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Abstract

It is important to transfer the knowledge from

label-rich source domain to unlabeled target do-

main due to the expensive cost of manual la-

beling efforts. Prior domain adaptation methods

address this problem through aligning the glob-

al distribution statistics between source domain

and target domain, but a drawback of prior meth-

ods is that they ignore the semantic information

contained in samples, e.g., features of backpack-

s in target domain might be mapped near fea-

tures of cars in source domain. In this paper, we

present moving semantic transfer network, which

learn semantic representations for unlabeled tar-

get samples by aligning labeled source centroid

and pseudo-labeled target centroid. Features in

same class but different domains are expected to

be mapped nearby, resulting in an improved tar-

get classification accuracy. Moving average cen-

troid alignment is cautiously designed to com-

pensate the insufficient categorical information

within each mini batch. Experiments testify that

our model yields state of the art results on stan-

dard datasets.

1. Introduction

Deep learning approaches have gained prominence in vari-

ous machine learning problems and applications. However,

the recent success of deep learning depends on massive la-

beled data. Manual large scale labeled data on the target

domain are too expensive or impossible to collect in prac-

tice. Therefore, there is a strong motivation to build an

effective classification model using available labeled data

from other domains. But, this learning paradigms suffers

from the domain shift problem, which is an huge obstacle
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for adapting predictive models to the target domain (Pan &

Yang, 2010).

Learning a discriminative predictor in the presence of the

shift between source domain and target domain is known

as domain adaptation (Pan & Yang, 2010). In recent years,

deep learning has shown its potential to produce transfer-

able features for domain adaptation. Fruitful line of works

have been done in deep domain adaptation (Motiian et al.,

2017b; Tzeng et al., 2014; Long et al., 2015). These meth-

ods aim at matching the marginal distributions across do-

mains while (Zhang et al., 2013; Gong et al., 2016) con-

siders the conditional distribution shift problem. Recently

adversarial adaptation methods (Ganin & Lempitsky, 2015;

Tzeng et al., 2017; Motiian et al., 2017a; Bousmalis et al.,

2016) have shown promising results in domain adaptation.

Adversarial adaptation methods is analogous to genera-

tive adversarial networks (GAN) (Goodfellow et al., 2014).

A domain classifier is trained to tell whether the sample

comes from source domain or target domain. The feature

extractor is trained to minimize the classification loss and

maximize the domain confusion loss. Domain-invariant yet

discriminative features are seemingly obtainable through

the principled lens of adversarial training.

Prior adversarial adaptation methods suffer a main limita-

tion: as the discriminator only enforces the alignment of

global domain statistics, crucial semantic information for

each category might be lost. Even with perfect confusion

alignment, there is no guarantee that samples from differ-

ent domains but with the same class label will map nearby

in the feature space, e.g, features of backpacks in the target

domain may be mapped near features of cars in the source

domain. This lack of semantic alignment is an importan-

t source of performance reduction (Motiian et al., 2017a;

Hoffman et al., 2017; Luo et al., 2017). Recently, seman-

tic transfer for supervised domain adaptation has received

wide attention (Motiian et al., 2017a; Luo et al., 2017). To

date, semantic alignment has not been addressed in unsu-

pervised domain adaptation due to the lack of target label

information.

In this paper, we propose a novel moving semantic trans-

fer network (MSTN) for unsupervised domain adaptation,

where our feature extractor learns to align the distributions

semantically without any labeled target samples. We large-
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ly extend the ability of prior adversarial adaptation methods

by our proposed semantic representation learning module.

We firstly assign pseudo labels to target samples to fix the

problem of lacking target label information. Since there

are obviously false labels in pseudo labels, we wish to use

correctly-pseudo-labeled samples to reduce the bias caused

by falsely-pseudo-labeled samples. So we propose to align

the centroid for each class in source and target domains

instead of treating the pseudo-labeled samples as true di-

rectly. In particular, as we use mini batch SGD in prac-

tice, categorical information is usually insufficient and even

one false label could lead to extremely biased estimation of

the true centroid, moving average centroid is designed for

safer semantic representation learning. Experiments have

proven that MSTN yields state of the art results on standard

datasets. Furthermore, we also find that MSTN stabilizes

the adversarial learning for unsupervised domain adapta-

tion.

