles 

that we discussed at the outset. The system generates its own behavior in the form 

of solution paths to sample problems, and used this information to distinguish good 

behavior from bad behavior, and to assign credit and blame to responsible operators. 

From good and bad instances of these operators,  the program carefully determines 

the conditions under which the operators can be profitably applied. The system of 

Mitchell et al. appears to be a robust strategy learner with considerable potential and, 

although the researchers have tested the system only in the domain of integration, it 

seems to be implemented in a general fashion. One of LEX's  drawbacks is its reliance 

on an "is-a" hierarchy among function types (e.g. sine is a trigonometric function) 

that must be given to the system by its authors; however, this appears to be a limitation 

of the current implementation and does not, in principle, seem necessary. Another  



518  P. LANGI.EY 

limitation is that the version space technique, like the generalization-based methods 

to which it is related, has difficulty in learning rules with disjunctive conditions; 

although such heuristics may not appear in the domain of symbolic integration, they 

do in other tasks (such as the sl ide-jump puzzle). 

2.5. FORMULATING MORE EFFICIENT STRATEGIES 

Neches (1981) has described HPM, a program that models the transformation of 

w~ll-specified but inefficient strategies into more efficient versions. Like the other 

strategy learning systems described above, HPM learns from trace information about 

the operators that have been applied and the states that have resulted. However,  it 

addresses a somewhat different issue from the other programs we have discussed. 

Rather than starting with little knowledge of a task and learning to direct search 

through the problem space, Neches' program starts with a well-understood algorithm 

for performing a task and revises this algorithm as it detects short-cuts that will allow 

the same result to be achieved more efficiently. 

As with Neves'  and Anzai's programs, HPM is stated as an adaptive production 

system, and Neches' learning heuristics are stated as condition-action rules. These 

rules match off patterns in the trace information that is left when performance rules 

carry out the desired algorithm. Neches has proposed a number of basic transformation 

types that can lead to more efficient procedures. 

Reduction to results: converting a computational process to a memory retrieval 

process. 

Reduction to a rule: replacing a procedure with an induced rule for generating its 

results. 

Replacement with another method: substituting an equivalent procedure for a more 

expensive one. 

Unit building: grouping operations into a set that can be accessed as a single unit. 

Deletion of unnecessary parts: eliminating redundant or extraneous operations. 

Saving partial results: retaining intermediate results which would otherwise have 

to be recomputed later in a procedure.  

Re-ordering: changing the sequence in which operations are performed. 

These transformation types correspond to the actions of various adaptive productions 

for altering the make-up of the performance system, but one can easily imagine the 

conditions under  which these rules would apply. For example, if two different tests 

are applied to decide whether some action should be taken, and one test always gives 

the same result as the other, then remove one of the tests (probably the more expensive 

one) from the procedure, since it is an unnecessary component.  

Neches has used HPM to model human learning on a sequence generation task, as 

well as a task involving the drawing of pictures with a computer  graphics program. 

The system has also successfully modeled the evolution of children's addition strategies. 

In some schools, children are initially taught an addition algorithm "called the "rain 

strategy", not because it is efficient but because it is easy to learn. However,  after 

using this strategy for some months, many children show evidence of spontaneously 

transforming it into a more efficient algorithm. HPM not only accounts for the overall 

transformation between these two strategies, but for intermediate strategies that have 

been detected along the way. 
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It is difficult to evaluate Neches' system according to the principles mentioned 

above. Certainly, HPM generates its own behavior, but this is well-defined behavior 

that was programmed into the system at the outset. In a sense, the program achieves 

knowledge of results and assigns credit, but its measure of goodness is different from 

our other examples, focusing on computation time rather than which branch of a tree 

to search. And certainly the system possesses hindsight, since it modifies its behavior 

based on the above information. Thus, H P M  incorporates all four of the learning 

principles, though it does so in rather unusual ways. However,  this appears to be more 

a limitation of the framework I have proposed than of Neches' system. It results from 

the fact that Neches has focused on learning efficient strategies from well-specified 

tasks, while most other  work in the area has focused on learning well-specified 

strategies from ill-defined ones that initially involve search. 

2.6. COMMENTS 

In conclusion, we see that in recent years, considerable interest has arisen with respect 

to strategy learning, and that a number of systems have been developed that attempt 

to model this process. Each of these systems employs some of the principles proposed 

in the Introduction, and those which incorporate all of the principles appear to be 

the most robust and versatile. In addition, all five of the systems represent operators 

as separate rules that can be reasoned about independently. This appears to be an 

important feature, for it means that the learning process can be factored into manage- 

able components. Also, each of the systems employs some form of operator  traces, 

both for assigning credit and for learning the heuristically useful conditions on these 

operators. Both the independence of operators and the presence of trace information 

appear to be generally useful features that any strategy learning system should find 

profitable.t  

Although the systems just described have told us a number of important  facts about 

the acquisition of problem-solving strategies, more work needs to be carried out. In 

particular, none of the existing systems has yet shown that it can learn in more than 

a single domain. Since one of the major goals of science is generality, an acceptable 

theory of strategy learning must prove its domain-independence by learning on a 

number of different tasks. In the following sections, I describe SAGE,  a system which 

meets this more stringent test. The program borrows some important ideas from the 

earlier systems, including the notion of waiting until a complete solution path has 

been found before attempting to learn. However,  the system also introduces some 

new methods that expand the class of heuristics that can be learned, as well as making 

the learning process more gradual and more robust. 

3. An example: the slide-jump puzzle 

SAGE's  behavior on the slide-jump puzzle provides a useful introduction to its 

performance and learning characteristics. In this puzzle, one starts with equal numbers 

of two types of coins (say quarters and nickels) set in a row. All quarters are on the 

left, all nickels are on the right, and the two sets are separated by a blank space. The 

t This is perhaps too strong a statement. For a radically different approach to strategy learning that is 
organized around the discovery of useful evaluation functions, and which does not rely on these two 

features, see Rendell 's (1982a, b) descriptions of PLS1. 
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goal is to interchange the positions of the quarters and nickels. However,  quarters 

can move only to the right, while nickels can move only to the left. Two basic moves 

are allowed: a coin can slide from its current position into an adjacent blank space, 

or it can lump over a coin of the opposite type into a blank space. A coin may not 

jump over another  coin of the same type. Table 1 presents one of the two (symmetric) 

solution paths for the four-coin problem.  Although there are only 31 states in the 

problem space associated with this particular puzzle, humans  have considerable 

difficulty in reaching a solution. 

