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Abstract

Activity analysis is a basic task in video surveillance and
has become an active research area. However, due to the
diversity of moving objects’ category and their motion pat-
terns, developing robust semantic scene models for activity
analysis remains a challenging problem in traffic scenarios.

This paper proposes a novel framework to learn seman-
tic scene models. In this framework, the detected moving
objects are first classified as pedestrians or vehicles via a
co-trained classifier which takes advantage of the multi-
view information of objects. As a result, the framework can
automatically learn motion patterns respectively for pedes-
trians and vehicles. Then, a graph is proposed to learn and
cluster the motion patterns. To this end, trajectory is param-
eterized and the image is cut into multiple blocks which are
taken as the nodes in the graph. Based on the parameters
of trajectories, the primary motion patterns in each node
(block) are extracted via Gaussian Mixture Model (GMM),
and supplied to this graph. The graph-cut algorithm is fi-
nally employed to group the motion patterns together, and
trajectories are clustered to learn semantic scene models.
Experimental results and applications to real-world scenes
show the validity of our proposed method.

1. Introduction

Extracting the motion patterns from videos to develop
automatically traffic management systems meets the great
needs in the world. Video-based activity analysis helps to
convey the information along which path or direction the
vehicles or pedestrians should move or walk. Such summa-
rized information is fundamental on which the rules of ab-
normal behavior of moving objects are defined. With such a
system, the initialization work of supplying the information
of scene models, such as traffic paths, entry and exit points
of traffic, can be saved. However, the motion of pedestri-
ans and vehicles is complex and their motion patterns are

different from each other. Thus automatically learning the
semantic scene models from videos becomes a challenging
problem in computer vision and pattern recognition.

Recently, many approaches on learning semantic scene
models have been proposed by trajectory analysis [7, 3, 20,
13, 19]. One of most important work is to introduce ob-
ject classification into trajectory analysis. Wang et al. [20]
use scene context features (such as position, area in pixels,
and velocity) to cluster trajectories into different types (ve-
hicles vs. pedestrians). Experimental results show that this
method is more efficient. But due to low resolution, shadow,
different viewing angles, classifying objects with only these
features is not enough in video surveillance.

During learning semantic scene models, lots of meth-
ods have been proposed to cluster trajectories, and these
methods can be categorized into two classes: spatial dis-
tance based methods [5, 8, 13, 20] and spatial distribution
based methods [19]. Spatial distance based methods take
only the pairwise similarities between trajectories. The pro-
posed trajectory similarities or distances include Euclidean
distance [5], Hausdorff distance and its variations [8, 20],
and Dynamic Time Warping (DTW) [9]. These approaches
have several drawbacks: lack a probabilistic explanation
for abnormality detection, require the cluster number in ad-
vance, have a high computation cost and may not well ap-
proximate the true similarity. For example, in Figure 1(a),
trajectories a, b and c belong to two different clusters. Tra-
jectories b and c are in the same cluster, but trajectories a
and b will have much higher similarity than b and c using
the similarity defined in [5, 8, 20]. Therefore, spatial dis-
tribution based methods are proposed by Wang et al. [19]
to avoid these drawbacks. Wang et al. [19] use the distri-
butions of observations (positions and moving directions of
objects) on the trajectories for trajectory analysis, but do not
take into account the integrity of each trajectory. Based on
the definition in [19], in Figure 1(b), the observations (po-
sitions and moving directions of objects) on the trajectories
A, B, C and D are similar, so they are clustered into the
same activity. In practice, we think trajectories B, C and
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D are the same cluster, and trajectory A is abnormal and
represents another cluster.

(a) (b)

Figure 1. (a) Some measured similarities between trajectories may
not well approximate the true similarity in the physical world. (b)
It is different between distributions of observations on trajectories
and distributions of trajectories.

After clustering trajectories, semantic scene models are
obtained for each cluster. Paths can be detected by modeling
the spatial extents of trajectory clusters [20, 3, 7]. Entry and
exit points are detected at the ends of paths based on the ve-
locity distribution [20]. Makris and Ellis [3], Mckenna and
Nait-Charif [15] detect these points from start/end points of
trajectories by the Gaussian Mixture Models (GMM).

