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ABSTRACT

This paper proposes a novel semantic-aware distance met-
ric for images by mining multimedia data on the Internet,
in particular, web images and their associated tags. As
well known, a proper distance metric between images is a
key ingredient in many realistic web image retrieval engines,
as well many image understanding techniques. In this pa-
per, we attempt to mine a novel distance metric from the
web images by integrating their visual content as well as
the associated user tags. Different from many existing dis-
tance metric learning algorithms which utilize the dissimilar
or similar information between images pixels or features in
signal level, the proposed scheme also takes the associated
user-input tags into consideration. The visual content of
images is also leveraged to respect an intuitive assumption
that the visual similar images ought to have a smaller dis-
tance. A semi-definite programming is formulated to encode
the above two aspects of criteria to learn the distance met-
ric and we show such an optimization problem can be effi-
ciently solved with a closed-form solution. We evaluate the
proposed algorithm on two datasets. One is the benchmark
Corel dataset and the other is a real-world dataset crawled
from the image sharing website Flickr. By comparison with
other existing distance learning algorithms, competitive re-
sults are obtained by the proposed algorithm in experiments.
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Figure 1: The distance metric is mined from the vi-
sual content of images together with the tags anno-
tated by the grassroots users. The learned distance
metric then is applied to retrieve images on the In-
ternet by ranking their relevances to the query.

1. INTRODUCTION
Many image-sharing websites, such as Flickr and Cor-

bis, have emerged which significantly promote the storage,
sharing, exchange and propagation of images among users.
Meanwhile, based on these infrastructures of image-sharing
social networks, amount of grassroots users voluntarily pro-
vide their tags to annotate these images everyday. Conse-
quently, many research opportunities arise to leverage these
user tags to boost image search and retrieval. By explor-
ing these free tags given by users, we believe a user-driven
image search system, which is more consistent with users’
subjectivity, can be built since these tags contain the user
intentions and their fashion taste in time. In particular, we
propose in this paper to mine a distance metric from these
web images and their associated user tags, which can be
directly applied to retrieve images on the web.

As well known, an appropriate distance metric plays a key
role in many image search systems as a fundamental tool to
measure the relevance between different images across the
website [7] [17]. Images in collection can be retrieved and
ranked by their distances to the query image given by user
(See Figure 1 for example). The smaller distance between
the query and the image means a higher relevance between
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Figure 2: Some images and their associated user
tags/labels represented by a bipartite graph.

them. On the other hand, the learned distance metric can
also be applied to automatically annotate web images with
the tags of the nearest image in the distance space according
to the annotation-by-search paradigm [19][20].
Up to now, many distance learning algorithms have been

proposed to reveal the intrinsic distance metric by exploiting
various information contained in the training set. For exam-
ple, the annotated similar or dissimilar sample pairs in the
training set can be used as side-information to learn the dis-
tance metric [23] [5]. In the other formulation, the distance
can otherwise be learned from “chunklets” of similar sam-
ples instead of the similar pairs, which is the main idea of
Relevance Component Analysis (RCA) algorithm [1]. Fur-
thermore, Schultz et al. [14] proposed to learn the distance
function from the relative comparisons which are believed
to be more easily obtained in many real-world settings.
The above mentioned methods have gained significant suc-

cess in many image retrieval applications [17] [16] [24]. How-
ever, all of them are aiming at learning the distance func-
tions defined over a single input space with homogeneous
data objects, which can be represented either as a set of
feature vectors with the same dimension or a homogenous
graph with nodes of a single type. On the contrary, for
image retrieval application in the website (e.g., Flickr and
Yahoo! Image) environment, each image is often annotated
with many customized tags by users in addition to their
own visual features. These two different types of data in-
teract with each other in these dual spaces (i.e., the image
visual feature space and tag space). Obviously, the exist-
ing homogeneous distance learning algorithm cannot be di-
rectly adopted to mine a proper distance metric from these
abundant user tags which interact with the images on the
websites. In other words, these interactions between images
and tags are characterized by tags being annotated to im-
ages or not. Such a heterogeneous data structure and their
interactions can be represented by a bipartite graph with
two types of samples (i.e., the image samples and tag sam-
ples here) as illustrated Figure 2. So we wonder if there

exists a direct method to mine an image semantic distance
from these interactions, which is the main focus of this pa-
per. This motivates us to learn the distance functions over
the above heterogeneous data structure with the interact-
ing images/tags relations. The learned semantic distance
should reflect the relevance between images in the semantic
meanings contained in the user tags. Note that most im-
ages on the Internet have not been tagged by users on most
common websites except for those on photo-sharing web-
sites. Therefore, with the learned semantic distance from
the community-tagged images, we can apply the distance to
retrieve large amount of images with no user tags. For ex-
ample, for a given image query, the image search engine can
rank the retrieved images by relevance in ascending order
of the semantic distances from these retrieved ones to the
query.