2. Related Work

Recently, adversarial learning has been widely adopted in

domain adaptation (Ganin & Lempitsky, 2015; Tzeng et al.,

2015; Hoffman et al., 2017; Motiian et al., 2017a; Tzeng

et al., 2017; Saito et al., 2017b; Long et al., 2017a; Luo

et al., 2017; Sankaranarayanan et al.). Most of adversarial

adaptation methods are based on generative adversarial net-

works (GAN) (Goodfellow et al., 2014). A discriminator is

trained to tell whether the sampled feature comes from the

source domain or target domain while the feature extractor

is trained to fool the discriminator. However, prior unsuper-

vised adversarial domain adaptation methods only enforce

embedding alignment in domain-level instead of class-level

transfer. Lacking the semantic alignment hurts the perfor-

mance of domain adaptation significantly (Motiian et al.,

2017a;b).

Semantic transfer is much easier in supervised domain

adaptation as labeled target samples are available. In recen-

t years, few-shot adversarial learning (Tzeng et al., 2015;

Motiian et al., 2017a; Luo et al., 2017) have been explored

in domain adaptation. Few-shot domain adaptation consid-

ers the task where very few labeled target data are available

in training. (Tzeng et al., 2015) computes the average out-

put probability with source training samples for each cate-

gory, then for each labeled target sample, they optimize the

model to match the distributions over classes to the average

probability. FADA (Motiian et al., 2017a) pairs the labeled

target sample and labeled source sample and the discrim-

inator is trained to tell whether the pair comes from same

domain and same class. (Luo et al., 2017) proposes cross

category similarity for semantic transfer.

In this paper, we consider a more challenging task: unsu-

pervised semantic transfer where there is no labeled target

samples. (Ghifary et al., 2016) proposes to add a decoder

after the feature extractor to enforce the feature extractor

preserving semantic information. (Bousmalis et al., 2016)

propose to decouple the representation into the shared rep-

resentation and private representation. It encourages the

shared and private representation to be orthogonal while

both the representations should be able to be decoded back

to images. (Hoffman et al., 2017) adapts representations at

both the pixel-level and feature-level. It encourages the fea-

ture extractor to preserve semantic information by using the

cycle consistency constraints. (Saito et al., 2017b) uses the

dropout to obtain two different views of input and if the pre-

diction results are different, these target samples are regard-

ed as near decision boundary. They use the boundary infor-

mation to achieve low-density separation of aligned points.

(Saito et al., 2017c) proposes to use two classifiers as dis-

criminators to detect target samples that are far from the

support of the source. These two classifiers are trained ad-

versarial to view input differently. (Pinheiro, 2017) classi-

fies the input samples by computing the distances between

prototype representations of each category.

Previous unsupervised adaptation methods do not necessar-

ily align distributions semantically across domains as they

can not ensure features in same class but different domain-

s are mapped nearby owing to the huge gap for semantic

alignment: no labeled information for target samples. It

means that explicit matching the distributions for each cat-

egory is impossible. To fill this gap, we assign pseudo la-

bels to target samples. Contrary to prior domain adaptation

methods that assign pseudo labels (Chen et al., 2011; Saito

et al., 2017a), we doubt the pseudo labels and propose to

align the centroid to reduce the shift brought by false la-

bels instead of direct matching distributions using pseudo

labels.

3. Method

In this section, we provide details of the proposed model

for domain adaptation. In unsupervised domain adaptation,

we are given by ns labeled samples
{
(x

(i)
S , y

(i)
S )

}ns

i=1
from

the source domain DS , where x
(i)
S ∈ XS and y

(i)
S ∈ YS .

Additionally, we are also given with nt unlabeled target

samples
{
(x

(i)
T )

}nt

i=1
from the target domain DT , where

x
(i)
T ∈ XT . XS and XT are assumed to be different but

related (referred as covariate shift in literature (Shimodaira,

2000)). Target task is assumed to be same with source task.

Our ultimate goal is to develop a deep neural network f :
XT → YT that is able to predict labels for the samples from

target domain.
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Figure 1. Besides the standard source classification loss, we al-

so employ the domain adversarial loss to align distributions for

two domains. In particular, to learn semantic representations,

we maintain global centroids Ck

S and Ck

T for each class k in t-

wo domains at feature level, i.e., G(X). In each step, source

centroids will be updated with the labeled features (G(Xs),Ys)
while target centroids will be updated with pseudo-labeled fea-

tures (G(Xt),F◦G(Xt)). Our model learns to semantically align

the embedding by explicitly restricting the distance between cen-

troids in same class but different domains.

.

3.1. The model

For unsupervised domain adaptation, in the presence of co-

variate shift, a visual classifier f = F ◦ G is trained by

minimizing the source classification error and the discrep-

ancy between source domain and target domain:

L = E(x,y)∼DS
[J(f(x), y)]

︸ ︷︷ ︸
LC(XS ,YS)

+λ d(XS ,XT )︸ ︷︷ ︸
LDC(XS ,XT )

(1)

where J(., .) is typically the cross entropy loss, λ is the bal-

ance parameter, d(., .) represents the divergence between

two domains. Typically maximum mean discrepancy (M-

MD) (Long et al., 2015; Tzeng et al., 2014) or domain

adversarial similarity loss (Bousmalis et al., 2016; Ganin

& Lempitsky, 2015) are used to measure the divergence.