In this paper, we propose a novel method to learn se-
mantic scene models by object classification and trajectory
clustering. To avoid labeling a large training set by hand and
improve classification performance, the co-training learn-
ing algorithm is adopted to train two classifiers, LDA-based
classifier and AdaBoost classifier, on two independent fea-
tures. To further cluster each class of trajectories, we make
use of spatial distribution of trajectories. The spatial distri-
bution is fitted by an underlying parameter model instead of
the discrete observations of trajectories in traditional meth-
ods [19]. Experimental results illustrate the effectiveness
and efficiency of the proposed method.

2. Our Approach

We take two steps to learn semantic scene models: (1)
train classifiers under our co-training framework to clas-
sify object into vehicle or pedestrian, and (2) cluster each
class of trajectories with their spatial distributions (trajec-
tories’ parameters and directions). Figure 2 illustrates the
framework. Real-time background subtraction and track-
ing [16] is used to detect and track the moving objects. For
each foreground object, a co-training classifier (Section 3)
is adopted to classify it into vehicle or pedestrian. For each
kind of trajectory, it is further clustered. Finally, semantic
scene models are obtained for each cluster of trajectory and
used in some applications.

For the first step, we adopt a semi-supervised method
to learn two classifiers for object classification (Section 3),
inspired by the idea of co-training learning. Two sets of
features are predefined and they are relatively independent
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Figure 2. The proposed flowchart of learning semantic scene mod-
els.

of each other: (1) scene context features, such as position,
area in pixels, velocity; and (2) appearance features based
on Multi-block Local Binary Pattern (MB-LBP) [22]. Two
labeled sets are then prepared based on them, each for train-
ing one of the classifiers. Each classifiers prediction on the
unlabeled samples to enlarge the training set of the other.
Experiments demonstrate that the co-training algorithm can
generate an accurate classifier conveniently and effectively.

For the second step, a graph is adopted to cluster motion
patterns of each category for trajectory clustering. Trajec-
tories are described in a parametric way (Section 4.1) and
scene image is cut into multiple blocks which are taken as
the nodes of the graph. Each node is viewed as the distri-
butions of trajectories (trajectories’ parameters and moving
directions of objects), not the observations (positions and
moving directions of objects) on the trajectories [19]. In
this way, spatial distance between trajectories is reflected
by their parameters. As in Figure 1(b), trajectory A will
be distinguished and viewed as a different cluster because
its parameters are different. Trajectory distribution in a
node can be viewed as a Gaussian distribution from statis-
tic point of view. Each node may have multiple distribu-
tions, so the Gaussian Mixture Model (GMM) is adopted
to describe spatial distributions of trajectories for each node
(Section 4.2). Each of the Gaussian components is one of
the underlying motion patterns. Then motion patterns are
clustered by graph-cut algorithm (Section 4.3) to obtain its
corresponding semantic region.

Based on the semantic regions and their corresponding
motion patterns, trajectories are further clustered. For each
cluster of trajectories, entry/exit points and primary trajec-
tories are learnt by Mean-Shift based multiple data mode-
seeking algorithm [21]. As a result, semantic scene models
are learnt (Section 5) and used for some applications (Sec-
tion 6.4). The proposed method is verified on extensive real
video data and the results are encouraging (Section 6). The
main contributions can be summarized as follows:

• Fusing different features and enlarging unlabeled sam-
ples under our co-training framework improve the clas-
sification performance.
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• Trajectory is described in a parametric way which can
save storage and reduce computation cost.

• It is robust to cluster the motion patterns based on not
only their value in each node but also their neighboring
correlations in the graph.