On the other hand, it is worth noting that the user tags
on the websites suffer from significant noise, such as random
tagging, misspelling, and personalized ambiguity tags[3][22].
To reduce these noisy effect, we propose a visual regularizer
based on the content information of the images. Using the
visual features, the regularizer uses the image similarity to
reduce the overfitting risk of noisy tags. That is to say, a
pair of visually similar images should have smaller semantic
distance and vice versa. By combining the semantic infor-
mation in the user tags and the visual content of images, a
more robust semantic distance can be expected in this paper.

In the bipartite graph structure illustrated in Figure 2,
each image can be assigned by more than one tag/label. This
is quite different from many other distance metric learning
algorithms, such as RCA [1], in which each image is exclu-
sively assigned into one chunklet and only the images in the
same chunklet are considered to be similar. The proposed
distance learning method based on the above bipartite graph
removes this one-chunklet (class) restriction and each image
can be annotated by more than one labels/tags. This multi-
label setting [11][12] puts more challenges on learning the
distance metric because the images cannot be simply consid-
ered to be similar or dissimilar like in RCA formulation. Ac-
cordingly, we call the proposed distance learning method by
Multi-Label Distance Metric Learning (ML-DML) for con-
venience.

Although there are many existing literatures [6] [13] [10]
to study co-clustering problem in bipartite graph as Figure
2, to the best of our knowledge no effort has been made on
learning the distance on such a heterogeneous data struc-
ture. It is true that co-clustering can provide significant
information on the underlying knowledge of data structures
in different data types, but it also suffers from quite a few
problems.

1. The obtained clusters cannot be directly applied to the
image retrieval. Although these clusters provide im-
portant structures on the training set (e.g., the user
community and video groups sharing a common topic),
there is no direct way to apply them to retrieve the
images. Moreover in many learning algorithms, the
clustering results cannot be directly embedded into
their formulations, such as k-nearest neighborhood and
kernel-based methods. In contrast, it is direct to use
the learned distance functions to obtain a list of rank
images ordered by their relevance to the query image.

2. Most existing co-clustering algorithms based on bipartite
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graph only utilize the interactions between images and
user tags but ignore the visual content of the images
themselves. For example, Dhillon et al. [6] uses the re-
lations between two heterogeneous data to construct a
similarity matrix, based on which the spectral cluster-
ing algorithm is applied to cluster these heterogeneous
samples. However, it is obvious that both the visual
content of images and user tags provide valuable in-
formation to explore the underlying the structure of
these heterogenous samples. For example, if an image
is more visually similar to the query image, it should
be more relevant to this query.

3. The co-clustering methods only focus on the samples con-
tained in training set. It is often difficult (if not impos-
sible) to generalize the obtained cluster structures to
unseen data. Instead the distance learning attempts to
learn distance functions defined over the whole input
spaces so that the generalization to the unseen data
does not bring any extra effort.

In a brief summary, a multi-label distance learning algo-
rithm is proposed in this paper to address how to learn the
distance metric from user tags. To be detailed in Section
2, the learned distance metric utilizes the interacting rela-
tionship between the images and user tags, as well as the
visual image content. A semi-definite optimization prob-
lem is formulated to learn such a multi-label distance and a
closed-formed optimum can be derived from this optimiza-
tion problem. We further extend the solution to nonlinear
one by incorporating the kernelization into the formulation.
In Section 3, we will uncover the underlying connection be-
tween the proposed semantic distance and the RCA-based
distance function. It is proved that the latter one is a spe-
cial case of the proposed multi-label distance in this paper.
We conduct the experiments in Section 4 to evaluate the
proposed algorithm by comparing with other widely-used
distances. Finally, we conclude in Section 5.

2. MINING MULTI-LABEL DISTANCE

METRIC
In this section, we first define some notations and problem

setting for multi-label distance metric learning on bipartite
graph in Section 2.1. The proposed algorithm is formulated
in Section 2.2, followed by an extension into a nonlinear
version in Section 2.3.

2.1 Notation Definition and Problem Setting
Assume a bipartite-graph has two different types of sam-

ples, and we represent them by two matricesX = [x1, x2, ⋅ ⋅ ⋅ , xn]
and Y = [y1, y2, ⋅ ⋅ ⋅ , ym] where each column represents one
sample. Here xi ∈ ℛdX is the ith sample of the first type
and yj ∈ ℛdY is the jth sample of the second type; dX and
dY are the dimensions of feature spaces of these two data
types. The relation matrix A = (aij)n×m

denotes the in-
teractions between these two data types. In particular, for
image retrieval problem, aij is used to indicate a tag yj is
assigned to the image xi by the users if aij = 1, or not if
aij = 0; aij can also be used to denote the times that a user
tag assigned to an image. The goal aims at computing two
distance functions dist (x, x̃) and dist (y, ỹ) defined on these
two input feature spaces ℛdX and ℛdX . In the following
sections, we derive dist (x, x̃) in detail. dist (y, ỹ) can be
easily derived in the same manner.