We opt to use the domain adversarial similarity loss in our

model. In other words, we employ an additional domain

classifier D to tell whether the features from feature extrac-

tor G arise from source or target domain while G is trained

to fool D. This two-player game is expected to reach an

equilibrium where features from G are domain-invariant.

Formally,

d(XS ,XT ) =Ex∼DS
[log(1−D ◦G(x))]

Ex∼DT
[log(D ◦G(x))]

(2)

However, domain-invariance does not mean discriminabil-

ity. Features of target backpacks can be mapped near

features of source cars while satisfying the condition of

domain-invariant. Separately, it has been shown that super-

vised domain adaptation (SDA) method improves upon un-

supervised domain adaptation (UDA) by making the align-

ment semantic since SDA can ensure features of same class

in different domains are mapped nearby (Motiian et al.,

2017b). Motivated by this key observation, we endeavor

to learn semantic representations for UDA.

Before we go further, we will stop to see how SDA achieves

semantic transfer. For SDA, one could easily align the em-

beddings semantically by adding following objective,

LSDA
SM (XS ,XT ,YS ,YT ) =

K∑

k=1

d(X k
S ,X

k
T ), (3)

where K is the number of classes. It means that one can

match the distributions for each class directly in SDA.

Unfortunately, for UDA, we do not have label information

from target domain. To circumvent the impossibility of dis-

tribution matching at class-level, we resort to pseudo labels

(Lee, 2013). We firstly assign pseudo labels to target sam-

ples with the training classifier f and we obtain a pseudo-

labeled target domain. But obviously there must be some

false labels and they may harm the performance of adap-

tation heavily. A natural question then arises as how to

suppress the noisy signals conveyed in those false pseudo-

labeled samples?

We approach the question by centroid alignment. Cen-

troid has long been favored for its simplicity and effective-

ness to represent a set of samples (Luo et al., 2017; Snell

et al., 2017). When computing the centroid for each class,

pseudo-labeled ( correct or wrong ) samples are being used

together and the detrimental influences brought by false

pseudo labels are expected be neutralized by correct pseu-

do labels. Inspired by this, we propose following semantic

transfer objective for unsupervised domain adaptation:

LUDA
SM (XS ,YS ,XT ) =

K∑

k=1

Φ(Ck
S , C

k
T )

︸ ︷︷ ︸
LSM (XS ,YS ,XT )

, (4)

where Ck
S and Ck

T are centroid for each class in feature

space, Φ(., .) is any appropriate distance measure func-

tion. We use the squared Euclidean distance Φ(x, x′) =
||x − x′||2 in our experiments. In total, we obtain 2K cen-

troids. Through explicitly restricting the distance between

centroids with same class label but different domains, we

can ensure that features in the same class will be mapped

nearby. More importantly, false signals in pseudo-labeled

target domain are suppressed through centroid alignment.

More formally, our totally objective can be written as fol-

lows:

L(XS ,YS ,XT ) =LC(XS ,YS) + λLDC(XS ,XT )

+ γLSM (XS ,YS ,XT ),
(5)
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where λ and γ are parameters that balance the classification

loss, domain confusion loss and semantic loss. As we can

see, our model is simple and the semantic transfer objective

can be computed in linear time.

3.2. Moving Semantic Transfer Network

Algorithm 1 Moving semantic transfer loss computation in

iteration t in our model. K is the number of classes.

Input: Labeled set S, Unlabeled set T, N is the batch size,

Training classifier f , Global centroids for two domains:{
Ck

S

}K

k=1
and

{
Ck

T

}K

k=1

1: St = RANDOMSAMPLE(S,N)

2: Tt = RANDOMSAMPLE(T,N)

3: T̂t =Labeling(G,f ,Tt)

4: LSM = 0
5: for k = 1 to K do

6: Ck
S(t)
← 1

|Sk
t |

∑
(xi,yi)∈Sk

t

G(xi) (From Scratch)

7: Ck
T(t)
← 1

|̂T k

t
|

∑

(xi,yi)∈
̂
T k

t

G(xi) (From Scratch)

8: C
k

S
← θC

k

S
+ (1− θ)Ck

S(t)
(Moving Average)

9: C
k

T
← θC

k

T
+ (1− θ)Ck

T(t)
(Moving Average)

10: LSM ← LSM +Φ(Ck
S , C

k
T )

11: end for

12: return LSM

The proposed model achieves semantic transfer in very

simple form but it suffers two limitations in practice: (1)

As we always uses mini batch SGD for optimization in

practice, categorical information in each batch is usually

insufficient. For instance, it is possible that some class-

es are missing in the current batch of target data since the

batch is randomly selected. (2) If the batch size is small,

even one false pseudo label will lead to the huge deviation

between the pseudo-labeled centroid and true centroid. For

example, when there is one pseudo-labeled car sample in

a target batch but the true label is backpack. Then it will

wrongly guide the alignment between source car features

and target backpack features.

