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Learning Sequential Composition Control
Esmaeil Najafi, Member, IEEE, Robert Babuška, Member, IEEE,

and Gabriel A. D. Lopes, Member, IEEE

Abstract—Sequential composition is an effective supervisory
control method for addressing control problems in nonlinear
dynamical systems. It executes a set of controllers sequentially to
achieve a control specification that cannot be realized by a single
controller. As these controllers are designed offline, sequential
composition cannot address unmodeled situations that might
occur during runtime. This paper proposes a learning approach
to augment the standard sequential composition framework
by using online learning to handle unforeseen situations. New
controllers are acquired via learning and added to the existing
supervisory control structure. In the proposed setting, learning
experiments are restricted to take place within the domain of
attraction (DOA) of the existing controllers. This guarantees that
the learning process is safe (i.e., the closed loop system is always
stable). In addition, the DOA of the new learned controller is
approximated after each learning trial. This keeps the learning
process short as learning is terminated as soon as the DOA of the
learned controller is sufficiently large. The proposed approach
has been implemented on two nonlinear systems: a nonlinear
mass-damper system and an inverted pendulum. The results show
that in both cases a new controller can be rapidly learned and
added to the supervisory control structure.

Index Terms—Supervisory control, switching control, sequen-
tial composition, reinforcement learning, domain of attraction,
passivity based control.

I. INTRODUCTION

S
EQUENTIAL composition [1] is a supervisory control

methodology that can address complex control specifi-

cations in nonlinear dynamical systems. It focuses on the

interaction between a collection of pre-designed controllers,

each endowed with a domain of attraction (DOA) and a goal

set. If the goal set of one controller lies in the DOA of another

controller, which is defined as the prepare relation [1], the

supervisor can instantly switch from the first controller to the

second. This approach decomposes complex tasks into smaller

and simpler tasks such that each can be solved using traditional

stabilization and tracking control methods. The composition

is usually represented by a supervisory finite-state machine

that we call the control automaton, with each state (mode)

associated with the specific controller, a corresponding DOA

and a goal set.

Applications of sequential composition include, for in-

stance, balancing of an underactuated system [2], navigation

of an autonomous mobile robot [3], [4], navigation of fully ac-

tuated dynamical systems through cluttered environments [5],

control of cooperative systems [6], etc. The standard sequential

composition framework has been extended in several ways. In
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[7], robust controller specifications are composed sequentially.

Linear quadratic regulator trees (LQR-trees) is a feedback

motion planning algorithm, designed based on the sequential

composition approach, that uses computed stability regions to

construct a tree of LQR-stabilized trajectories through the state

space [8].

Although sequential composition provides a well-structured

supervisory architecture, it cannot handle situations for which

no controller was designed a priori. In this paper we propose

a learning sequential composition control approach to handle

unmodeled situations by means of online learning. This paper

addresses three main questions. First, how to learn a new

controller online that can be added to the existing supervisory

control architecture. Second, how to guarantee that the learning

process is safe. Third, what is a suitable criterion for stopping

the learning process.

The proposed learning sequential composition method

works as follows. When a desired state is given, the supervisor

computes a sequence of controllers over the control automaton.

This sequence steers the system from an initial state to the

desired state by switching between the local controllers. How-

ever, if the supervisor does not succeed in finding a sequence

of controllers that drive the system to the desired state with its

current set of controllers, a learning mode is activated to learn

a new controller. Once the controller is learned, it is added to

the control automaton by interconnecting it with the associated

controllers such that it respects the prepare relation.

We employ reinforcement learning (RL) in which the con-

trol law is computed by interaction with the system, without

the need of a model [9]. The learning experiments only explore

the regions located within the union of the existing DOAs. This

form of learning guarantees that exploration is always safe,

because the supervisor can activate a stabilizing controller if

the learning process reaches the boundary of the overall DOA.

After each learning trial, the DOA of the learned controller

is approximated by solving an optimization problem using

sum of squares (SOS) programming [10] or by applying

a sampling method [11] developed by the authors. While

learning is in progress, the DOA of the controller typically

enlarges around its goal set. Once the DOA gets large enough

to cover other DOAs and relevant goal sets to provide the

necessary connections between the controllers, the learning

process is terminated and the learned controller is added to

the control automaton.