X

Y

U=WX

Z=VY

A

U

Z

(a) Flowchart

U=ZA❁❂
(b) Reconstruct U from Z

Z=UA❃
(c) Reconstruct Z from U

Figure 3: The flowchart of the proposed multi-label
distance metric learning algorithm. In subfigure
(a), two types of samples X and Y are first trans-
formed into two latent spaces U and Z, where U

and Z are correlated by the relational matrix A. In
subfigures (b) and (c), U and Z can then be recon-
structed by row-normalized and column-normalized
relational matrices, respectively.

2.2 Main Idea and Solution
First we transform two types of samples into two latent

spaces with the same dimension by two linear transforma-
tions matrices W and V , respectively (see Figure 3 for an
illustration). Here the transformed samples are denoted by
U = [u1,u2, ⋅ ⋅ ⋅un] and Z = [z1, z2, ⋅ ⋅ ⋅ zm] where ui = Wxi

and zj = V yj . The two distance functions can then be
computed in the transformed latent spaces.

To derive the transformation matrices, we expect in these
two latent spaces some common semantic structures can be
constructed. For example, these two latent spaces can be
assumed to represent the same concept spaces. That is to
say, if the transformation matrices W and V are seen as the
weighting coefficients of a set of linear classifiers, and the
obtained ui and zj are the concept vectors with each en-
try indicating the membership of one latent concept. Mean-
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while, these transformed samples in these two concept spaces
interact with each other according to the relation matrix
A. A large aij means the semantic meanings of ui and zj

have a stronger correlation which could help to infer one la-
tent sample ui from the other one zj . In other words, it is
assumed that the transformed samples in these two latent
spaces can be reconstructed by each other based on these
underlying correlations revealed by A (see Figure 3 (b) and
(c)). Formally, we can use the samples in Z to reconstruct
the samples in U based on the elements in A as (see Figure
3 (b))

ui =
1

∑m

j=1 aij

∑m

j=1
aijzj (1)

and similarly, the samples in Z can also be reconstructed as
(see Figure 3 (c))

zj =
1

∑n

i=1 aij

∑n

i=1
aijui (2)

The terms in front of the above two summation operators
serve as normalization factors. Eqn. (1) and (2) can be
rewritten in more compact matrix formulations as

U = Z ⋅AT
R (3)

and

Z = U ⋅AC (4)

whereAR andAC are the row-normalized and column-normalized
relation matrices with [AR]ij =

aij∑
m
j=1

aij
and [AC ]ij =

aij∑
n
i=1

aij
.

Substitute Eqn. (4) into (3), we can obtain

U = UACA
T
R (5)

Meanwhile according to the linear transformations mentioned
above, U can also be represented as

U = WX (6)

Thus combining Eqn. (5) and (6), we have

WX = WXACA
T
R (7)

The above equation is over-determined and usually there is
no exact solutions to W . However, we can use least-square
method to solve W .
The least-square solution to W according to Eqn. (7) can

be written as

W ★ = argmin
W

∣∣WX −WXACA
T
R∣∣

2
F

= argmin
W

tr
(

I −ACA
T
R

)T
XTWTWX

(

I −ARA
T
C

) (8)

Note that our ultimate goal is to learn the distance function
between two samples x and x̃ rather than the transforma-
tion matrix W , so we have the following squared distance
function

dist (x, x̃) = (Wx−W x̃)T (Wx−W x̃)

= (x− x̃)T WTW (x− x̃) = (x− x̃)T MX (x− x̃)
(9)

where MX = WTW ≻ 0 is a symmetric positive-definite
matrix. So the objective function of Eqn. (8) is changed to
directly solve MX

M★
X = argmin

MX

tr
(

I −ACA
T
R

)T
XTMXX

(

I −ARA
T
C

)

s.t.MX ≻ 0
(10)

This formulation attempts to compute MX based on the re-
lation matrix A. As discussed in Section 2.1, such a relation
comes from users’ tagging on the image-sharing website. Un-
fortunately, these user tags can be quite noisy. Therefore,
we would like to introduce a regularization principle to pre-
vent the above formulation from overfitting the noisy tags
in the real-world problem.

The motivation of this new principle is to use the image
similarity as a regularizer. That is to say if two samples
are similar, they ought to have a smaller distance. This
motivation is quite intuitive because two similar images tend
to be semantically correlated. With this motivation, we can
find when MX in Eqn. (8) becomes an identity matrix I, the
distance function reduces to a Euclidean distance between
two feature vectors which are extracted from images. If we
see the identity matrix I seen as a prior, the obtained MX

ought to be as“close”as possible to it according to the above
regularization principle [5].