Instead of aligning those newly obtained centroids in each

iteration directly, we propose to align exponential moving

average centroids to address the two aforementioned prob-

lems. As shown in algorithm 1, we maintain global cen-

troids for each class. In each iteration, source centroids are

updated by the labeled source samples while target cen-

troids are updated by pseudo-labeled target samples. Then

we can align those moving average centroids following e-

quation (4).

Moving average centroid alignment works in an intuitive

way: When backpack are missing in current source batch,

we can align the target backpack centroid with the global

source backpack centroid updated in last iteration. Under

the reasonable assumption that centroids change by a lim-

ited step in each iteration, we can still ensure features of

backpacks in two domains are mapped nearby. Meanwhile,

when there is one pseudo-labeled car sample in a target

mini batch but the true label is backpack, moving average

centroids can avoid the aforementioned misalignment as it

also considers the pseudo-labeled backpacks in the past mi-

ni batches.

Our method attempts to align the centroids in same class

but different domains to achieve semantic transfer for un-

supervised domain adaptation. We use pseudo labels from

F to guide the semantic alignment for G. As the learning

proceeds, G will learn semantic representations for target

samples, resulting in an improved accuracy of F. This cy-

cle will gradually enhance the accuracy for target domain.

In addition, we suppress the noisy semantic information by

assigning a small weight to γ in early training phase .

3.3. Analysis

In this section, we show the relationship between our

method and the theory of domain adaptation (Ben-David

et al., 2010). The theory bounds the expected error on the

target samples εT (h) by three terms as follows.

Theorem 1. (Ben-David et al., 2010) LetH be the hypoth-
esis class. Given two domains S and T , we have

∀h ∈ H, εT (h) ≤ εS(h) +
1

2
dH∆H(S, T ) + C, (6)

where εS(h) is the expected error on the source samples

which can be minimized easily with source label informa-

tion, dH∆H(S, T ) defines a discrepancy distance between

two distributions S and T w.r.t. a hypothesis setH. C is the

shared expected loss and is expected to be negligibly smal-

l, thus usually disregarded by previous methods (Ganin &

Lempitsky, 2015; Long et al., 2015). But it is very impor-

tant and we cannot expect to learn a good target classifier

by minimizing the source error if C is large (Ben-David

et al., 2010).

It is defined as C = min
h∈H

εS(h, fS) + εT (h, fT ) where fS

and fT are labeling functions for source and target domain

respectively. We show that our method is trying to optimize

the upper bound for C. Recall the triangle inequality for

classification error (Ben-David et al., 2010; Crammer et al.,

2008), which implies that for any labeling functions f1, f2
and f3, we have ε(f1, f2) ≤ ε(f1, f3) + ε(f2, f3). Then

C = min
h∈H

εS(h, fS) + εT (h, fT )

≤ min
h∈H

εS(h, fS) + εT (h, fS) + εT (fS , fT )

≤ min
h∈H

εS(h, fS) + εT (h, fS) + εT (fS , fT̂ ) + εT (fT , f
T̂
)

(7)
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The first and second term denotes the disagreement be-

tween h and the source labeling function fS . These two

terms should be small as we can easily find such a h in

our hypothesis space to approximate the fS since we have

source labels. Therefore, we seek to minimize the last two

terms. Obviously the last term denotes the false pseudo rate

in our method which would be minimized as learning pro-

ceeds. Now our focus should be the third term εT (fS , fT̂ ).
This term denotes the disagreement between the source

labeling function and pseudo target labeling function on

target samples. εT (fS , fT̂ ) = Ex∼T [l(fS(x), fT̂ (x))],
where l(., .) is typically the 0-1 loss function.

Our method aligns the centroid for class k in source domain

Sk and pseudo-labeled target domain T̂ k. We can decom-

pose the hypothesis h into the feature extractor G and clas-

sifier F. Then we have Ex∼SkG(x) = E
x∼T̂ k

G(x). For

εT (fS , fT̂ ), it could be rewritten as

Ex∼T [l(FS ◦G(x), FT̂ ◦G(x))] (8)

Now the relationship is clear: for source samples in class

k, the source labeling function should return k. We wish to

have target features in class k to be similar with source fea-

tures in class k, so the source labeling function would also

predict those target samples as k, which is consistent with

the prediction results made by pseudo target labeling func-

tion. Consequently, εT (fS , fT̂ ) is expected to be small.