This paper is organized as follows. Section II reviews

briefly the key concepts of sequential composition. Section III

presents the main contributions of this paper, which is the use

of learning in sequential composition. Section IV discusses

rapid learning by exploiting the DOAs of the learning con-

trollers and using passivity theory. In Section V, simulation
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and experimental results are presented for the application

of the proposed method on two nonlinear systems. Finally,

Section VI provides a brief discussion and then concludes the

paper with some research lines for future work.

II. SEQUENTIAL COMPOSITION

Consider the dynamical system

ẋ = f(x, u), (1)

where x ∈ X ⊆ Rn is the state vector, u ∈ U ⊆ Rm is the

control input, and f : X × U → Rn is the system dynamics.

For a particular state-feedback controller Φi(x), indexed by i,
the closed-loop system is

ẋ = f
(

x,Φi(x)
)

= fi
(

x
)

. (2)

Let x∗i be a stable equilibrium of the closed-loop system (2).

The goal set of controller Φi(x), denoted G(Φi) ⊆ X , is

described1 by

G(Φi) = {x
∗
i }. (3)

Each control law is valid in a subset of the state space, called

the DOA and denoted D(Φi) ⊆ X . If x(t, x0) denotes the

solution of (2) at time t, subject to the initial condition, the

DOA of controller Φi is defined by the set

D(Φi) = {x0 ∈ X : lim
t→∞

x(t, x0) = G(Φi)}, (4)

It is assumed that system (1) is controllable throughout the

union of all existing DOAs and each controller can stabilize

the system at its goal set. Moreover, switching strategies and

transitions between controllers are defined based on the pre-

pare relation. According to this relation, controller Φi prepares

controller Φj , denoted Φi � Φj , if G(Φi) ⊂ D(Φj) [1]. In

other words, once the system enters D(Φj) while en route to

G(Φi) the supervisor can instantly switch from controller Φi to

Φj . Backchaining away from the controller that stabilizes the

system at the desired state to the controller whose DOA con-

tains the initial state results in a converging switching control

law that ensures the stability of the closed-loop system through

the overall DOA. This is an important property of sequential

composition as a switching control methodology [12].

Each mode of the control automaton, indexed by i, describes

a tuple si ∈ S as

si = {Φi,D(Φi),G(Φi)}, (5)

where S is a finite set of modes. When a new controller is

defined, first its relevant interactions with other controllers are

computed based on the prepare relation. Then, its representa-

tive mode together with the associated arcs (events) are added

to the control automaton.

In standard sequential composition, it is assumed that the

set of controllers are composable, the resulting graph is fully

reachable [13], and the union of DOAs covers the entire state

space, i.e.,

D(Φ) =
⋃

Φi

D(Φi) = X . (6)

1Note that in general the goal sets of controlled systems can be complex.
For the purpose of this paper we assume only stabilizing controllers to a point
in the state space.

If these assumptions are satisfied, the sequential composition

controller can stabilize the system at a given state in the

union of DOAs. However, these assumptions are typically not

satisfied in practice. Therefore, we propose the use of learning

in the structure of sequential composition to be able to handle

these situations.

As an example, consider a sequential composition controller

designed for an input-saturated inverted pendulum [see Fig-

ure 1(a)]. The state vector is x = [q p]T with q the angle

of the pendulum measured from the upright position and

p = Jq̇ the angular momentum. The control system consists

of two controllers Φup and Φdown. Controller Φup stabilizes

the pendulum at the “up” equilibrium point (q = 0) and

controller Φdown at the “down” equilibrium point (q = π).

Figure 1(b) illustrates the state space of the pendulum with

the approximated DOAs and goal sets. Since the control input

is saturated, controller Φup cannot swing the pendulum up

from any initial state. Hence, D(Φup) is represented by a con-

servative ellipsoid centered at point (0, 0). Controller Φdown

is globally stabilizing and its DOA is the entire state space,

hence D(Φdown) is illustrated by a rectangle covering the

whole state space. The goal sets of the up and down controllers

are the points G(Φup) = {(0, 0)} and G(Φdown) = {(π, 0)},
respectively. Figure 1(c) depicts the control automaton, in

which every mode si is associated with controller Φi. There

is a prepare relation between controller Φup and Φdown since

G(Φup) ⊂ D(Φdown), i.e., event down connects mode sup to

sdown. The supervisor is automatically synthesized based on

the prepare relation described between the two controllers.
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Fig. 1. Sequential composition controller designed for an inverted pendulum.
(a) Schematic representation of the inverted pendulum. (b) Approximated
DOAs and goal sets. (c) Induced control automaton.