The “closeness” between MX and I can be quantified by
Bregman divergence between these two symmetric positive-
definite matrices [2]. Let G : S → ℛ be a continually-
differentiable real-valued and strictly convex function de-
fined on a closed convex set S. Then the Bregman diver-
gence associated with G for X,Y ∈ S is

DG (X∣∣Y ) = G(X)−G(Y )− ⟨∇G(Y ), X − Y ⟩ (11)

In this paper, we use the logdet functionG(X) = − log det(X)
over the cone of positive-definite matrices and the corre-
sponding Bregman divergence becomes

DG (X∣∣Y ) = log
det (Y )

det (X)
+ tr

(

Y
−1

X
)

− n (12)

By using the above Bregman divergence as the regularizer,
the objective function of Eqn. (8) can be rewritten as

M★
X = argmin

MX

F (MX)

= argmin
MX

tr
(

I −ACA
T
R

)T
XTMXX

(

I −ACA
T
R

)

+�DG (MX ∣∣I)
s.t.MX ≻ 0

(13)

where � is a trading-off parameter. It is not difficult to find
that the Bregman divergence is convex in the first argument.
Considering the first term in the above objective function is
linear in MX , this objective function is convex and thus has
a global optimum solution. We will prove that there exists
a closed-form solution to Eqn. (13) here.

Take the derivative of F (MX) to MX and set the result
to zero, we have

∂FX (MX)

∂MX

=
∂tr

(

I −ACA
T
R

)T
XTMXX

(

I −ACA
T
R

)

∂MX

+�
∂

∂MX

(− log det (MX) + tr (MX)− dX)

= X
(

I −ACA
T
R

) (

I −ACA
T
R

)T
XT + �

(

−M−1
X + I

)

= 0
(14)

In the above derivation, we utilize two formulae
∂ log det (MX)

∂MX

= M−1
X and

∂tr (MX)

∂MX

= I.
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From Eqn. (14), the minimum point of the objective func-
tion (13) can be derived as

MX =

(

I + �
−1

X
(

I −ACA
T
R

)(

I −ACA
T
R

)T

X
T

)−1

(15)
It is not difficult to verify this obtained matrix also satisfies
the positive-definite constraint in Eqn. (13) sinceX

(

I −ACA
T
R

)

⋅
(

I −ACA
T
R

)T
XT is nonnegative-definite.

Now substitute the above result into Eqn. (9), the dis-
tance between two samples x, x̃ ∈ RdX is

dist (x, x̃)

= (x− x̃)T
(

I + �−1X
(

I −ACA
T
R

) (

I −ACA
T
R

)T
XT

)−1

⋅(x− x̃)
(16)

In the same manner, we can derive the distance between two
samples in ℛdY as

dist (y, ỹ)

= (y− ỹ)T
(

I + �−1Y
(

I −AT
RAC

) (

I −AT
RAC

)T
Y T

)−1

⋅(y− ỹ)
(17)

2.3 Kernelization
The obtained distance functions (16) and (17) are still

linear w.r.t. their input feature spaces. In this section, we
will extend them by kernelizing them. We believe such a
nonlinearity property of kernelization form can significantly
improve the performance of these distance functions due to
the underlying nonlinear structure of images just like many
successful kernel methods [15].
First a transformation � maps the samples in the input

space into a target space in which kernel function k(x, x̃)
gives the inner product. Then we can rewrite Eqn. (16) by
computing the distance in the target space as

dist (�X(x), �X(x̃)) = (�X(x)− �X(x̃))T

⋅
(

I + �−1�X(X)
(

I −ACA
T
R

) (

I −ACA
T
R

)T
�X(X)T

)−1

⋅(�X(x)− �X(x̃))
(18)

where �X(X) = [�X(x1), �X(x2), ⋅ ⋅ ⋅�X(xn)].
Applying the Woodbury formula (I +A ⋅B)−1 = I −

A(I +B ⋅A)−1B into Eqn. (18), we have

dist (�X(x), �X(x̃))
= (�X(x)− �X(x̃))T ⋅ {I − �X(X)

(

I −ACA
T
R

)

⋅
(

�I +
(

I −ACA
T
R

)T
�X(X)T�X(X)

(

I −ACA
T
R

)

)−1

⋅
(

I −ACA
T
R

)T
�X(X)T } ⋅ (�X(x)− �X(x̃))

= (�X(x)− �X(x̃))T (�X(x)− �X(x̃))
−(�X(x)− �X(x̃))T�X(X)

(

I −ACA
T
R

)

⋅
(

�I +
(

I −ACA
T
R

)T
�X(X)T�X(X)