TABLE 1 

Solution path [or the four-coin slide-lump puzzle 

QQ--NN 
Q--QNN 
QNQ--N 
QNQN--  
QN--NQ 
--NQNQ 
N--QNQ 
NNQ----Q 
NN--QQ 

Initial state 
Slide a quarter from 2 to 3 
Jump a nickel from 4 to 2 
Slide a nickel from 5 to 4 
Jump a quarter from 3 to 5 
Jump a quarter from 1 to 3 
Slide a nickel from 2 to 1 
Jump a nickel from 4 to 2 
Slide a quarter from 3 to 4 

S A G E  starts this task with one condit ion-act ion rule for sliding and one for jumping, 

as well as some additional rules which support  the search for a solution. The initial 

operators are correct in that they propose  only legal moves, but they lack conditions 

for distinguishing good moves from bad moves. As a result, the program makes many 

poor moves on its first pass, and is forced to back up whenever  it reaches a dead end. 

The goal of learning is to discover heuristically useful conditions on the operators  

that will let the system solve future problems without any search. 

Once S A G E  has solved the problem with its depth-first search strategy, it at tempts 

to find a second solution, but this time it has the initial solution to guide its search. 

When one of the operators  is incorrectly applied, the system knows its mistake 

immediately. If such an error occurs, S A G E  compares the last correct application of 

the offending opera tor  to the current incorrect application. Upon  finding a difference 

between the two situations, the system adds a new rule to its repertoire;  this rule is 

identical to the original operator,  except that it includes the difference as an additional 

condition that will keep it f rom applying in the undesired situation. The program 

continues to learn in this fashion, constructing more conservative rules when errors 

are made and strengthening rules when they are relearned, until it traverses the entire 

solution path with no mistakes. 

The reader may wonder why the program should bother to improve its operators  

once it has the solution to the puzzle in mind. The reason is simple: there is a chance 

that these revised operators  will also be useful in related problems for which the 

solution path is not available. To the extent that the learned heuristics transfer across 

different but related problems, they can be very useful in reducing search. As we shall 

see in more detail later, the operators  S A G E  learns on the four-coin puzzle let it 

solve the six-coin puzzle immediately, without backtracking. 
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4. The performance system 

A learning system can only exist in the context of some performance framework, and 

in this section I discuss the performance system possessed by SAGE at the outset of 

its explorations. The performance components for each task differ because they require 

different operators; however, all of the initial programs have some important features 

in common, and I will focus on these similarities. First I discuss the production system 

language in which SAGE is implemented. Following this, I consider the representation 

of problem states and the operators which alter those problem states. Finally, I examine 

SAGE's mechanisms for backing up and for recognizing the solution of a problem. 

4.1. THE PRISM LANGUAGE 

SAGE is implemented in PRISM, a programming language designed for exploring 

the space of production system architectures, especially those involving learning 

phenomena. This language is discussed in greater detail by Langley & Neches (1981). 

Like other production system formalisms, PRISM represents procedural knowledge 

as condition-action rules called productions. A production system operates in cycles; 
each cycle, every rule is matched against the current state of working memory. From 

among those rules which match the current memory, one or more are selected and 

their actions are applied. These actions alter the state of working memory (or, in the 

case of learning, the state of production memory), making a new set of productions 

true. The system cycles in this fashion until no rules are true or until a stop command 

is encountered. 

PRISM differs from most production system languages in the mechanisms it provides 

for learning. These include techniques for designating new rules, discriminating faulty 

ones, strengthening productions on the basis of use or relearning, and generalizing 

from rules with identical forms. In this article I will focus on the discrimination and 

strengthening processes, which are discussed in more detail in the following section. 

PRISM also has the ability to store declarative knowledge in a long-term propositional 

network, and provides over 30 user-modifiable parameters for altering the system's 

behavior. The language has many features in common with OPS4 (Forgy, 1979) and 

ACTF (Anderson, Kline & Beasley, 1980) formalisms, which have strongly influenced 

the development of PRISM, but it has considerably more flexibility than either of 

these earlier systems. 

4.2. REPRESENTING PROBLEM STATES AND OPERATORS 

A problem solver must have some representation to work upon. He starts with an 

initial state and gradually transforms this into the goal state. Although SAGE 

necessarily uses different representations for the different tasks it attempts, they all 

have one major feature in common: each problem state is represented as a number 

of distinct elements in working memory. Since operators affect only some of these 

elements, the entire problem state need not be respecified each time a move is made. 

Instead, those elements which have become true are added to memory, while those 

which are no longer true are removed. Also, this composite representation allows 

partial information about the problem state to be included as conditions on an operator 

to the exclusion of less-relevant information. 
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S A G E  operators  are stated as PRISM productions. When the conditions of one of 

these productions is met, then it can be legally applied; in such cases, the rule inserts 

a goal to remove  some elements and add others. For example,  the basic slide produc-  

t iont  can be stated: 

If a coin is in position1, 
and position2 is to the direction of positionl, 

and position2 is blank, 

and that coin can move to the direction, 
then consider sliding that coin f rom position1 to position2. 

This opera tor  will be true whenever a coin is next to the blank space and that coin 

is allowed to move in that direction; it will work for either coin and for any pair of 

adjacent positions. Once a goal has been set, another  production is responsible for 

updating the problem state by actually adding and deleting elements from memory.  

This division of labor simplifies matters  in later runs when the solution path is known, 

for an incorrect goal may be caught before it is implemented.  Note  that although the 

above rule proposes  legal moves, there is no guarantee that these will be good moves. 

As stated, the slide operator  will generate  many bad moves, such as sliding two nickels 

in a row, which leads to a dead-end state. S A G E ' s  learning mechanisms must generate  

more conservative and powerful operators  before useful actions are consistently 

generated. 

4.3. CONTROLI.ING THE SEARCH 

Before S A G E  can learn from its mistakes, it must be able to identify those mistakes. 

This means it must know the correct solution path to a given problem. And to find 

a solution using the very weak operators  it has at the outset, the system must be able 

to search. In addition to operators  for moving through the problem space, effective 

search requires the ability eventually to recognize a fruitless path, and the ability to 

backtrack once such a path is recognized. S A G E  carries out a form of depth-first 

search in each of the tasks it at tempts,  preferring those operators  with the highest 

strengths. As we have seen, learning consists of constructing more  powerful operators  

that direct that  search down fruitful paths; however, before these variants can actually 

improve the system's behavior, they must become stronger than the more general 

rules they are at tempting to replace. 

When S A G E  decides it has reached a bad state or dead-end,  it backtracks to the 

previous state. This is possible only because the system keeps a trace of all previous 

moves made along the current path. This trace serves a second purpose in that 

it provides a record of the solution path once the goal has been reached. During 

the initial search, S A G E  also remembers  bad moves it has made along the current 

path, so that it can avoid making these moves a second time. However ,  this negative 

information is removed once the solution is found, since the system must be allowed 

to retake these false steps in later runs if it is to learn from its mistakes. 

In addition to searching, a problem solving system must be able to determine when 

it has reached a solution. S A G E  employs a single production for recognizing such 

t For the sake of clarity, I will present only English paraphrases of the actual productions; in these 
paraphrases, an italicized term stands for a variable which will match against any symbol. In this case, the 
variable coin will match against the symbol quarter or nickel, rather than against a particular coin. 
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states. The rule for slide-jump may be paraphrased: 

If a coin1 moves to the direction1, 

and a coin2 moves to the direction2, 

and position is blank, 

and no coin1 is to the direction2 of position, 

and no coin2 is to the directionl of position, 
then you are finished. 