3. Object Classification

3.1. LDA-Based Classifier

Scene context features reflect the properties of objects
in the scene image, so they can be used to distinguish ob-
jects. For a certain scene, scene context features are robust
and useful to classify object [20, 23]. In this paper, scene
context features: x-, y- image coordinates, area in pixels,
speed, direction of motion, aspect ratio, percentage occu-
pancy, are used to find an optimal direction of projection to
separate the positive and negative sample with fisher linear
discriminant analysis (LDA). The projection function is de-
fined as: g = wT r, where w = (S1 + S2)−1(u1 − u2), u1,
u2 are the means of the two classes (people and vehicle),
and S1, S2 are the covariance matrices. The formulation

of ut and St, t = 1, 2, are as follows: ut = 1
nt

nt∑
j

rj ,

St = 1
nt−1

nt∑
j

(rj − ur)(rj − ur)T , where rj is the jth

sample.

3.2. AdaBoost Classifier

The LDA-based classifier constructed by scene context
features is relative to scene, Therefore, an appearance clas-
sifier based on Multi-block Local Binary Pattern (MB-
LBP) [22] features is adopted to improve the performance
of classification. MB-LBP is extended from the original
LBP feature [14], which has been proven to be a powerful
appearance descriptor with computational simplicity. Be-
sides, this feature is also successfully applied in many low
resolution image analysis tasks [6]. However, it is limited to
calculate the information in a small region and has no ability
to capture large-scale structures of objects. MB-LBP is de-
veloped on image patches divided into sub-blocks (rectan-
gles) with different sizes. This treatment provides a mech-
anism for us to capture appearance structures with various
scales and aspect ratios. Intrinsically, MB-LBP is to mea-
sure the intensity differences between sub-blocks in image
patches. Calculation on blocks is robust to noises, light-
ing changing. At the same time, MB-LBP can be computed
very efficiently by using integral images [18]. The feature
set of MB-LBP feature is large and contains much redun-
dant information. AdaBoost algorithm is used to select sig-
nificant features and construct a binary classifier. The Gen-
tle AdaBoost [4, 17] is adopted for the reason that it is sim-
ple to be implemented and numerically robust.

3.3. The Co-Training Framework

To train the classifiers, labeling a large training set by
hand can be time-consuming and tedious. The difficulty is
the high cost of acquiring a large set of labeled examples to
train the two classifiers. Of course, gathering a large num-
ber of unlabeled examples in most applications has much
lower cost, as it requires no human intervention. One typ-
ical method for training the image classifier is to adopt the
co-training learning algorithm [1] from a combination of
both labeled and unlabeled data. The basic idea is to train
two classifiers on two independent “views ”(features) of
the same data, using a relatively small number of exam-
ples. Then the most confidently labeled examples from one
classifier are added to the labeled set of the other classifier.
Blum and Mitchell [1] prove that co-training can find a very
accurate classification rule, starting from a few labeled ex-
amples if the two feature sets are statistically independent.
However, Levin et al. [11] empirically prove that co-training
is still possible even in the case the independence assump-
tion does not hold.

In our algorithm two relatively independent features are
used: scene context features and MB-LBP features as the
object representation. Each feature is used to train a clas-
sifier. The classifiers are trained as follows: for a certain
scene, some samples are labeled to train the two classifiers,
then the classifiers are used to classify unlabeled examples
to obtain their labels and add those newly labeled exam-
ples which are confident enough to update the training set
for each other. This learning process can be repeated many
times. As the LDA-based classifier is relative to scene, for a
different scene, the AdaBoost classifier is used to label sam-
ples to train the LDA-based classifier, then they are training
for each other. To ensure the correct classification, from
one training data set to another, their appearances change
slowly.

The main advantages of this scheme are: (1) It is a col-
laborative approach that uses the strength of different views
of the object to help improve each other, hence a more ro-
bust classification. (2) Mass manual labeling is avoided.
Experiments demonstrate that co-training can generate ac-
curate classifiers. After training classifiers,we make final
classification decision according to the output of the classi-
fier with more confidence.

4. Trajectory Clustering

4.1. Trajectory Description

A trajectory can be obtained by tracking the centroid of
an object, in the 2-D image coordinates as in Figure 1(a),
whose origin is on the bottom left corner, it can be described
as T = {(x1, y1), (x2, y2), · · · , (xn, yn)}. In general traffic
scenes, trajectory of a vehicle is not complicated, thus it is
reasonable to use quadratic curve (y = a×x2+b×x+c) to

1942



describe the trajectory. For a tracked object, all points from
start point to end point are collected to calculate the param-
eters (a, b, c) by least squares fit to the y values. Moving
direction of object (v) is quantized into four directions as
in Figure 1(b). The parameters (a, b, c, v) are features of a
trajectory.