(

I −ACA
T
R

)

)−1

⋅
(

I −ACA
T
R

)T
�X(X)T (�X(x)− �X(x̃))

(19)
Incorporating the inner product function k(x, x̃) in the tar-

get space into the above equation, we have

dist (�X(x), �X(x̃))
= kX(x, x)− 2kX(x, x̃) + kX(x̃, x̃)

− (kX(x)− kX(x̃))T
(

I −ACA
T
R

)

⋅
(

�I +
(

I −ACA
T
R

)T
KX

(

I −ACA
T
R

)

)−1

⋅
(

I −ACA
T
R

)T
(kX(x)− kX(x̃))

(20)

where kX(x) = [kX(x, x1), kX(x, x2), ⋅ ⋅ ⋅ , kX(x, xn)]
T is a

n × 1 vector which can be seen as a new representation of
sample x, and KX = [kX(xi, xj)]

n
i,j=1 is the kernel matrix.

Following the same derivation, we also have

dist (�Y (y), �Y (ỹ))
= kY (y, y)− 2kY (y, ỹ) + kY (ỹ, ỹ)

− (kY (y)− kY (ỹ))T
(

I −AT
RAC

)

⋅
(

�I +
(

I −AT
RAC

)T
KY

(

I −AT
RAC

)

)−1

⋅
(

I −AT
RAC

)T
(kY (y)− kY (ỹ))

(21)

where kY (y) = [kY (y, y1), kY (y, y2), ⋅ ⋅ ⋅ , kY (y, yn)]
T andKY =

[kY (yi, yj)]
m
i,j=1 are the counterparts of KX(x) and KX in

the other input space ℛdY .

3. CONNECTION WITH RCA-DISTANCE
In this section, we will reveal the connection between the

above proposed multi-label distance metric and the well-
known RCA-based distance metric [1]. We will show that the
RCA-based distance is only a special case of the proposed
distance. This section can be skipped since no problem will
be caused to understand the proposed algorithm itself.

Before we reveal this connection, we give a brief review of
the RCA-based distance learning. The basic idea is to learn
a distance metric from the similarity information provided
in the form of chunklets. The samples in the same chunklet
belong to the same class. Formally, we are given L chunklets
X = [x1,1, x1,2, ⋅ ⋅ ⋅ x1,n1

, ⋅ ⋅ ⋅ , xl,1, xl,2, ⋅ ⋅ ⋅ xl,nl
, ⋅ ⋅ ⋅ , xL,1, xL,2,

⋅ ⋅ ⋅ xL,nL
] with chunklet l containing nl samples. Then, the

covariance matrix of the centered patterns in all the chun-
klets can be computed as

C =
1

n

L
∑

l=1

nc
∑

i=1

(xl,i −ml)(xl,i −ml)
T (22)

where ml is the mean of chunklet l and n =
L
∑

l=1

nl is the

total number of samples. With this covariance matrix, the
distance function between two samples can be computed as

distRCA (x, x̃) = (x− x̃)TC−1(x− x̃) (23)

To reveal the connection between RCA distance and the
proposed multi-label distance, the above covariance matrix
C can be transformed with some matrix operation [18] as

C =
L
∑

l=1

nl
∑

i=1

(xl,i −ml)(xl,i −ml)
T

=
L
∑

l=1

X
(

Dl −
1
nl
1l ⋅ 1

T
l

)

XT

= X

(

I −
L
∑

l=1

1
nl
1l ⋅ 1

T
l

)

XT

(24)

where 1l is the n-dimensional vector with

[1l]i =

{

1, samplei ∈ chunkletl
0, otherwise
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Figure 4: Connection between RCA-based distance learning and the proposed multi-label distance metric
learning: the image nodes in the same RCA chunklet are associated with one chunklet node in the repre-
sentation of bipartite graph. With such a conversion from RCA chunklets to the corresponding bipartite
graph, we prove in Section 3 the RCA-based metric distance is only a special case of the proposed multi-label
distance metric.

where Dl = diag (1l) is an n× n diagonal matrix with 1l as
its diagonal elements.
The chunklets in the RCA formulation can also be rep-

resented by the relation matrix A = (aij) in the bipartite
graph like Figure 2, in which aij = 1 if and only if the sample
xi belongs to chunklet j or otherwise aij = 0. Figure 4 illus-
trates an example of such a conversion from RCA chunklets
to the bipartite graph representation. Note that although
we can easily convert RCA chunklets into bipartite graph,
the reverse conversion does not exist directly. In the follow-
ing, we will see the RCA distance is only a special case of the
proposed distance metric in which each image node can only
be associated with one chunklet node in the corresponding
bipartite graph.
By substituting the above relation matrix A into the fol-

lowing equation, we can verify that

X
(

I −ACA
T
R

) (

I −ACA
T
R

)T
XT

= X

(

I −
L
∑

l=1

1
nl
1l ⋅ 1

T
l

)(

I −
L
∑

l=1

1
nl
1l ⋅ 1

T
l

)T

XT

= X

(

I −
L
∑

l=1

2
nl
1l ⋅ 1

T
l +

L
∑

l=1

L
∑

l′=1

1
nl

1
nl′

1l ⋅ 1
T
l ⋅ 1l′ ⋅ 1

T
l′

)