The goal-recognizing rules for algebra and seriation are necessarily different, but both 

are stated as single productions in much the same spirit as the above rule. If the 

system has managed to solve the problem without needing to backtrack (i.e. with no 

search), then SAGE infers that no learning is required and the program halts. In the 

following section, I consider the system's response to cases in which errors have been 

made, and the manner  in which it uses the correct  path to improve its performance. 

5. Learning improved operators 

Once S AGE has solved a task by trial and error,  it moves into learning mode. At the 

outset of this stage, the system uses its initial operators to generate alternatives just 

as it did the first time around. Since the solution path is known, incorrect goals are 

spotted as soon as they are proposed; this means that SAGE never strays far from 

the correct path, and backtracking is unnecessary. These errors lead to calls on the 

PRISM discrimination mechanism, which creates variants of the operators responsible 

for the mistakes. As these variants are produced, they compete for attention with the 

original versions. The program continues to create new rules and to strengthen existing 

ones until useful variants mask the original operators and the solution is reached 

flawlessly. Below, I discuss how SAGE achieves knowledge of results and assigns 

credit, and how the system alters its behavior based on this information. 

5.1. ASSIGNING CREDIT AND BLAME 

During the learning phase, SAGE stores the instantiations of productions that are 

responsible for adding elements to memory. After  the program proposes a move in 

learning mode, it compares this move to the analogous one in the known solution 

path. If the two are identical, then the proposal is carried out and the program 

continues onward to the next problem state. In addition, the following rule is applied: 

If you have a goal to make move1 at depth1, 

and move1 lies on the solution path at depth1, 

then carry out the goal to make the move, 

and retrieve the instantiation that proposed this goal, 

marking it as a positive instance of the responsible production. 

In such cases, no learning is required since the correct operator has applied in the 

correct manner. However,  this rule stores the fact that the responsible instantiation 

is a good instance of the production, since this information is essential for recovering 

from errors when they do occur. 

As long as the proposed moves agree with those along the known solution path, 

S A G E  continues to make these moves and is satisfied with its progress. If instead the 
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proposed and correct moves differ, a slightly different production is applied: 

If you have a goal to make move1 at depth1, 

and move1 does not lie on the solution path at depth1, 

then abandon the goal to make the move, 

and retrieve the instantiation that proposed this goal; 

mark this instantiation as a negative instance, 

and weaken and discriminate the responsible production. 

This rule forces the proposed move to be abandoned, since it will lead the system 

away from the known route to the solution.t  It retrieves the instantiation that proposed 

the move, and weakens the responsible production. In addition, it calls on the 

discrimination mechanism to generate more conservative variants of this production, 

which I discuss in more detail below. 

The process by which SAGE assigns credit and blame to responsible rules is 

somewhat subtle, and deserves some discussion. In some learning systems, the assign- 

ment of credit is difficult, because many steps may be taken before an error is detected, 

and this means that any of these steps may have been the cause of the error. However,  

because S A G E  has the entire solution path available for inspection, the system can 

check on the correctness of each step independently. As a result, faulty moves are 

detected immediately, and because all previous moves are guaranteed to be correct 

(since they were checked as well), the most recently applied operator  must be respon- 

sible for the error. Thus the system never strays more than a single move from the 

solution path, and its learning process is greatly simplified. Sleeman, Langley & 

Mitchell (1982) present a fuller discussion of this approach to credit assignment based 

on solution paths. 

5.2. THE DISCRIMINATION PROCESS 

Once S A G E  has identified the production responsible for an error, it calls on the 

discrimination process. The goal of discrimination is to formulate more conservative 

versions of the production with additional conditions that will prevent their application 

in the undesired case. Brazdil (1978) and Anderson et al. (1980) have explored very 

similar learning strategies. Note that the discrimination learning approach contrasts 

sharply with more traditional AI learning methods, such as those of Winston (1970), 

Hayes-Roth & McDermott  (1976) and Vere (1975). These researchers have concen- 

trated on the inverse problem of generalization, in which one starts with very specific 

rules and removes restrictions as more examples are gathered. Although generaliz- 

ation-based approaches are quite useful when a benevolent tutor is available to present 

carefully designed instances, I personally suspect that discrimination-based approaches 

will fare much better  when the system must learn on its own initiative. I have presented 

the arguments for the superiority of discrimination over generalization elsewhere 

(Langley, 1983). Bundy & Silver (1982) have also examined the similarities and 

differences between these two approaches to learning. 

The d~scrimination mechanism employed by SAGE retrieves the most recent good 

instantiation of the faulty rule, and compares it to the current bad instantiation with 

-This assumption holds only if a single optimal solution path exists; this results in some complications 
on the slide-jump task (which has two isomorphic solutions) that I shall discuss later. 
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the goal of finding some differences between them. SAGE's  discrimination mechanism 

first retrieves all elements that were in memory during the good application, as well 

as those that were in memory during the errorful  application. Together  with the good 

instantiation, the first set of elements make up what Bundy & Silver have called the 

selection context; the bad instantiation, combined with the elements in memory at that 

time, is called the refection context. Given these two sets, SAGE searches for elements 

that were present in the selection context, but  had no analogous elements in the 

rejection context. Upon finding such a difference, the system creates a variant of the 

production that led to the error. The new rule is identical to the old, except that it 

includes the good element  (with some constants replaced by variables) as an additional 

condition. This condition ensures that the new production would still be true when 

the original rule correctly applied, but would not be true in the incorrect situation. 

The discrimination process also searches for elements that were present in the 

rejection context, but which had no analogs in the selection context. When such an 

element is found, it is included as a negated condition in a new variant rule. As before, 

the new condition ensures that the production would have been true during the correct 

application but not during the faulty one. In addition to searching for single elements 

that were present in one context but not the other,  S A G E also searches for conjunctions 
of elements that differed between the two situations. In fact, the system cannot discover 

arbitrary conjunctions, but only chains of elements (where the chaining occurs through 

symbols shared by a pair of elements). This gives the discrimination process two 

additional abilities. If a chain of elements occurred during the selection context, then 

a variant is constructed with a number of new conditions (one condition for each 

element in the chain). If the chain occurred during the rejection context, a variant is 

created with the elements contained in a negated conjunction ; such a rule may apply 

if any one of its negated conditions is present in memory, but not if all are present 

simultaneously. S A G E  considers chains up to four elements in length, and constructs 

a production for every difference that it discovers. This ability to discover conjunctions 

of differences is one of the main distinctions between SAGE's  discrimination process 

and those employed by Brazdil (1978) and by Anderson et al. (1980). 