4.2. Learning Motion Patterns by GMM Algorithm

There are lots of motion patterns in traffic scenarios.
These motion patterns can be obtained for each pixel in the
scene image, but it is time and storage consuming. Since ad-
jacent pixels in scene image have similar motion patterns, it
is feasible to cut the scene image into R×C relatively small
blocks and learn these motion patterns based on each block.

Objects are classified into vehicles or pedestrians, and
there are two kinds of trajectories. For each kind of trajec-
tory, the motion patterns of each block can be viewed as
Gaussian distributions from statistic point of view. Because
each block may contain many motion patterns, we adopt the
multiple Gaussian models to represent them. There are four
advantages to learn motion patterns by the GMM algorithm:
(1) Multiple Gaussian models are enough to describe each
block which may contain many various motion patterns. (2)
Outlier trajectories can be removed by updating the weight
of Gaussian model, hence primary motion patterns are able
to be learnt from long-term observations. (3) The weight
of Gaussian model can be viewed as the importance of its
corresponding motion pattern, hence the number of impor-
tant activities will be known. (4) The computation cost is
low. Experiments demonstrate that the GMM algorithm is
efficient.

Our algorithm can be described as follows. Each block
in the scene is modeled by a mixture of K Gaussian distri-
butions for trajectory parameters. For a certain block, the
series of trajectories {Tt = (at, bt, ct, vt)}N

t=1 are obtained.
Here (at, bt, ct, vt) are parameters of a trajectory Tt. They
are used to learn the parameters distribution of blocks which
the objects have passed. The probability that a certain block
has a value of Tt at time t can be written as

P (Tt) =
K∑

i=1

wi,t × η(Tt, ui,t, Σi,t), (1)

where wi,t is the weight parameter of the ith Gaussian com-
ponent at time t, η(Tt, ui,t,Σi,t) is the ith Normal distri-
bution of component with mean ui,t and covariance Σi,t.
Here Σi,t is assumed to be diagonal matrix. Although this
is certainly not the case, the assumption allows us to avoid
a costly matrix inversion at the expense of some accuracy.

ui,t = (ua
i,t, u

b
i,t, u

c
i,t)

T (2)

σi,t = (σa
i,t, σ

b
i,t, σ

c
i,t)

T (3)

Σ
1
2
i,t =

⎛
⎝ σa

i,t 0 0

0 σb
i,t 0

0 0 σc
i,t

⎞
⎠ (4)

The K distributions are ordered based on the fitness value
wi,t. Parameters u and σ for unmatched distributions re-
main the same. The first Gaussian component that matches
the test trajectory will be updated by the following update
equations,

wi,t = (1 − α)wi,t−1 + α(Mi,t) (5)

ui,t = (1 − ρ)ui,t−1 + ρTt (6)

σ2
i,t = (1 − ρ)σ2

i,(t−1) + ρ(Tt − ui,t)
T (Tt − ui,t) (7)

ρ = αη(Tt|ui,t, σi,t), (8)

where Mi,t is 1 for the model which matched and 0 for the
remaining models, 1/α defines the time constant which de-
termines change. If none of the K distributions matches
the trajectory, the component with the minimum weight is
replaced by a distribution with the current value (at, bt, ct)
as its mean, the vt as its moving direction, an initially high
variance, and a low weight parameter. In our experiments,
K is manually set to be 3, α is manually set to be 0.1, the
initial high variance of (a, b, c) are (0.05, 0.2, 20), the low
weight is 0.05.

4.3. Clustering Motion Patterns by Graph-Cut Al-
gorithm

Up to now, a straightforward way to group the patterns is
to use the commonly used clustering algorithm. However,
the algorithms, for example, the K-means algorithm, do not
consider the spatial relations between local blocks. Actu-
ally, for two neighboring blocks, it is possible that they con-
tain similar motion patterns. Thus it is necessary to consider
such spatial relations when grouping the motion patterns to-
gether, which yields the following graph-based algorithm.