XT

= X

(

I −
L
∑

l=1

2
nl
1l ⋅ 1

T
l +

L
∑

l=1

1
nl
1l ⋅ 1

T
l

)

XT

= X

(

I −
L
∑

l=1

1
nl
1l ⋅ 1

T
l

)

XT

(25)

whereAR =
[

11 12 ⋅ ⋅ ⋅ 1L
]

, AC =
[

1
n1

11
1
n2

12 ⋅ ⋅ ⋅
1

nL
1L

]

.

In the above derivation, we utilize

1Tl ⋅ 1l′ =

{

nl,whenl = l′

0, otherwise

Accordingly, the distance function in Eqn. (16) can be
rewritten as

dist (x, x̃) = (x− x̃)T
(

I + �
−1

C
)−1

(x− x̃) (26)

Compare Eqn. (23) and (26), we can find that the RCA
distance is only a special case of the proposed distance met-
ric in a special bi-partite graph in which each image node
can only be associated with one chunklet node (see Figure
4 for an example)čň with an exception of an extra term I

Associated 

Tags/Labels

Image

Figure 5: An example image on Flickr website to-
gether with its annotated tags/labels.

in
(

I + �−1C
)−1

that serves as a regularizer to respect the
prior of Euclidean distance. In the other words, each im-
age sample belongs to one and only one chunklet in RCA
distance learning.

Unlike the RCA distance learning, the proposed multi-
label distance metric removes such a restriction and each
image can be associated with more than one labels. Such
a multi-label distance metric can be applied to many real-
world applications. For example, in an image-sharing web-
site, each image is usually associated with more than one
tags labeled by users. By using the proposed algorithm, the
learned multi-label distance metric can be directly applied
to rank the relevance of the images in a corpus according to
their distances to the query.

4. EXPERIMENTS
This section empirically evaluates the proposed multi-label

distance metric to retrieve the images compared with other
representative distance metrics.
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Figure 6: Some example images in the experiments
together with their associated user tags.

4.1 Dataset
We evaluate the proposed distance learning algorithms on

two different datasets for image retrieval.
Corel Image Dataset - The first one is the benchmark

Corel image dataset. It contains 5,460 images which are
annotated with 393 different tags provided by a group of
professional users. Each image is annotated by average 2.88
tags and each tag is assigned to average 39.98 images. The
dataset is split into two parts - 3,000 images as the training
set to learn the distance and the remaining 2,460 images as
the queries to test the retrieval performance. Some example
images are shown in Figure 6 together with annotated user
tags.
Flickr Dataset - The second one is a realistic dataset

crawled from an image-sharing website Flickr. It includes
32,575 images together with 4,100 tags on these images pro-
vided by users (See Figure 5 for an example). In this set,
each image has average 10.51 tags and each tag is assigned
to 92.05 images on average. For performance evaluation, we
also split the set into two parts. 15,000 images are used as
training set and the remaining 17,575 images are used to
simulate user queries.
To represent the visual content of images, we extract 225-

dimensional color moment features for each image. In detail,
the image is divided into 5 × 5 regular grid and the first
three orders of color moments in each grid are extracted
from each component of RGB color space. On the other
hand, the tag feature vectors are represented by 1/0 vectors
with the elements being 1 for the annotated tags and the
other element being 0 otherwise.

4.2 Evaluation Measure
Since we focus on image retrieval by the learned distance

metrics, a ranking-based evaluation measure, Normalized
Discounted Cumulative Gain at top k (NDCG@k) [9], is
adopted to evaluate the retrieval performance. In contrast
to other measures such as precision and recall that only mea-

sure the accuracies of retrieved results, NDCG@k measures
the different levels of relevance and prefers the retrieved
ranking results that follow the actual relevance order. Thus
this evaluation measure can better reflect the users’ require-
ment of ranking the most relevant images at top in a real
retrieval system. The formula of NDCG@k can be com-
puted as

NDCG@k =
1

Z

k
∑

p=1

2s(p) − 1

log (1 + p)
(27)

where s(p) is the function that represents reward given to
the retrieved image at position p, Z is a normalization term
derived from the perfect ranking of top k images so that it
can normalize NDCG@k to be [0, 1]. The above summation
is computed from position 1 to k in the ranked list according
to the distance metric in the experiments.