If the system starts in mode sdown, the feasible string of

events for the control automaton are Sdown = {down∗},
where the operator “∗” denotes the Kleene closure [14],

i.e., Sdown = {ǫ, down, down down, · · · }. However, if the

system starts at mode sup, the available strings are

Sup = {up∗down∗}. Thus, if the reference event signal is

given as Sref = down up, the supervisory controller will

block, because there is no arc connecting mode sdown to

sup. In such a case, the supervisor needs a new controller

to construct the required connections through the control

automaton.
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III. LEARNING SEQUENTIAL COMPOSITION

In [15], we have proposed the use of RL in sequential

composition for online learning new controllers, called learn-

ing sequential composition control. In this method, if the

supervisor cannot find a sequence among the pre-designed

controllers to drive the system to the desired state, a learning

mode is activated to learn new controllers using RL methods.

The learning objective is defined such that the goal set of the

learned controller lies inside one of the back-reachable DOAs

of the desired state and its DOA is sufficiently large to cover

a reachable goal set of the initial state. Once the controller

is learned, it is added to the control system together with its

corresponding connections with other controllers.

To formalize the framework for learning sequential com-

position control, we adapt the standard formulation of a

hybrid automaton [16] with the supervisory control structure

to construct a learning control automaton. The new element

of this supervisory finite-state machine is a learning mode that

activates learning on a need basis to generate new controllers

online.

Definition 1: The learning control automaton is a tuple

Aℓ = (X ,S, E, (s0, x0),Φ, F,D,G, g,Γ), where the follow-

ing holds.

1) X ⊆ Rn is the state space of a continuous-time system.

2) S = {ǫ, sℓ, s0, s1, ..., sq} is a finite set of discrete states

or modes. We include an “empty” mode ǫ and a learning

mode sℓ. The hybrid state of the system is represented

by the pair (si, x) ∈ S × X .

3) E = {eℓ, e1, ..., ep} is a finite set of events, where the

learning event eℓ triggers the learning mode sℓ.

4) (s0, x0) is the initial state.

5) Φ = {Φℓ,Φ0,Φ1, ...,Φq} is a set of controllers, where

Φℓ is an overall learning controller.

6) F : S ×X ×Φ→ Rn is a vector field that constrains the

evolution of the continuous-time system to the differential

equation ẋ = f
(

x,Φi(x)
)

, with mode si ∈ S/{ǫ}.
7) D : S → 2X assigns to each mode si the DOA of its

associated controller, hence D(si) = D(Φi), D(ǫ) = ∅,
and D(sℓ) = D(Φ).

8) G : S → 2X assigns to each mode si the goal set of its

associated controller, hence G(si) = G(Φi), G(ǫ) = ∅,
and the goal set of the learning mode sℓ is defined at

each learning instance.

9) g : S × E → S is a discrete-event transition.

10) Γ : S → 2E is an active event function.

Note that the DOA of the learning controller Φℓ, associated

with mode sℓ, is the union of the DOAs of the existing

controllers, i.e., D(Φℓ) = D(Φ). Hence, controller Φℓ can

be activated from any point in the overall DOA. The goal set

G(Φℓ) is defined at each instance when the learning controller

is activated. The learning objective is described such that the

DOA of the learned controller covers the goal set of a specific

controller. This can generate the required connections through

the learning control automaton. To detect when the learning

mode sℓ needs to be activated, we define a binary function

P : X × X → {true, false} as follows:

P (x0, xd) =























true if ∃ a path in the control automaton

si → si+1 → · · · → si+k such that

x0 ∈ D(si) and G(si+k) = {xd}.

false otherwise.

A. Properties

In sequential composition, a reference signal is given either

as a string (sequence) of events or as a desired continuous-

time state. If a desired sequence of events Sref = e1e2 . . . er
is available, the supervisor executes the associated controllers

from the set {Φ1,Φ2, · · · ,Φr}, sequentially. Each controller

Φi needs an inherent time to evolve state xi0 ∈ D(Φi) to

xid ∈ G(Φi) with respect to the differential equation ẋ =
f(x,Φi(x)), where xi0 and xid are the initial state and the

goal set of controller Φi, respectively. Note that the goal set

of each controller (except for the desired state) should be in

the DOA of the next controller to enable the supervisor to

switch between the controllers.