Some additional details of the discrimination process are worth mentioning. First, 

the system is given information about which symbols should be chained through in 

searching for conjunctions. For example, since the symbol goal occurs in a large 

number of elements (connecting them to each other), it would make little sense for 

SAGE to chain through this symbol. Similarly, the system is told which symbols it 

should treat as significant when searching for differences. Thus, in the slide-jump 

task, S AGE is told that the exact type of coin it has moved should be ignored (though 

the relations between these types on different moves is not ignored). When the variant 

rule is constructed, significant symbols are retained in the new conditions, while 

irrelevant symbols are replaced by variables. Finally, to reduce the number of elements 

that the discrimination process must consider when searching for differences, only 

some of the potentially relevant elements are examined. For example, in the slide-jump 

puzzle, SAGE examined the moves that have been made previously, but not the 

configuration of coins on the current or previous moves. In summary, although the 

discrimination heuristic appears to have considerable generality, it requires certain 

domain-specific knowledge to make it effective. I will consider some more concrete 

examples of this learning method shortly. 
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5.3. THE STRENGTHENING PROCESS 

Each production in the system has an associated strength,  which plays a major role 

in deciding whether it will be applied. On each cycle, S A G E selects from the set of 

true productions the one with the greatest strength. (If multiple instantiations of the 

same production are true, or if two or more rules have identical strengths, one is 

selected randomly.) Each of the original operators is given a high initial strength, so 

that when a variant rule is first created, it will be weak compared with the production 

from which it was spawned. Itowever,  productions are automatically strengthened 

whenever they are relearned. Thus, if the same discrimination occurs a number of 

times, the resulting rule will eventually come to mask its predecessor. 

The strengthening process plays an important role in directing SAGE's  search 

through the space of possible rules. Unlike some earlier learning systems, SAGE does 

not rely on a benevolent  tutor to present positive and negative instances in a carefully 

prepared order. As a result, many differences may exist between a given good and 

bad instance of an operator,  and a new variant must be constructed for each of these 

differences. Since some of these productions may be incorrect, it is important that 

they do not have a permanent  effect on the system's behavior.+ By strengthening 

rules when they are recreated, SAGE's  behavior is influenced only by variants that 

have proven useful in a number of situations. Thus, strength is best viewed as a 

measure of the success  rate of a variant production, with preference being given to 

the most successful versions. In addition to directing search through the space of rules, 

the strengthening process has also been useful in learning in the presence of noise 

and incomplete representations (Langley, 1983). 

6. SAGE at work 

Although I have considered SAGE's  learning mechanisms in the abstract, I have not 

yet described their effects on particular tasks. Below I trace the system's evolution in 

the domains of slide-jump, algebra and seriation. Definite similarities exist among 

the three domains, but significant differences occur as well. In each case, I consider 

the program's initial operators, the variants of these operators it learns along the way, 

and some statistical measures of the system's improvement with experience. 

6.1. L E A RN I N G  SLIDE-JUMP O P E R A T O R S  

In previous sections, I have considered SAGE's  representation for states of the 

slide-jump puzzle, along with its initial operators for sliding and jumping.~ In addition, 

I have discussed rules for implementing the goals proposed by these operators, for 

backtracking and for recognizing the solution state. SAGE also includes six productions 

which are domain-independent;  these initialize the problem state when the system 

+ One might suggest that rules leading to errors be removed entirely from production memory, and this 
would do away with the need for a strengthening strategy, t towever,  some tasks require that the original 
rules be retained at a low preference level. For example, in the second half of the slide-jump task, the 

original slide operator  must be used to suggest moves, since none of the more powerful variants are 
applicable. 

In the run described here, the initial slide operator  was given greater strength than the jump operator. 
If these had started with equal strengths, the system would have quickly come to prefer the jump rule 

(productions are weakened when they lead to errors), and since this takes.one a long way toward solving 
the problem, much less interesting learning would have occurred. Because of this feature of the task, SAGE 
concerns itself only with generating more conservative versions of the slide operator. 
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starts over on a problem,  recognize when a proposed move differs f rom the correct 

one (and evokes the discrimination process) and recognize when the correct move 

has been suggested. The last two productions were described at some length in the 

previous section. These six rules form the central core that is shared by the three 

incarnations of the system described in this paper .  

S A G E  was initially presented with the four-coin sl ide-jump task. After  finding the 

solution path by depth-first search, the system at tempted to solve the problem a 

second time.+ When the correct first move (sliding a quarter  from 2 to 3) was followed 

by an incorrect proposal  (sliding a quarter  f rom 1 to 2), the discrimination routine 

was called. This created two variants of the slide operator:  

If a coin is in position1, 
and position2 is to the direction of position1, 
and position2 is blank, 

and that coin can move to the direction, 
and you have not made any previous moves,  

then consider sliding that coin from position1 to position2. 

and 

If a coin is in position1, 
and position2 is to the direction of position1, 
and position2 is blank, 

and that coin can move to the direction, 
and you did not just slide a coin from position2 to position3, 

then consider sliding that coin from position1 to position2. 

The first of these rules will only apply on the first move of every task, and includes 

nothing in its conditions to direct the search. The second variant is more  selective; it 

would not have proposed moving a coin f rom position 1 to 2, provided that coin had 

just been moved f rom 2 to 3. In general, it would not slide a coin into a position 

which had just been vacated by another  slide move. 

After  backing up, S A G E  suggested jumping a nickel from 4 to 2; this agreed width 

its previous experience, so the suggestion was carried out. However,  another  mistake 

was made on the third move, when the system considered sliding a quarter  from 3 to 

4. This time discrimination reproduced the two variants shown above, causing them 

to be strengthened; in addition, a new production was constructed: 

If a coin is in position1, 
and position2 is to the direction of position1, 
and position2 is blank, 

and that coin can move to the direction, 
and you did not just jump the other coin from position2 to position3, 

then consider sliding that coin from position1 to position2. 

t The s l ide- jump task has two optimal solution paths  which are "mirror images"  of each other; the 

particular path is de termined entirely by the initial move.  To ensure that SAGE makes  the same first move 

on every run, a special production was included that increased the activation of part of the problem 

description. This was sufficient to focus the system's  at tention on the relevant coin and to avoid the effort 

of trying to distinguish between two equally good moves,  bu t  this approach lacks elegance, and I am actively 

searching for a better way of handling the difficulty. 
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This rule states that one should not slide a coin into a position from which one has 

just jumped the other brand of coin. Note that this production may still propose those 

moves avoided by second variant, while the second variant may still propose this type 

of sliding move. In their current forms, both rules are overly general. 

At this point SAGE correctly slid a nickel from 5 to 4, giving it a new selection 

context for the slide production to consider in subsequent discriminations. Next the 

system jumped a quarter from 3 to 5, followed by a proposal to slide a nickel from 

4 to 3. This error led to the creation of a fourth production: 

If a coin is in position1, 

and position2 is to the direction of position1, 

and position2 is blank, 

and that coin can move to the direction, 

and you have just jumped a coin from position2 to position3, 

then consider sliding that coin from position/ to position2. 