The reward function s(p) is measured by the relevance
between the image at position p and the proposed query.
We use the cosine similarity between the tag vectors of the
image at position p of retrieved list and the query image as
their relevance measure

s(p) =
⟨vp, vq⟩

∣∣vp∣∣2∣∣vq∣∣2
(28)

vp and vq are the tag vectors of the pth image in the ranking
list and the query image, respectively. Each entry in these
tag vectors indicates if the corresponding tag occurs in the
image. ⟨⋅, ⋅⟩ is their inner product, and ∣∣ ⋅ ∣∣2 is the 2-order
vector norm.

For each image used as user query, we compute itsNDCG@k

and then report the average over the whole testing set as the
performance measure of the learned distance metrics.

4.3 Compared Algorithms
We compare the following distance metrics to evaluate the

proposed metric.
Euclidean - It directly computes the Euclidean distance

between visual features of the images. This distance metric
only utilizes the visual information and no textual informa-
tion such as user tags is considered.

RCA (Relevant Component Analysis) - As discussed in
Section 3, RCA learns the distance metric from chunklets
each of which clusters a set of similar images together. To
provide these chunklets to learn the RCA distance metric,
we adopt a classic co-clustering algorithm [6] to cluster the
bipartite graph like Figure 2 to obtain some image chun-
klets. Then the RCA distance learning algorithm is applied
with these chunklets to learn the distance metric for image
retrieval.

NCA (Neighborhood Components Analysis) - It learns
a Mahalanobis distance metric by maximizing a stochastic
variant of the leave-one-out KNN score on the training set.
For details, please refer to [8].

ML-DML (Multi-Label Distance Metric Learning) - It is
the proposed multi-label distance metric learning in Section
2.2.

KML-DML (Kernel ML-DML) - It is the kernel exten-
sion of ML-DML in Section 2.3.

Next we will compare the above distance learning algo-
rithms on Corel and Flickr datasets. Note that although
there exist other advanced distance learning algorithms, such
as ITML [5] and LMNN [21], it is intractable to apply them
to train distance model on more than hundreds of images
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Table 1: Comparison of NDCG@k measure for Euclidean, RCA, NCA, ML-DML and KML-DML algorithms
on Corel Dataset, where k is from 300 to 3000.

NDCG@k Euclidean RCA NCA ML-DML KML-DML

300 0.1302 0.1369 0.1582 0.1990 0.2112
600 0.1733 0.1808 0.2019 0.2534 0.2698
900 0.2221 0.2287 0.2512 0.3072 0.3253

1200 0.2773 0.2850 0.3067 0.3649 0.3851
1500 0.3357 0.3422 0.3618 0.4233 0.4445
1800 0.3930 0.3990 0.4161 0.4787 0.4990
2100 0.4480 0.4535 0.4687 0.5317 0.5514
2400 0.5028 0.5069 0.5209 0.5821 0.6001
2700 0.5531 0.5568 0.5687 0.6302 0.6479
3000 0.6059 0.6088 0.6177 0.6796 0.6965

Table 2: Comparison of NDCG@k measure for Euclidean, RCA, NCA, ML-DML and KML-DML algorithms
on Flickr Dataset, where k is from 1500 to 15000.

NDCG@k Euclidean RCA NCA ML-DML KML-DML

1500 0.2644 0.2725 0.2888 0.3360 0.3695
3000 0.3251 0.3279 0.3387 0.3843 0.4199
4500 0.3799 0.3812 0.3868 0.4301 0.4677
6000 0.4353 0.4348 0.4360 0.4773 0.5170
7500 0.4913 0.4897 0.4872 0.5261 0.5679
9000 0.5492 0.5463 0.5414 0.5790 0.6233

10500 0.6097 0.6066 0.6028 0.6398 0.6870
12000 0.6696 0.6685 0.6686 0.7063 0.7568
13500 0.7296 0.7304 0.7338 0.7740 0.8281
15000 0.7907 0.7923 0.7953 0.8364 0.8941

due to their high computational complexity, so we will not
compare with them in this paper.

4.4 Performance Comparison
Experiment results conducted on the Corel and Flickr

datasets are shown in Table 1 and Table 2. We compare
the proposed ML-DML and KML-DML algorithms with Eu-
clidean, RCA and NCA algorithms in terms of NDCG@k,
where k varies on these two different datasets. We can find
the Euclidean distance has the worst performance since it
does not utilize any tagging information provided by users.
The other four algorithms have gained better performance
with the help of these user tags. Among all the compared
distance metrics, the proposed ML-DML and KML-DML
emerges to gain the best performance since they combine the
information from both visual content of images and the as-
sociated user tags in an integrated manner mentioned above.
It is quite different from RCA and NCA in which a prepro-
cessing step is required to construct “chunklets” from the
user tags.
We illustrate some retrieval results by different distance

metrics in Figure 7. These images are ranked based on their
distance to the query image. The images with smaller dis-
tances are ranked higher. These examples also illustrate the
better performance of KML-DML and ML-DML compared
to other distance learning algorithms.