Naturally, we can take each local block as a node, and
two neighboring blocks in horizontal and vertical directions
can be connected together. In terms of Markov Random
Filed (MRF), we consider to minimize the following energy
function:

E(L) =
∑
p∈S

Dp(Lp) +
∑

(p,q)∈N
Vp,q(Lp, Lq), (9)

where S is the block lattice, N is the pair-wise neighbor-
hood system, the label set is {0, 1}. Dp(Lp) denotes the
cost of the block p to be labeled as Lp. Vp,q(Lp, Lq) encour-
ages spatially neighboring blocks to have similar labels.

Now a core task is to calculate the terms of Dp(Lp) and
Vp,q(Lp, Lq) in Eq. (9). Note that we have not any prior
information about the patterns. To assign values to Dp(Lp),
we first extract the primary motion patterns in the scene.

Since all motion patterns (G) learnt by GMM
algorithm are collected into G = {�gk

ij |i =
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1, 2, · · · , R, j = 1, 2, · · · , C, k = 1 · · ·K.}, Where
�gk

ij = (ak
ij , b

k
ij , c

k
ij , v

k
ij)

T is the kth motion pattern of the
block (i, j), then we can consider to take the components
from G as the primary motion patterns. These patterns will
be used as references to calculate the energy term.

As for a scene, there are only a few primary motion pat-
terns. The weight of a Gaussian model reflects the impor-
tance of a motion pattern. Therefore, a Gaussian model
�gk

ij is selected as a primary motion pattern if its weight
wk

ij > Th. Th is a threshold which is manually set to
be 0.85 in our experiments throughout our evaluation. In
this way, all of the primary motion patterns (Gm) are ex-
tracted. For a motion pattern in Gm, it is considered as
a reference, all of the primary motion patterns (Gm) are
viewed as two clusters, denoting them as �gr, the other is
�ga. �ga is the average of motion patterns which belong to
{�gl| ‖�gr − �gl‖ > λ × dmean, vr · vl = 1}, where λ is a
tuned coefficient and is manually set to be 0.85, dmean is
the average distance between the reference and the motion
patterns having similar velocity with the reference in Gm.
Distance between motion pattern �g1 = (a1, b1, c1, v1) and
�g2 = (a2, b2, c2, v2) is defined as follows: if v1 · v2 = 1,
‖�g1 − �g2‖2 = (a1 − a2)2 + (b1 − b2)2 + (c1 − c2)2, other-
wise, ‖�g1 − �g2‖2 = Max. Where Max is a large constant
number and is set to be 99 in our experiments. Now we can
calculate Dp(Lp) as follows:

Dp(Lp) =

{
d1

d1+d2
if Lp = 1

d2
d1+d2

if Lp = 0
(10)

, where d1 = min
k

∥∥�gr − �gk
ij

∥∥, d2 = min
k

∥∥�ga − �gk
ij

∥∥. d1

and d2 represent the similarities between the motion pat-
terns of block (i, j) and �gr, �ga respectively. Furthermore,
Vp,q(Lp, Lq) is evaluated as

Vp,q(Lp, Lq) =

{
0 if Lp=Lq

d0 otherwise
(11)

, where d0 is a constant to punish a label jump-
ing, it is calculated as the standard deviation of
{dij | i = 1, 2, · · · , R; j = 1, 2, · · · , C}, and dij is
min

k
(
∥∥�gr − �gk

ij

∥∥), which expresses the minimum distance

between motion patterns of block (i, j) and the reference
motion pattern.

Finally, for each motion pattern in Gm, it is viewed as a
reference, and the graph-cut algorithm [2, 10] is applied to
optimize the objective function Eq.( 9) to obtain its corre-
sponding semantic region. In this way, all of the semantic
regions are obtained. Trajectories which fit the same seman-
tic regions are viewed as a cluster.