In summary, the premise for the success of domain adapta-

tion methods is that the shared expected loss C should be

small. Our method attempts to minimize this item through

aligning the centroid between source domain and pseudo-

labeled target domain.

4. Experiments

4.1. Setup

We evaluate the semantic transfer network with s-

tate of art transfer learning methods. Codes are

available at https://github.com/Mid-Push/

Moving-Semantic-Transfer-Network.

Office-31 (Saenko et al., 2010) is a standard dataset used

for domain adaptation. It contains three distinct domain-

s: Amazon (A) with 2817 images, Webcam (W) with 795

images and DSLR (D) with 498 images. Each domain

contains 31 categories. We examine our methods by em-

ploying the frequently used network structures: AlexNet

(Krizhevsky et al., 2012). For fair comparison, we report

results of methods that are also based on AlexNet.

ImageCLEF-DA is a benchmark dataset for ImageCLE-

F 2014 domain adaptation challenges. Three domains in-

cluding Caltech-256 (C), ImageNet ILSVRC 2012 (I) and

Pascal VOC 2012 (P) share 12 categories. Each domain

contains 600 images and 50 images for each category. Im-

ages in ImageCLEF-DA are of equal size. This dataset has

been used by JAN (Long et al., 2017b). Same, we also ex-

amine our method in AlexNet (Krizhevsky et al., 2012).

MNIST-USPS-SVHN. We explore three digits datasets of

varying difficulty: MNIST (LeCun et al., 1998), USPS and

SVNH (Netzer et al., 2011). Different from Office-31, M-

NIST consists grey digits images of size 28x28, USPS con-

tains 16x16 grey digits and SVHN composes color 32x32

digits images which might contain more than one digit in

each image. MNIST-USPS-SVHN makes a good comple-

ment to previous datasets for diverse domain adaptation s-

cenarios. We conduct experiments in a resolution-going-

down way, SVHN→MNIST and MNIST→USPS.

Baseline Methods For Office-31 and ImageCLEF-DA

datasets, we compare with state-of-art transfer learn-

ing methods: Deep Domain Confusion (DDC) (Tzeng

et al., 2014), Deep Reconstruction Classification Net-

work (DRCN) (Ghifary et al., 2016), Gradient Reversal

(RevGrad) (Ganin & Lempitsky, 2015), Residual Trans-

fer Network (RTN) (Long et al., 2016), Joint Adaptation

Network (JAN) (Long et al., 2017b), Automatic Domain

Alignment Layer (AutoDIAL) (Carlucci et al., 2017). We

cite the results of AlexNet, DDC, RevGrad, RTN, JAN

from (Long et al., 2017b). For DRCN and AutoDIAL, we

cite the results in their papers. For ImageCLEF-DA, we

compare with AlexNet, RTN, RevGrad and JAN. Results

are cited from (Long et al., 2017a). To further validate our

method, we also conduct experiments on MNIST-USPS-

SVHN. We compare with Domain of Confusion (DOC)

(Tzeng et al., 2014), RevGrad (Ganin & Lempitsky, 2015),

Asymmetric Tri-Training (AsmTri) (Saito et al., 2017a),

Couple GAN (CoGAN) (Liu & Tuzel, 2016), Label Effi-

cient Learning (LEL) (Luo et al., 2017) and Adversarial

Discriminative Domain Adaptation (ADDA) (Tzeng et al.,

2017). Results of source only, DOC, RevGrad, CoGAN

and ADDA are cited from (Tzeng et al., 2017). For the

rest, we cite the result in their papers respectively.

We follow standard evaluation protocols for unsupervised

domain adaptation as (Long et al., 2015; Ganin & Lempit-

sky, 2015; Long et al., 2017b). We use all labeled source

examples and all unlabeled target examples. We repeat

each transfer task three times and report the mean accuracy

as well as the standard error.

4.2. Implementation Detail

CNN architecture. In our experiments on Office and

ImageCLEF-DA, we employed the AlexNet architecture.