4.5 Application to Image Annotation
In addition to image retrieval, the distance metrics can

be applied to automatic image annotation. Given an image
without tags, those tags associated with the k nearest im-

ages can be assigned as the tags of this image. For example,
Figure 8 illustrates the tagging annotation of an example
image with different k from 1 to 5 by different distance met-
rics. We can see KML-DML and ML-DML perform best
among these distances on this example of image annotation.

In Figure 9 and 10, we also quantitively compare the an-
notation performances by these distance metrics in terms of
relative improvements of precision and recall compared to
Euclidean metric on the Flickr dataset. We can find the
proposed KML-DML and ML-DML outperform NCA and
RCA whatever k is used.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel multi-label distance met-

ric learning algorithm which integrates the visual content of
images and their associated user tags in the image-sharing
website. It directly mines the semantic information provided
by user tags together with the assumption that the visual
similar images ought to have a smaller semantic distance.
The visual information also serves to reduce the overfitting
risk due to the noise tagging information via a Bregman reg-
ularizer. We formulate to learn distance by an optimization
problem which can be efficiently solved by a closed-form so-
lution. We also enhance the proposed multi-label distance
into kernelization form so that nonlinearity is incorporated.
Experimental evaluation on the Corel and Flickr datasets
shows the most competitive performance of the proposed
distance metrics compared to Euclidean, RCA and NCA
distance learning. In addition, we also apply the learned
distance metrics to automatic image annotation. ML-DML
and KML-DML outperform other metrics again.
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Figure 7: Top 5 retrieved images by KML-DML,
ML-DML, NCA, RCA and Euclidean. For each dis-
tance metric, the images are ranked by their corre-
sponding distance to the query image. The image
with smaller distance is ranked higher.

The proposed distance learning algorithm aims at com-
puting the image distances, however, as indicated in Eqn.
(16) and Eqn. (17), this algorithm can simultaneously learn
a couple of distance metrics on two spaces (i.e., the image
space and the tag space). Therefore, it unifies the image dis-
tance learning and the associated tag distance learning (like
Google Distance [4] in an integrated framework. But due to
the limited space in this paper, we delay the discussion and
empirical evaluation on tag distance in our future work.
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compared to Euclidean distance.

[11] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and
H.-J. Zhang. Correlative multi-label video annotation.
In Proc. of International ACM Conference on

Multimedia, Augsburg, Germany, September 2007.

[12] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang.
Two-dimensional multi-label active learning with an
efficient online adaptation model for image
classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2008.

[13] M. Rege, M. Dong, and J. Hua. Graph theoretical
framework for simultaneously integrating visual and
textual features for efficient web image clustering. In
Proc. of International Conference on World Wide

Web, 2008.

[14] M. Schultz and T. Joachims. Learning a distance
metric from relative comparisons. In Proc. of Advanced

Neutral Information Processing System, 2004.

[15] J. Shawe-Taylor and N. Cristianini. Kernel Methods

for Pattern Recognition. Cambridge University Press,
2004.

[16] L. Si, R. Jin, S. C. Hoi, and M. R. Lyu. Collaborative
image retrieval via regularized metric learning. ACM
Multimedia Systems Journal, 2006.

[17] A. W. M. Smeulders, M. Worring, S. Santini,
A. Gupta, and R. Jain. Content-based image retrieval
at the end of the early years. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2000.

[18] I. W. Tsang, P.-M. Cheung, and J. T. Kwok. Kernel
relevant component analysis for distance metric
learning. In Proc. of International Joint Conference

on Neural Networks, 2005.

[19] C. Wang, L. Zhang, and H.-J. Zhang. Learning to
reduce the semantic gap in web image retrieval and
annotation. In Proc. of the 31st Annual International

ACM SIGIR Conference on Research and

Development on Information Retrieval, Singapore,
July 2008.

[20] X.-J. Wang, L. Zhang, F. Jing, and W.-Y. Ma.
Annosearch: Image auto-annotation by search. In
Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2006.

[21] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance
metric learning for large margin nearest neighbor
classification. In Proc. of NIPS, 2005.

[22] Q. Weinberger, M. Slaney, and R. V. Zwol. Resolving
tag ambiguity. In Proc. of International ACM

Conference on Multimedia, 2008.

[23] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning, with application to
clustering with side-information. In Proc. of Advanced

Neutral Information Processing System, 2003.

[24] J. Yu and Q. Tian. Semantic subspace projection and
its application in image retrieval. IEEE Transactions

on Circuits and Systems for Video Technology,
18(4):544 – 548, April 2008.

252