In this case, a positive condition was included in the variant, suggesting that slides 

should occur after a jumping spree has been completed, and moving in the same 

direction. In addition, discrimination produced four other less-useful variants which 

made reference to moves earlier in the problem. By now S A G E  had reached the 

halfway point for the problem. Since only one move was possiblet at each step from 

this point onward, the program finished with no more mistakes. However, earlier 

errors had been made, so the system attempted to solve the four-coin problem a third 

time. In this run, identical mistakes occurred, and each of the variants was strengthened. 

16 

14 

12 

--- I0 

o 
8 

6 

o 4 

\ 

O 0  I I I I I I I I 1 I I . _ _  
I 2 $ 4 5 6 7 8 9 10 I I  12 

L e a r n i n g  t r i a l s  

FIG. 1. Learning curve for the slide-jump task. 

The program continued along these lines, until during the fifth run the second 

variant came to surpass the original rule in strength. After this, the more conservative 

production was applied whenever possible. When this rule led to the same error as 

t Note that the third and fourth variants are not true on the slides required for the last half of the 
problem. For this reason, it is essential that the original slide rule remain available, and that the variants 
simply come to be preferred when competition occurs. 
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before on the third move, discrimination resulted in yet another version of the operator: 

If a coin is in position1, 
and position2 is to the direction of position1, 

and position2 is blank, 

and that coin can move to the direction, 
and you did not just slide a coin from position2 to position3, 
and you did not just jump the other coin from position2 to position3, 

then consider sliding that coin from position1 to position2. 

This rule includes the negated conditions of both the second and third variants, stating 

that one should not propose a slide if either condition is met. Other  variantst were 

created as well, but never gained sufficient strength to have any effect on the system's 

behavior. After five more runs, the above rule acquired more strength than its 

precursor, and on its eleventh run, SAGE reached the goal state without error. In 

addition, the system successfully applied its new knowledge to the six-coin task, finding 

a solution on its first at tempt with no backtracking. 

Figure 1 presents SAGE's  learning curve on the four-coin sl ide-jump task. The 

graph plots the number  of operators that were applied before solution against the 

order in which each run occurred. A comparison of the second to eleventh runs shows 

the improvement when information about the solution path was available, while a 

comparison of the first and eleventh attempts shows the speed-up when this information 

was absent. As the figure indicates, the addition of more powerful operators nearly 

cut the system's search in half. 

6.2. L E A R N I N G  A L G E B R A  O P E R A T O R S  

For its second learning task, SAGE was presented with algebra problems involving 

a single variable. The program was given a tree structure representing the initial 

problem state, and the goal was to arrive at a tree with only two branches---one 

pointing to the variable and the other to a number. The system's initial operator was 

like the slide operator,  in that it set up goals to modify only part of a problem state. 

As in slide-jump, the basic operator was quite general in its initial form. It may be 

stated: 

If you see a number as the argument of function1, 

and function2 is a function, 

then apply function2 to both sides with number as its argument. 

SAGE was told about the four standard arithmetic functions--addition, subtraction, 

multiplication and division. Given the initial state 3 x -  1 = 5, this production might 

try adding 3, 1, or 5 to both sides, subtracting 3, 1, or 5 from both sides, and so on. 

However,  only one of these (adding 1) will lead to a reduction in the complexity of 

the expression, and the program's goal was to discover the appropriate conditions for 

distinguishing between this move and others. 

In addition to its basic operator,  the algebraic S A G E was given productions for 

carrying out goals once they have been set. These included rules for adding new 

t Altogether,  SAGE  generated some 18 variants on the initial operator,  but  only four of these can be 

considered useful; fortunately, the strategy of giving variants low initial strengths and strengthening upon 

recreation was sufficient to focus attention on the more  promising rules. 
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branches to the tree, for combining terms when possible, and for dropping identity 

elements. (The system did not learn with respect to these rules.) S A G E decided to 

backtrack if a goal proposed by one of the operators had failed* to reduce the 

expression's complexity. In such cases, the inverse operator  was applied and the 

previous state was regained. 

TABLE 2 

Solution path for SAGEs first algebra problem 

3 x -  1 --- 5 Initial state 
3x=6  Add l to both sides 

x --- 2 Divide both sides by 3 

Table 2 presents the solution path for 3 x -  1 = 5, the first algebra problem given 

to SAGE. After  completing the task by trial and error, the program attempted to 

solve the problem a second time in learning mode. After a number of false starts, the 

system eventually tried adding 1 to both sides, giving it a correct instantiation of the 

operator on which to base its learning. When it incorrectly tried to subtract 3 on the 

next move, the discrimination mechanism produced two variant rules. One of these 

required that the function to be applied to both sides be present at the level of the 

tree being examined; because of the problem representation, this was true half of the 

time (when addition and multiplication were the relevant operators),  but was not very 

useful for directing search. However,  the second variant was more promising: 

If you see a number as the argument of functionl, 
and function2 is a function, 

and functionl is the inverse of function2, 
then apply function2 to both sides with number as its argument. 

This rule states that one should apply the inverse of the function to both sides of the 

equation; for example, if division by 2 occurred on one side, this production would 

propose multiplying through by 2. Although incomplete, this variant is certainly bet ter  

than the original. 

For its next move, the system considered dividing by 6. This error led to the 

reconstruction and strengthening of the variant shown above, but it also generated 

another useful version: 

If you see a number as the argument of functionl, 
and function2 is a function, 

and function1 occurs at the top level, 

then apply function2 to both sides with number as its argument. 

This production restricts its attention to non-embedded terms. For example, given 

the state 3x - 1 = 5, it might try adding, subtracting, multiplying or dividing by 1, but 

not by 3 or 5. During the rest of this run, SAGE strengthened each of the useful 

+ This means  that  S AGE  never strays more  than one move from the correct path. This in turn implies 

that the system could in principle learn without completely solving the problem first. However,  since it 

follows the same strategy for algebra as for other  domains,  S A G E  waits until a complete solution has been 

found before it a t tempts  to learn. 
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rules a number of times and created one other  spurious variant. The problem was 

completed when the system suggested dividing by 3, still largely by trial and error. 

In the third run, S A G E  began to take advantage of its more conservative operators 

to direct the search. Two initial errors occurred when the program considered multiply- 

ing and dividing by 5. In each case, the two useful variants were strengthened, and 

the first of them (the inverse rule) finally surpassed the original version. Although 

this rule was still overly general, its direction combined with luck to solve the problem 

without further errors, and the fourth run was solved perfectly in two steps (again 

partially by chance). 

At this point, S A G E  was presented with a more challenging problem that required 

four operations, (5x - 2 ) / 3  +4  = 5. In this context, the inverse rule led to errors, and 

the correct version of the operator was finally produced: 

If you see a number as the argument of function1, 
and function2 is a function, 

and function1 is the inverse of function2, 
and function1 occurs at the top level, 

then apply function2 to both sides with number as its argument. 