5. Learning Semantic Scene Models

For each cluster of trajectories, to learn semantic scene
models, Mean-Shift algorithm is adopted to search the pri-

mary trajectory and entry/exit points. The measure as [20]
is taken to extend the distribution of the trajectories. Ta-
ble 1 is our algorithm summary. Two classifiers based on
independent features are trained by our co-training frame-
work to classify objects into vehicles or pedestrians. For
each class of trajectories, it is parameterized and motion
patterns learned by the GMM algorithm are clustered by
the graph-cut algorithm. Finally, trajectories are clustered
and semantic scene models are learned.

1. Classify object. (Section 3)

(a) Train the LDA-based classifier and the AdaBoost clas-
sifier with our co-training framework.

(b) Classify each foreground object into vehicle or pedes-
trian by the trained classifiers.

2. Cluster trajectory. (Section 4)

For each kind of object (vehicle vs. pedestrian):

(a) Parameterize its trajectories.(Section 4.1)

(b) Learn the motion patterns (G) based on the parameters
for each block by the GMM algorithm.(Section 4.2)

(c) Cluster the motion patterns (Gm) by the graph-cut al-
gorithm to group the trajectories.(Section 4.3)

• Obtain corresponding semantic region for each mo-
tion pattern (gr) in Gm by optimizing the objective
function Eq.( 9).

• Cluster Trajectories based on these semantic regions.

3. Learn semantic scene model for each cluster of trajectories.

(Section 5)

Table 1. Algorithm summary.

6. Experimental Results

6.1. Results of Object Classification

We implement real-time background subtraction and
tracking as [16], so that moving objects can be reasonably
separated from background and training samples can be ob-
tained. We compare classifiers trained with labeled sam-
ples and our co-training framework in five scenes. The
AdaBoost classifier is trained with 20, 213 positive sam-
ples (pedestrians) and 41, 934 negative samples (vehicles)
labeled manually. These samples are obtained by normaliz-
ing blobs to 20 × 20 pixels and collected per 10 frames to
reduce the correlation. The LDA-based classifier is trained
with 12, 000 positive samples and 35, 000 negative samples
for each scene using scene context features. Our classifiers
are initialized with 2, 720 positive samples (pedestrians)
and 6, 716 negative samples (vehicles) labeled manually in
a data set, then they are trained with our co-training frame-
work. For a different training set, the AdaBoost classifier
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is used to classify unlabeled examples to obtain their labels
and add those newly labeled examples which are confident
enough to update the training set for LDA-based classifier
training, then the two classifiers are training for each other.
In this way, the training set of our classifiers becomes large
and their classification correct rate is rising. In applications,
the output of the classifier with more confidence is used to
give the final classification decision. The objects in the test
set are all not included in the training set. Appearances of
objects vary significantly due to shadow, object merging as
in Figure 7(f), so it is difficult for the AdaBoost classifier to
have a good performance. Positions of objects effect mostly
the classification of the LDA-based classifier. Comparing
to the AdaBoost classifier and the LDA-based classifier, our
classifiers do not require a very large set of labeled training
data and achieve more considerable performance in diverse
scenes. Table 2 shows the classification results.

Scene S1 S2 S3 S4 S5

LDA-Based classifier 87.1% 88.3% 91.3% 91.5% 82.5%

AdaBoost calssifier 91.1% 87.3% 89.8% 90.3% 80.5%

Our 98.2% 97.3% 96.6% 97.4% 96.8%

Table 2. Classification results of the three classifiers. Our classifier
is best because it fuses multiple features and enlarges training set
from unlabeled samples.

6.2. Results of Trajectory Clustering

After classifying different types of trajectories (vehicles
vs. pedestrians) with object classifiers, each class of trajec-
tories is further clustered. We have tested our algorithm of
trajectory clustering in many scenes. Due to limited space,
the results of clustering trajectories of vehicles in two typ-
ical scenes S1 and S2 (see Fig. 3), which include straight
road and crossroad.