If the reference signal is given as a desired continuous-time

state xd ∈ X , an extra process is required to first find a path

through the control automaton. For a given desired state xd, the

supervisor searches for a feasible sequence of controllers that

drives the system from its current state to the desired state. The

binary function P summarizes the result of exploring through

the learning control automaton. The process of making a path

towards the desired state relies on the conditions outlined

below [15]:

1) If P (x0, xd) is true, the standard sequential composition

can drive the system from the initial state x0 to the desired

state xd.

2) If ¬P (x0, xd), ∃i : x0 ∈ D(si), and ∃j : xd ∈ G(sj),
the modes that cover the initial and desired states in the

state space are in disconnected sections of the control

automaton. This problem can be addressed by learning

new controllers to connect the two sections. The DOA

of the learned controller has to overlap with one of the

reachable goal sets of the initial condition, and its goal set

needs to overlap with one of the back-reachable DOAs

of the desired state.

3) If ¬P (x0, xd), ∃i : x0 ∈ D(si), ∄j : xd ∈ G(sj), but

∃j : xd ∈ D(sj), a new controller is needed such that its

goal set be the desired state.

4) If ¬P (x0, xd) and ∄j : xd ∈ D(sj), the desired state xd
is not in the DOA of any controller. This requires a new

controller to cover unknown regions of the state space.

5) If ¬P (x0, xd) and the initial hybrid state is (ǫ, x0), the

initial state x0 is not in the DOA of any controller,

i.e., ∄i : x0 ∈ D(si). This situation corresponds to a

lack of an initialization routine of the control system that

we do not consider in this paper.

The traditional sequential composition is not designed to

cope with situation ¬P (x0, xd) (i.e., conditions 2–5 or their

combinations). As such, the learning mode is introduced to

create the required connections between the controllers. In this

paper, we use the actor-critic RL method.



4

The stability of the learning sequential composition con-

troller can be addressed by three stability sub-problems. The

first is the stability of the pre-designed controllers. Based

on the properties of sequential composition, it is assumed

that every pre-designed controller can stabilize the system at

its goal set. The second is the stability of the new learned

controllers. Using actor-critic RL generates new controllers

that stabilize the system in their computed DOAs. The third is

the overall stability of the composed controlled system, which

is handled by the prepare relation.

B. Actor-critic Reinforcement Learning

Reinforcement learning is an optimization method in which

an optimal controller is learned by interacting with the sys-

tem [9]. A RL problem can be defined by a Markov decision

process with the tuple M(X ,U , f̄ , ρ), where X is the state

space, U is the action space, f̄ : X × U → X is the

state transition function that returns state2 xk+1 after applying

action uk in state xk, and ρ : X×U → R is the reward function

that gives the scalar reward rk+1 ∈ R to the controller after

each transition. The learning objective is to find an optimal

policy π : X → U to maximize a discounted sum of expected

instantaneous rewards, which is stored as the value function

V π(xk) =
∑∞

j=0 γ
jrπk+j+1

=
∑∞

j=0 γ
jρ
(

xk+j+1, π(xk+j)
)

,
(7)

with γ ∈ (0, 1) a discount factor.

The actor-critic RL method is convenient for problems with

continuous state and action spaces, where both the critic (value

function) and the actor (control policy) are approximated via

basis function parameterizations [17]. The critic is approxi-

mated as V̂ (x, θ) = θTΨc(x) with a parameter vector θ ∈
Rnc and a user-defined basis function vector Ψc(x) ∈ Rnc .

Similarly, the actor is approximated as π̂(x, µ) = µTΨa(x),
where µ ∈ Rna is a parameter vector and Ψa(x) ∈ Rna is

a user-defined basis function vector. We use the temporal-

difference (TD) method [9] to update the critic parameters,

with the TD defined as

δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk). (8)

The critic parameters are updated using the gradient ascent

rule

θk+1 = θk + αcδk+1∇θV̂ (xk, θk), (9)

where αc > 0 is a learning rate. To find an optimal policy, the

learning algorithm needs to explore new regions in the state-

action space. Hence, a zero-mean random exploration term

∆uk is added to the control policy as

uk = π̂(xk, µk) + ∆uk. (10)

Finally, the actor parameters are updated by

µk+1 = µk + αaδk+1∆uk∇µk
π̂(xk, µk), (11)

with αa > 0 the actor learning rate. For more details about

actor-critic RL refer to [18].