Some 11 additional variants were produced as well, but none were created as often 

as the above version, and so never provided serious competition. Five more runs were 

required before the final production exceeded its predecessor in strength and the 

problem was solved without error. Figure 2 presents SAGE's  learning curve on the 
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FIG. 2. Learning curve for the algebra task, 

two algebra tasks. The increase during the fifth run corresponds to the introduction 

of the second (more complex) problem, while the increase during the sixth run and 

the peak during tile ninth run were due to the chance application of incorrect operators. 

Although the system eventually mastered the correct strategy, in this case its pro- 

gression was far from smooth. 

6.3. LEARNING SERIATION STRATEGIES 

SAGE's  final problem was to learn a strategy for seriating blocks. In this task, the 

system was presented with a pile of blocks and asked to line them up in order of 
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decreasing height. Young (1976) and Baylor, Gascon, Lemoyne & Pother (1973) have 

constructed production system models of children at various stages of seriation ability. 

Although S A G E  is not intended as a detailed psychological model, it does suggest 

one way in which novices could gain expertise in this domain. 

The most efficient method for seriating a set of blocks is to select the largest one 

and place it in the line, then select the next largest, and so on until all have been 

included in the ordering. However,  SAGE's  initial operator  is too weak to propose 

such directed moves; this original rule may be paraphrased as: 

If you have a block in the pile, 

then consider moving block to the end of the line. 

In addition, the system contains rules for implementing its goals, for noticing an illegal 

state (when a taller block is placed to the right of a shorter one), and for backing up 

(after reaching an illegal state or when all possibilities have been tried). In this domain, 

learning consists of transferring knowledge to the operator  which is already present 

in the test for illegal states. As before, this transfer is carried out by that set of 

productions common to all versions of the system. 

Relying on its single operator to propose moves, S A G E carried out a depth-first 

search through the space of possible orderings. When a proposal was implemented, 

the composite representation of the problem state was modified as it was in previous 

tasks. For example, if block C were p~aced in the line next to block A, the program 

would delete the fact (in-pile C), and add the facts (in-line C) and (C is-left-of A), 
assuming the position of A were represented by the element (in-line A). The relative 

sizes of objects were represented by additional elements such as (A is-taller-than C), 
which remained unchanged throughout  the problem. 

SAGE was initially presented with a five-block seriation problem, in which block 

A was the tallest and block E the shortest. After finding the correct five-move path 

by depth-first search, the system moved into learning mode. Following some poor  

selections at the outset, the system correctly selected blocks A and B for the first two 

moves. At this point, SAGE passed over block C and selected D as candidate for the 

next move. This error led to two variants on the original operator:  

If you have a block1 in the pile, 

and you have another block2 in the line, 

and block2 is taller than block1, 
then consider moving block1 to the end of the line. 

and 

If you have a blockl in the pile, 

and there is no block2 in the pile such that block2 is taller than blockl, 
then consider moving blockl to the end of the line. 

Here we find two cases in which the discrimination process was forced to chain through 

elements in order  to find differences between the selection and rejection contexts. 

The first of these productions says that one should remove a block from the pile if 

another directly larger than it is already in the line. This is a useful variant, but since 

it cannot apply when nothing is in the line, it will never suggest an initial move. The 

second rule (in which the new component  is actually a negated conjunction) states 
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FIG. 3. Learning curve for the seriation task. 

that one should always move the largest block in the pile; it is more useful, since it 

even suggests the correct initial move. 

For its next move, S A G E  correctly selected C, the largest block remaining in the 

pile. However,  it suggested moving E on the next round instead of D, and the resulting 

call on the discrimination process produced a third variant that could be used to direct 

the search process: 

If you have a block1 in the pile, 

and you have another  block2 in the pile, 

and block1 is taller than block2, 

then consider moving block1 to the end of the line. 

This rule may propose that any block in the pile except the smallest be moved; it is 

an improvement over the original, but far from perfect. During the same time period, 

the first two variants were strengthened as well. Following these events, the program 

correctly moved D and then E to complete the task. 

At the outset of the third run, SAGE at tempted to move blocks B and C, and these 

errors led to the strengthening of the first two variants discussed above. A correct 

suggestion for moving A was followed by a proposal for moving C, and in this case 

only the second (and most useful) production was incremented. This was sufficient to 

push its strength beyond that of the original operator,  and since this rule represents 

the optimal strategy, S A G E  solved the remainder of the third run and all of the fourth 

run with no mistakes. Only the three variants described above were generated for 

this problem. Figure 3 presents the learning curve for the five-block seriation task. 

7. Generality of the system 

Earlier in the article, I promised to describe a general theory of strategy acquisition. 

In order to guarantee that generality, S A G E  was tested on three rather different 

domains. However,  one might hope that more could be said than the simple claim 

that the system could learn on three different tasks. Below I consider the generality 

of SAGE's  representation of problem states, along with that of its learning mechanisms. 
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I also discuss some limits on the theory's generality, before moving on to some 

suggestions as to how the system might be improved along this dimension. 

7.l. GENERALITY OF ]'HE REPRESENTATION 

One place to search for generality is in the representation used by a system on different 

tasks. As we have seen, SAGE employs very similar representations for the slide-jump, 

algebra and seriation domains. The predominant feature of these representations is 

the dispersal of information into small chunks. In the case of slide-jump, each chunk 

included knowledge about the type of coin occupying a particular position, or the 

adjacency of two positions. In the domain of algebra, S A G E  represented the current 

state of the problem as a tree, with each branch of the tree stored as a separate 

chunk.t  And in the seriation task, the current location of a block (in the pile or the 

line), and its relative position when in the line, were stored as separate pieces of 

information. 

There were three reasons for dividing the knowledge state into such small com- 

ponents. First, this representation allowed the statement of operators which matched 

against relevant parts of the ptoblem state, but which did not need to mention irrelevant 

portions. Second, these operators could alter parts of the state without bothering with 

those parts that were unaffected by the action; the entire state need not be rewritten 

every time an action was taken. Finally, the division of information into small chunks 

was required by the discrimination mechanism, which searched for differences in terms 

of working memory elements that were present in one situation but not in another. 

When discrimination led to variants with additional conditions, these could be added 

independently of features that were not found to differ. If SAGE is applied to new 

domains, we can expect that such componential representations will have the same 

benefits. 

7.2. GENERALITY OF THE LEARNING MECHANISMS 

SAGE's  learning mechanisms can be divided into two components that can be 

evaluated individually along the generality dimension. The first of these consists of 

the productions responsible for relating proposed moves to those occurring along the 

solution path. These rules are responsible for determining good and bad moves, and 

for assigning credit or blame to the productions proposing the moves. Bundy & Silver 

(1982) would classify these rules as the critics of the system. Since the same critics 

are used in all three versions of SAGE,  one is led to conclude that they are quite 

general heuristics that can aid learning in any domain for which one can initially find 

a solution path by trial and error,  or in which a benevolent  tutor provides a sample 

solution. Some difficulties arise when multiple solution paths exist, and this is one 

issue that future work should address. 