Following RTN (Long et al., 2016) and RevGrad (Ganin

& Lempitsky, 2015), a bottleneck layer fcb with 256 units

is added after the fc7 layer for safer transfer representa-

tion learning. We use fcb as inputs to the discriminator

https://github.com/Mid-Push/Moving-Semantic-Transfer-Network
https://github.com/Mid-Push/Moving-Semantic-Transfer-Network
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Table 1. Classification accuracies (%) on office-31 datasets.(AlexNet)

Method A→W D→W W→ D A→ D D→ A W→ A Avg

AlexNet (Krizhevsky et al., 2012) 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1

DDC (Tzeng et al., 2014) 61.8±0.4 95.0±0.5 98.5±0.4 64.4±0.3 52.1±0.6 52.2±0.4 70.6

DRCN (Ghifary et al., 2016) 68.7±0.3 96.4±0.3 99.0±0.2 66.8±0.5 56.0±0.5 54.9±0.5 73.6

RevGrad (Ganin & Lempitsky, 2015) 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3

RTN (Long et al., 2016) 73.3±0.3 96.8±0.2 99.6±0.1 71.0±0.2 50.5±0.3 51.0±0.1 73.7

JAN (Long et al., 2017b) 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

AutoDIAL (Carlucci et al., 2017) 75.5 96.6 99.5 73.6 58.1 59.4 77.1

MSTN (centroid from scratch,ours) 80.3±0.7 96.8±0.1 100±0.1 73.8±0.1 60.7±0.1 59.9±0.3 78.6

MSTN (ours) 80.5±0.4 96.9±0.1 99.9±0.1 74.5±0.4 62.5±0.4 60.0±0.6 79.1

Table 2. Classification accuracies (%) on ImageCLEF-DA datasets.(AlexNet)

Method I→ P P→ I I→ C C→ I C→ P P→ C Avg

AlexNet (Krizhevsky et al., 2012) 66.2±0.2 70.0±0.2 84.3±0.2 71.3±0.4 59.3±0.5 84.5±0.3 73.9

RTN (Long et al., 2016) 67.4±0.3 81.3±0.3 89.5±0.4 78.0±0.2 62.0±0.2 89.1±0.1 77.9

RevGrad (Ganin & Lempitsky, 2015) 66.5±0.5 81.8±0.4 89.0±0.5 79.8±0.5 63.5±0.4 88.7±0.4 78.2

JAN (Long et al., 2017b) 67.2±0.5 82.8±0.4 91.3±0.5 80.0±0.5 63.5±0.4 91.0±0.4 79.3

MSTN (ours ) 67.3±0.3 82.8±0.2 91.5±0.1 81.7±0.3 65.3±0.2 91.2±0.2 80.0

as well as the centroid computation. Image random flip-

ping and cropping are adopted following JAN (Long et al.,

2017b). For a fair comparison with other methods, we also

finetune the conv1, conv2, conv3, conv4, conv5, fc6, fc7
layers with pretrained AlexNet. For discriminator, we

use same architecture with RevGrad, x→1024→1024→1,

dropout is used.

For digit classification datasets, we use same architecture

with ADDA (Tzeng et al., 2017): two convolution layers

followed by max pool layers and two fully connected layers

are placed behind. Digit images are also cast to 28x28x1 in

all experiments for fair comparison. For discriminator, we

also use same architecture with ADDA, x→500→500→1.

Batch Normalization is inserted in convolutional layers.

Hyper-parameters tuning. A good unsupervised domain

adaptation method should provide ways to tune hyper-

parameters in an unsupervised way. Therefore, no labeled

target samples are referred for tuning hyper-paramters. We

essentially tune the three hyper-parameters: weight balance

parameter λ, γ and moving average coefficient θ. For θ, we

first apply reverse validation (Ganin & Lempitsky, 2015)

on the experiments MNIST→USPS. Then we use the op-

timal value for θ in all experiments. We set θ=0.7 in all

our experiments. For the weight balance parameter, we set

λ = 2
1+exp(−γ.p) − 1, where γ is set to 10 and p is training

progress changing from 0 to 1. It is optimized by (Ganin

& Lempitsky, 2015) to suppress noisy signal from the dis-

criminator at the early stages of training. Considering that

our pseudo-labeled semantic loss would be inaccurate in

early training phase, we also set γ = λ to suppress the

noisy information brought by false labels. Stochastic gra-

dient descent with 0.9 momentum is used. The learning

rate is annealed by µp = µ0

(1+α.p)β
, where µ0=0.01, α=10

and β=0.75 (Ganin & Lempitsky, 2015). We set the learn-

ing rate for finetuned layers to be 0.1 times of that from

scratch. We set the batch size to 128 for each domain. Do-

main adversarial loss is scaled by 0.1 following (Ganin &

Lempitsky, 2015).

4.3. Results

We now discuss the experiment settings and results.