Before clustering, outlier trajectories must be removed.
Usually these are noisy trajectories caused by tracking
or classification errors, anomalous trajectories, e.g., a car
drives out of the way, or some pedestrians roaming be-
tween different paths. In visual surveillance, these may be
of particular interest, and as expected our algorithm can de-
tect them. For each scene, the GMM algorithm is adopted
to learn motion patterns for a long time. If a trajectory’s
parameters are similar with the motion patterns of blocks
which the object has passed, and the motion patterns have a
high weight, the trajectory is received. Otherwise, the tra-
jectory is viewed as a noisy trajectory and deleted. In this
way, 364 and 417 trajectories are selected in scene S1, S2
respectively.

Trajectory Description. Each trajectory obtained
by the visual tracker is formulated as a quadratic curve,
and the parameters (a, b, c) are calculated by least
squares. Noisy points have a bad effect on the least

squares algorithm. Therefore, every trajectory is pre-
processed to delete these points. For a trajectory T =
{(x1, y1), (x2, y2), · · · , (xn, yn)}, distance between near
points is defined as di = ‖xi+1 − xi‖ + ‖yi+1 − yi‖,
and change of distance Δdi is ‖di+1 − di‖. The mean u
and the standard deviation δ of {Δdi, i = 1, 2, · · · , n − 2}
can be obtained. If

∥∥Δdi−u
δ

∥∥ > 2.5, the three points
(xi, yi), (xi+1, yi+1) and (xi+2, yi+2) are considered to be
unstable and deleted; otherwise, these points are saved and
used to calculate the parameters. Instead of saving all points
of a trajectory, the parametric way reduces storage space. In
addition, it is convenient to extract motion patterns in this
way. For complex trajectories, they can be treated as the
combination of multiple simple trajectories. Some results
of trajectory description in a parametric way are showed in
Figure 3.

(a) (b) (c) (d)

Figure 3. Examples of trajectory fitting. The white arrows are
the moving directions of objects. (a) and (c): The trajectories in
scene S1 and S2 respectively. (b) and (d): The results of trajectory
fitting.

Trajectory Clustering. Three trajectory clustering
methods are compared in our experiments. For clarity, they
are described as I, II and III. I: As mentioned in paper [20],
the modified Hausdorff distance is viewed as trajectory sim-
ilarities and use spectral clustering [12]; II: Based on the
parameters of trajectories, Euclidean distance is considered
as trajectory similarities and use spectral clustering [12].
III: Cluster trajectories based on their distributions. The
method I is more time-consuming than II and III. Table 3
gives a quantitative comparison in computation cost on a
P4 3.0GHz CPU. Our method III takes two steps to obtain
semantic regions. The first step is cutting the scene image
into multiple blocks and learning motion patterns for each
block by the GMM algorithm. The corresponding compu-
tation time is showed in Table 3. The second step is clus-
tering these motion patterns. For scene S1 and S2, the scene
image 320 × 240 is cut into 16 × 16 blocks. Blocks having
similar motion patterns are clustered to construct semantic
region. Based on the weight of Gaussian model, 9 and 18
motion patterns are selected as the primary motion patterns
for scene S1 and S2 respectively. The corresponding com-
putation time with the graph-cut algorithm is 10 seconds
and 19 seconds. Because some primary motion patterns are
similar, it causes that their corresponding semantic regions
may have the same blocks. After removing the same seman-
tic regions, all of the primary semantic regions are obtained.
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TN 200 400 600 800 1000
I (seconds) 1112 4138 11687 17578 28072
II (seconds) 2 5 12 23 38
III (seconds) 4.8 5.6 6.0 7.2 8.3

Table 3. The first row (TN) is the number of trajectory. The second
and third row are the corresponding computation time of I and II,
the unit is second. The fourth row is the corresponding time of
learning motion patterns with the GMM algorithm.

Some results are showed in Fig. 4. In scene S1 and S2, there
are six and eight semantic regions of vehicles respectively.
Each of them represents a primary motion pattern.