The second component consists of the discrimination and strengthening mechanisms 

that are evoked by the critics when an undesirable move is detected. The notion of 

strengthening a rule upon recreation provides little opportunity for criticism; since 

strength represents a measure of success, this heuristic would seem applicable to any 

learning task. Whether  such a strengthening process is required is another question 

t Neves (1981) used a very similar representation in modeling the acquisition of algebra strategies, and 
my first insights into the usefulness of such a representation resulted from discussions with him. 



L E A R N I N G  S E A R C I t  S T R A T E G I E S  535 

entirely; Langley (1983) considers some of the advantages of strengthening in dealing 

with noise and incomplete representations. The discrimination process appears to 

provide a viable alternative to generalization-based methods for finding conditions 

on a rule, and since it is evoked when errors occur, it seems well-suited to the task 

of strategy acquisition. In addition, this learning method has been successfully applied 

to the domains of concept learning (Langley, 1983) and language acquisition 

(Langley, 1982). Langley (1983) discusses the generality of the discrimination 

process in more detail, but it is apparent that this approach to procedure learning is 

a general one that deserves to be explored further in the future. 

7.3. LIMITS ON SAGE'S GENERALITY 

Of course, SAGE is not as general as one might desire. We have seen that the system 

must be provided with operators for moving through the relevant problem spaces, 

along with tests to determine when the goal state has been reached. In addition, the 

discrimination mechanism must be told which symbols it should consider relevant in 

its search for differences, and which terms it should generalize across when building 

rules. For example, in the slide-jump task, the type of coin was irrelevant, while the 

type of move made at earlier times was quite important. Also, certain information 

was not considered by the discrimination process, such as the relative positions of 

coins in the slide-jump problem, although it is not clear whether this bias was necessary 

to insure learning. 

However, SAGE's generality is limited in a much more subtle manner as well. 

Although the system's learning mechanisms appear to be quite general in themselves, 

the representation they operate upon was carefully selected. We have seen that the 

representations for the different tasks have much in common, but one can imagine 

other representations of these problem spaces that share the same features. Thus, the 

question is whether these alternative representations could also lead to successful 

learning. If not, this fact is not necessarily fatal for the theory, since some representa- 

tions are clearly more useful than others even in problem-solving (the mutilated 

checkerboard is a popular example). However, this would mean that our theory of 

strategy acquisition would be incomplete until some explanation was provided for the 

origin of the particular representations that SAGE requires for learning. In the 

following section, I discuss one way in which such an explanation might be provided, 

along with other directions for future research. 

8. Directions for future research 

Science is an incremental process, and though the theory discussed in previous sections 

has many noteworthy features, it is far from a complete model of the strategy learning 

process. It is appropriate, therefore, to consider the directions in which the theory 

might be extended. Below I discuss a number of dimensions along which such 

extensions might be attempted. 

8.1. EXTENSIONS TO OTHER DOMAINS 

Although I have made significant claims for the generality of SAGE, one might well 

question whether the three domains discussed so far constitute a suitable test of that 

generality. One natural goal for future research would be to see if the system can 
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learn strategies in still other domains. Obvious tasks would include puzzles such as 

those addressed by Newell, Shaw & Simon's (1960) General  Problem Solver, like the 

Tower of Hanoi  and Missionaries and Cannibals. Because these tasks involve fairly 

small problem spaces with well-understood structures, they are ideal for initial tests 

on developing systems like SAGE.  And though such puzzles have much in common 

with the slide-jump task, they provide considerable variety in their details. For  

example, within this class one can find heuristics that involve disjunctive conditions, 

and others that involve both previous move and state information. These are precisely 

the types of variations necessary to determine the class of heuristics that S A G E  is 

capable of discovering. 

Although puzzles have a definite role to play in testing the generality of our theory 

of strategy acquisition, they do have limitations. In general, these tasks involve rather 

small search spaces and only a few operators. If SAGE is to prove its generality, it 

must be presented with more challenging tasks as well, and for this purpose the field 

of mathematics seems ideal. We have seen that S A G E can learn to solve simple 

algebraic problems in one variable, but  much more difficult tasks can be formulated. 

In particular, the task of symbolic integration seems an interesting one, both because 

of its complexity and because it would allow one to compare SAGE's  learning trace 

with that of the LEX system of Mitchell et al. more directly. Geometry  theorem-proving 

is another likely domain, which has been studied by Anderson, Greeno,  Kline & 

Neves (1981). One seldom speaks of expert puzzle-solvers, but these mathematical 

domains are difficult enough so that if SAGE actually learned a significant number  

of useful heuristics, it could legitimately be claimed that it had made the transition 

from a novice to an expert system. 

8.2. THE UNDERSTANDING PROCESS 

Before one can solve a problem, much less learn to solve it, the solver must have 

some representation upon which to operate. Hayes & Simon (1974) have at tempted 

to model the understanding process, in which the problem-solver constructs such a 

representation from a written description of the problem. I observed earlier that 

SAGE's  representations were somewhat carefully crafted to ensure that learning 

would be possible, and that this was a drawback of the current theory. However,  if 

the system were augmented with an understanding component  that could construct 

such representations from written instructions, it would be much less dependent  on 

a benevolent  programmer. Of course, the translation from text to internal representa- 

tion is a complex problem in its own right, but for limited areas of discourse it appears 

to be relatively straightforward. The class of tasks we are considering tend to involve 

abstract relations between simple objects, suggesting that the construction of a fairly 

general understanding module would not be too difficult. 

Of course, just because the problem-solver has devised a representation for some 

problem, this does not mean it is the best representation, and certain representations 

can make a problem very difficult to solve. Simon & Hayes (1976) have shown that 

slightly different written statements of a task can lead one to quite different representa- 

tions of the same problem, one of which is considerably easier to handle. In such 

cases, one might attempt to transform the current representation into another that is 

more amenable to treatment. Some very interesting work has been done along these 

lines by Amarel  (1966) and Korf  (1980), and SAGE could certainly benefit by the 
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addition of a component for intelligently transforming representations. However, this 

research is still in its early stages, and until further progress has been made, SAGE 

will have to live with carefully crafted representations or, if an understanding routine 

is added, with carefully worded problem statements. 

8,3. LEARNING FROM SAMPLE SOLUTIONS 

We have seen that some of the earlier research on strategy learning, such as the work 

of Brazdil and Neves, involved the presentation of sample solutions to problems. 

Given that SAGE determines its own sample traces through search, it would seem 

simple to add a component that would accept solutions from a benevolent tutor as 

well. The only complication involves the representation of these solution paths. In its 

current form, SAGE stores a solution path as a sequence of operators (and their 

arguments), while the sample solution would presumably be presented as a sequence 

of states. 