Office-31 We follow the fully transductive evaluation pro-

tocol in (Ganin & Lempitsky, 2015). Results of office-31

are shown in Table 1. The proposed model outperforms all

comparison methods on all transfer tasks. It is notewor-

thy that MSTN results in improved accuracies on four hard

transfer task: A→W, A→D, D→A and W→A. On these

four difficult tasks, our method promote classification ac-

curacies substantially. The encouraging improvement on

hard transfer tasks proves the importance of semantic align-

ment and suggests that our method is able to learn semantic

representations effectively despite of its simplicity.

The results reveal several interesting observations. (1)

Deep transfer learning methods outperform standard deep

learning methods. It validates that the idea that domain

shift in two distributions can not be removed by deep net-

works (Yosinski et al., 2014). (2) DRCN (Ghifary et al.,

2016) trains an extra decoder to enforce the extracted fea-

tures contain semantic information and thus outperformed

standard deep learning methods by about 5%. This im-

provement also indicates the importance to learn seman-
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SVHN→MNIST

(a) Non-adapted

SVHN→MNIST

(b) Adversarial Adapted

SVHN→MNIST

(c) Semantic Adapted

D→A

(d) Adversarial Adapted

D→A

(e) Semantic Adapted

Figure 2. SVHN→MNIST and D→A. We confirmed the effects our method through a visualization of the learned representations using t-

distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008). Blue points are source samples and red are target samples.

(a) are trained without any adaptation. (b)(d) are trained with previous adversarial domain adaptation methods. (c)(e) Adaptation using

our proposed method. As we can see, compared to non-adapted method, adversarial adaptation methods successfully fuse the source

features and target features. But semantic information are ignored and ambiguous features are generated near class boundary, which is

catastrophic for classification task. Our model attempts to fuse features in the same class while separate features in different classes.

tic representations. (3) Separately, distribution matching

methods RevGrad, RTN and JAN, also bring significan-

t improvement over source only. Our method combines the

advantages of DRCN and distribution matching methods

in a very simple form. In particular, in contrast to using a

decoder to extract semantic information, our method also

ensures that the features in same classes but different do-

mains are similar, which has not been addressed by any ex-

isting methods. For completeness, we also conduct a visu-

alization over transfer task D→ A for comparison between

our learned representation and prior adversarial adaptation

method RevGrad (Ganin & Lempitsky, 2015). See Fig (2d)

and (2e). Representations learned by our model are better

behaved compared to RevGrad and representations in dif-

ferent classes are dispersed instead of mixing up.

To dive deeper into our method, we present the results of

one variants of MSTN: MSTN with centroid from scratch.

We try to align the centroids directly computed in each it-

eration instead of using moving average. The results are

interesting, for the simple transfer task D→W, W→D, this

variant are comparable or outperforms the moving average.

This phenomenon is plausible since the prediction accura-

cy for target domains is already very high and introduc-

ing the past semantic information might introduce noisy

information too. But take a look at the hard transfer task

D→A and A→D, the improvement carried by the moving

average centroid is obvious. This curious result provides

us two training instructions: (1) for easy transfer tasks or

large batch size, one could just align the centroids direct-

ly to learn semantic representation in each iteration. (2) for

hard transfer tasks or small batch size, one could effectively

pass the semantic information by aligning the moving av-

erage centroids. Note that our method does not introduce

any extra network architecture but only few memory that

are used to keep these global centroids.

ImageCLEF-DA For ImageCLEF-DA, results are shown

in Table 2. Images are balanced in ImageCLEF-DA, so

Table 3. Classification accuracies (%) on digit recognitions tasks

Source SVHN MNIST

Target MNIST USPS

Source Only 60.1±1.1 75.2±1.6

DOC (Tzeng et al., 2014) 68.1±0.3 79.1±0.5

RevGrad (Ganin & Lempit-

sky, 2015)

73.9 77.1±1.8

AsmTri (Saito et al., 2017a) 86.0 -

coGAN (Liu & Tuzel, 2016) - 91.2±0.8

ADDA (Tzeng et al., 2017) 76.0±1.8 89.4±0.2

LEL (Luo et al., 2017) 81.0±0.3 -

MSTN (ours) 91.7±1.5 92.9±1.1

our model could be more focused on transfer learning by

avoiding the class imbalance problem. But the domain size

is limited to 600, which might not be sufficient for training

the network. Our model outperforms existing methods in

most transfer tasks, but with less improvement compared

to Office-31. This result also validates hypothesis in (Long

et al., 2017b) that the domain size may cause shift.

MNIST-USPS-SVHN We follow the protocols in (Tzeng

et al., 2017): For adaptation between SVHN and MNIST,

we use the training set of SVHN and test set of MNIST

for evaluation. For adaptation between MNIST and USPS,

we randomly sample 2000 images from MNIST and 1800

from USPS. For SVHN→MNIST, the transfer gap is huge

since images in SVHN might contain multiple digits. Thus,

to avoid ending up in a local minimum, we do not use the

learning rate annealing as suggested by (Ganin & Lempit-

sky, 2015).