Based on the semantic regions and their corresponding
motion patterns, trajectories which fit the same semantic re-
gions are considered as a cluster. To make a quantitative
comparison, the statistical results of scene S1 are illustrated
in table 4. For the 364 trajectories, there are six clusters.
The ground truth annotation of each cluster is labeled man-
ually. There are 57, 110, 41, 29, 86 and 41 trajectories for
cluster 1, 2, 3, 4, 5 and 6 respectively. Recall and Precision
are used to measure the performance. For scene S2, the re-
sults of the three methods are shown in Figure 5. These
results show our method III based on spatial distribution of
trajectories performs the best.

Method Cluster TP FN FP Recall Precision
1 57 0 19 100% 75.0%
2 88 22 1 80.0% 98.9%
3 40 1 3 97.6% 93.0%

I 4 29 0 5 100% 85.3%
5 81 5 2 94.2% 97.6%
6 39 2 0 95.1% 100%
1 56 1 18 98.2% 75.7%
2 84 26 1 76.4% 98.8%
3 40 1 9 97.6% 81.6%

II 4 27 2 10 93.1% 73.0%
5 72 14 4 83.7% 94.7%
6 38 3 5 92.7% 88.4%
1 57 0 0 100% 100%
2 107 3 0 97.3% 100%
3 41 0 3 100% 93.2%

III (Our) 4 29 0 4 100% 87.9%
5 81 5 0 94.2% 100%
6 41 0 1 100% 97.6%

Table 4. The Precision and Recall of the three methods in scene
S1. TP is true positive, FN is false negative, FP is false positive.

6.3. Results of Learning Semantic Scene Models

For each cluster of trajectories, the methods in Section 5
are used to learn semantic scene models. The path re-
gion is obtained by thresholding the density distribution.
The learned semantic scene models of scene S1 and S2
are showed in Figure 6. The red lines are the primary
trajectories, which represent the primary motion patterns.
The start/end points of these lines are viewed as entry/exit

(a) (b)

Figure 4. Results of clustering motion patterns. (a) The six seman-
tic regions in scene S1. (a) The eight semantic regions in scene
S2.

(a) (b) (c)

Figure 5. (a), (b) and (c) are the results of trajectory clustering by
I, II and III respectively.

(a) (b)

Figure 6. (a) and (b) are results of semantic scene models in scene
S1 and S2 respectively. The white arrows are the moving direc-
tions of objects, and the red curves are the primary trajectories.

points. The white arrows are the moving directions of ob-
jects.

6.4. Applications in Abnormal Detection and Ob-
ject Segmentation

The learned semantic scene models can be directly used
to real-time detection of abnormal behaviors in traffic sce-
narios. For scene S1 in Fig. 7(b), boundaries of the six se-
mantic scene models for vehicles are described with a rect-
angle. The six paths are labeled from 1 to 6, for example,
“RN=2” expresses the vehicle in the second path. When
a vehicle moves from a path to another, the lane-merging
activity happens. Fig. 7(d) shows a result. For scene S2,
when an object enters the scene, it is classified into vehicle
or pedestrian. For each vehicle/pedestrian class, we have
already learnt the primary motion patterns for each block.
For a trajectory, if its probability estimated by EQ.( 1) is
small, then we view it as an abnormal activity. An example
is showed in Fig. 7(e). In addition, based on the semantic
scene models, merged objects detected by the GMM algo-
rithm can be segmented, a result is showed in Fig. 7(f).
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(a) (b) (c) (d) (e) (f)

Figure 7. (a): The six semantic scene models of vehicles in scene S1. (b): The boundaries of these models in scene S1. (c): The primary
trajectories of the six semantic scene models. (d): Lane-merging detection in scene S1. (e): Anomalous trajectory detection in scene S2.
(f): The blue box is the result of GMM detector, the red box is the result of segmentation based on the semantic scene models in scene S1.

7. Conclusions

In this paper, a novel framework is proposed to learn
semantic scene models. First, classifier trained under co-
training framework is adopted to classify trajectories into
different types (vehicles vs. pedestrians). Second, each
class of trajectories is further clustered by the spatial dis-
tributions of trajectories (trajectories’ parameters and mov-
ing directions of objects). For each cluster of trajectories,
semantic scene models are learnt and used in some appli-
cations. Experimental results validate the effectiveness and
efficiency of our framework.
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