There are two ways to deal with this discrepancy. First, the system could be revised 

to represent solution paths it determined on its own as state sequences instead of 

operator sequences. However, operator traces are usually much simpler than state 

traces, so that such a change would introduce additional complexity into both the 

system's working memory and its productions. A better solution would be to incorpor- 

ate Neves' strategy of including rules for recognizing operators based on the differences 

between successive states. Such rules would be domain-specific, and might even be 

constructed along with the operators by the understanding component of the system. 

Upon firing, they would add an operator trace to memory, which could then be used 

by SAGE's existing critics to determine correct and incorrect moves. 

8.4. INTRObUCING ADDITIONAL LEARNING MECHANISMS 

Although SAGE is an elegant and general theory of strategy acquisition, there are 

aspects of the learning process that it does not address. Future versions of the system 

should incorporate additional learning heuristics that are concerned with these issues. 

For example, Anzai has shown that certain types of learning can occur before a 

complete solution path has been found, and SAGE might well be updated to include 

rules such as his loop-detecting heuristic. Similarly, Neches has considered heuristics 

for improving the efficiency of well-specified strategies, and once SAGE has mastered 

the conditions under which an operator should be applied, there is no reason why 

further learning could not combine these rules into macro-operators or detect redun- 

dancies in its solution. Thus, the current system is best viewed as part of a more global 

theory of strategy learning, that incorporates methods from other approaches as well. 

The above extensions can be implemented in two rather different ways. Anzai and 

Neches have chosen to state their learning heuristics as productions that note regu- 

laritiesin state and operator traces. The current version of SAGE includes a few rules 

like this, but they are quite simple and are responsible only for noting good and bad 

moves and evoking the discrimination process. The discrimination mechanism itself 

(along with the heuristic for strengthening rules upon recreation) is implemented in 

LISP, and the second choice is to implement additional learning methods in this 

manner. Neves & Anderson (1981) have discussed a number of such heuristics, 

including generalization, composition and proceduralization. Composition has been 

used to explain the automatization of existing strategies by the combination of simple 
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operators into more complex ones, and proceduralization has been used to model the 

translation of declaratively-stated rules into production format. Such learning methods 

have a potential role to play in a global theory of strategy acquisition, but the 

automaticity with which they are evoked is a significant drawback. More likely, future 

versions of SAGE will incorporate heuristics that are a compromise between these 

two extremes, that are stated as productions with conditions that restrict their applica- 

tion, and action sides that evoke powerful LISP functions, much as the discrimination 

process is implemented in the current version. 

8.5. L E A R N I N G  TO L E A R N  

In the preceding pages, I have occasionally referred to the discrimination process as 

searching a space of possible rules, and this analogy suggests a more radical extension 

to the system. The very generality of SAGE's discrimination method is also its main 

weakness, since it cannot take advantage of knowledge about the particular domain 

in which it is working. One can imagine more restricted versions of the discrimination 

heuristic that would apply under more specific conditions, but if these variants were 

introduced by the programmer, SAGE would lose much of its elegance. However, if 

the system could learn these more specific heuristics on its own, it would gain additional 

power without any loss in generality. 

The view of discrimination as a search process suggests a scheme by which such 

domain-specific learning rules might be created. SAGE learns by finding a solution 

path through some problem space, and then using that path to assign credit to particular 

instantiations of operators. Now in principle there is no reason why this operator 

cannot be the discrimination operator, with the problem space being the space of 

rules through which the discrimination process moves in search of correct rules. We 

have seen that this learning heuristic generates many useless variants, and these would 

be treated as negative instances for which the discrimination operator should not have 

been applied. Variants containing only useful conditions would lie along the "solution 

path", and would be treated as positive instances. Of course, SAGE could only 

distinguish between useful and spurious variants after it had completed learning about 

a particular task; once it had solved a number of problems without errors, it could 

be fairly certain that it had found the correct path through the rule space, and could 

begin to learn about the discrimination process itself. The result of this higher level 

learning would be domain-specific versions of the discrimination heuristic which would 

in the future generate only useful variants and bypass spurious rules entirely. 

Although the details of the "learning to learn" scheme remain to be worked out, 

a number of requirements are clear. First, the discrimination heuristic would have to 

be restated as a condition-action rule, so that the introduction of additional conditions 

would both restrict its application and direct its search. Second, this revised learning 

rule would have to leave some trace of its application in memory, both to provide 

information about the solution path and for the critics to decide whether a good or 

bad move had been made. Third, SAGE would have to be extended to deal with 

multiple solution paths, since correct variants can always be generated in a number 

of different ways. Finally, the system would have to be given information about the 

task domain that could be used to direct search intelligently through the space of 

rules. Unless such information is present, the discrimination process would not be 

able to detect any differences between good and bad instances of its application. This 
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appears to be the most difficult of the necessary extensions, since it is not clear just 

what sorts of information would be relevant to directing the learning process. However,  

there seems to be no reason in principle why such bootstrapping could not occur, and 

applying the discrimination heuristic to generate more powerful versions of itself is 

an appealing notion. 

9. Conclusions 

In conclusion, S A G E  is a general strategy learning system that has been tested in 

three different domains. Although the program has a number of limitations, these 

suggest some natural extensions to the system that are within the range of existing 

techniques. However,  can one draw any additional conclusions from the program's 

behavior? Certainly, the system's success provides evidence that the four learning 

principles proposed at the outset are general, and that they play a central role in 

strategy improvement.  In addition, SAGE presents an example of how these principles 

can be implemented. Thus, it is apparent that the generation of alternatives can be 

cast in a depth-first search or means-ends analysis framework. Similarly, achieving 

knowledge of results and the attribution of causes can be simplified by retaining a 

trace of the original solution path. And finally, the mechanisms of discrimination and 

strengthening are powerful methods for modifying behavior in the light of this 

knowledge. 

One of SAGE's  most interesting characteristics is that it learns gradually. In this 

respect, it mimics the incremental nature of much human learning. Some of the 

system's slowness derives from the strengthening procedure;  a production must be 

strengthened a number of times before it masks the rule on which it was patterned. 

But the discrimination process itself sometimes works in stages. In the slide-jump 

puzzle, a variant of the original slide operator  first had to override its parent before 

it could make its own mistakes and generate its own offspring. A similar process 

occurred across different problems in the algebra domain. Thus, the incremental nature 

of SAGE's  learning mechanisms are a promising feature deserving of further study. 

Clearly, much work remains to be done, and I have already suggested some directions 

in which S AGE might be extended. Although future versions of the system may have 

many additional abilities, they will probably retain the central core of learning heuristics 

that have served the current system so well. Applied to more complex and challenging 

task domains, these programs should further our understanding of the processes by 

which novices evolve into experts, and extend our knowledge of strategy acquisition 

through experimentation. 

I would like to thank Stephanie Sage, Derek Sleeman, Tom Mitchell, and David Klahr for 
their suggestions, and for comments on an earlier version of this paper. 
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