Results of MNIST-USPS-SVHN are shown in Table 3. It

shows that our model outperforms all comparison method-

s. For MNIST → USPS, our method obtains a desirable

performance. On the difficult transfer task SVHN → M-

NIST, Our model outperforms existing methods by about

6.6%. In Fig. 2, the representations in SVHN→MNIST
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Figure 3. Standard CNN in grey, Revgrad (Ganin & Lempitsky, 2015) in green, our model MSTN in red. (a)(c): Comparison of Jensen-

Shannon divegence (JSD) estimate during training for RevGrad and our proposed method MSTN. Our model stabilizes and accelerates

the adversarial learning process. (b)(d): Comparison of testing accuracies of different models. (e): Comparison of A-distance of

different models.

are visualized. Fig (2a) shows the representations without

any adapt. As we can see, the distributions are separat-

ed between domains. This highlights the importance for

transfer learning. Fig (2b) shows the result for RevGrad

(Ganin & Lempitsky, 2015), a typical adversarial domain

adaptation method. Features are successfully fused but it

also exhibits a serious problem: features generated are near

class boundary. Features of digit 1 in target domain could

be easily mapped to the intermediate space between class

1 and class 2, which is obviously a damage to classifica-

tion tasks. In contrast, Fig (2c) shows the representations

that learned by our method. Features in the same class are

mapped closer. In particular, features with different class-

es are dispersed, making the features more discriminative.

The well-behaved learned features suggests that our mod-

el successfully pass the semantic information to the feature

generator and our model is capable to learn semantic repre-

sentations without any label information for target domain.

A-distance. Based on the theory in (Ben-David et al.,

2010), A-distance is usually used to measure domain dis-

crepancy. The empirical A-distance is simple to compute:

dA = 2(1 − 2ǫ), where ǫ is the generalization error of a

classifier trained with the binary classification task of dis-

criminating the source and target. Results are shown in Fig

(3e). We compared our method with domain adaptation

methods RevGrad(Ganin & Lempitsky, 2015). We use a

kernel SVM as the classifier. We compare our model to

the standard CNN and RevGrad. From this graph, we can

see that with the adversarial adaptation module embedded,

our model reduces the A distances compared to CNN. But

when compared to RevGrad, the results are close. This

finding tells us that our semantic representation module is

not focusing on reducing the global distribution discrepan-

cy. The superior performance lead by our method shows

that only reducing the global distribution discrepancy for

domain adaptation is far from enough.

Convergence As our model involves the adversarial adap-

tation module, we testify their performance on convergence

from two different aspects. The first is the testing accuracy

as shown in Fig (3b)(3d). Our model has similar conver-

gence speed as RevGrad.

Since the adversarial module in our model and RevGrad

works analogous to GAN (Goodfellow et al., 2014), we

will check our model from GAN’s perspective. We adopt

the min-max game in GAN. It has been proved that when

the discriminator is optimal, the generator involved in the

min-max game in a GAN is reducing the Jenson-Shannon

Divergence (JSD). For the discriminator in adversarial

adaptation, it is trained to maximize LD = Ex∼DS
[log1−

D(x)] + Ex∼DT
[logD(x)], which is a lower bound of

2JS(DS , DT )-2log2. Therefore, following (Arjovsky &

Bottou, 2017), we plot the quantity of 1
2LD + log2, which

is the lower bound of the JS distance. Results are shown

in Fig (3a)(3c). We can make following observations: (1)

different from the vanishing generator gradient problem in

traditional GANs, the manifolds where features generated

by adversarial adaptation methods lies seems to be perfect-

ly aligned. So the gradients for the feature extractor will not

vanish but towards reducing the JS distance. This justifies

the feasibility for adversarial domain adaptation methods.

(2) Compared to RevGrad, our model is more stable and

accelerate the minimization process for JSD. It indicates

that our method stabilize the notorious unstable adversarial

training through semantic alignment.

5. Conclusion

In this paper, we propose a novel method which aims at

learning semantic representations for unsupervised domain

adaptation. Unlike previous domain adaptation methods

that solely match distribution at domain-level, we propos-

es to match distribution at class-level and align features se-

mantically without any target labels. We use centroid align-

ment to guide the feature extractor to preserve class infor-

mation for target samples in aligning domains and moving

average centroid is cautiously designed to tackle the prob-

lem where a mini-batch may be insufficient for covering

all class distribution in each training step. Experiments on

three different domain adaptation scenarios testify the effi-

cacy of our proposed approach.
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