2Note that here we consider a discrete system with xk = x(Tsk) for a
defined sampling time Ts.

C. Safe Learning

One of the main concerns of learning is safety. To guarantee

the safety of the learning process, the learner is restricted to

only explore regions of the state space that lie in the DOAs

of all of the existing controllers. This type of exploration

is safe since the supervisor can always execute a stabilizing

controller once the learner reaches the boundary of the union

of the existing DOAs. We call this restricted learning process

bounded learning. Consider the condition ¬P (x0, xd), with

∃i : x0 ∈ D(si) and ∃j : xd ∈ D(sj). Two situations are

possible for this condition. In the first situation, the DOAs

of the existing controllers cover the state space such that the

learner does not necessarily need to leave the union of the

DOAs to achieve the learning objective. Figure 2 illustrates a

sequential composition controller with two controllers Φ1 and

Φ2, where x0 ∈ D(Φ1) and xd ∈ D(Φ2), but xd /∈ G(Φ2). To

attain the desired state xd, the learner starts exploring from

the goal set G(Φ2) and searches for the possible trajectories

to the desired state. Once a learning experiment reaches the

boundary of the union set D(Φ1)∪D(Φ2), the learning process

is reset to G(Φ2). This is an example of bounded learning.

x  
0

x  
d

Fig. 2. (a) Pictorial sketch of the DOAs and goal sets of a sequential
composition controller, where x0 ∈ D(Φ1), xd ∈ D(Φ2), and controller Φ1

prepares controller Φ2. (b) Induced control automaton, in which the learning
mode can make the required connection s2 to s1 using bounded learning.

The second situation is when there is no connection between

the controllers and the union of the DOAs is not a simply

connected set. Here, the learner may need to leave the existing

DOAs to achieve the learning goal, as depicted in Figure 3.

This type of learning can be dangerous, because there is no

guarantee that the learning experiments can be reset when the

learner is exploring new regions of the state space for which

no controller was designed a priori. We call this unbounded

learning in the sense that the learner is not restricted to

just explore within the overall DOA. In this paper, we only

consider bounded learning.

x  
0

x  
d

Fig. 3. (a) Pictorial sketch of the DOAs and goal sets of a sequential
composition controller, where x0 ∈ D(Φ1) and xd ∈ G(Φ2), but controller
Φ1 does not prepare controller Φ2. (b) the induced control automaton, in
which the learning mode can only make the required connections using
unbounded learning.

When the learning mode sℓ is activated in a bounded learn-

ing process, the learner explores within the existing DOAs.
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Once the learning goal is attained, a new controller Φℓ with

the DOA D(Φℓ) and goal set G(Φℓ) are stored in the control

system. Moreover, the learned mode sℓ with its corresponding

arcs are added to the learning control automaton based on the

prepare relation.

One element that is not addressed in this paper is the

automatic choice of the parameters that are required for

the learning experiment such as the basis functions for the

approximated value function and policy, the reward function,

and the learning rates. Currently, much experience goes into

designing RL experiments that can run efficiently.

IV. RAPID LEARNING

Typically, the learning process might be time-consuming

and computationally costly. In our approach, we make use of

partial prior knowledge to speed up the learning process by

combining the learning methods with passivity-based control

(PBC) techniques [19]. In addition, the DOA of the new

learned controller is approximated after each learning trial.

This enables the supervisor to terminate learning as soon as

the learned controller’s DOA is sufficiently large to satisfy the

learning objective [20]. This section provides a brief review on

passivity-based learning control and DOA estimation, which

are the tools required for our proposed control approach. Next,

the proposed control algorithm is described.

A. Passivity-based Learning Control

Passivity-based control has been extensively used for reg-

ulation problems in port-Hamiltonian (PH) systems [21]. The

PH systems are a general form of Euler-Lagrangian systems, in

which the standard input-state-output form of a time-invariant

system is given by

{

ẋ =
(

J(x)−R(x)
)

∇xH(x) + g(x)u

y = gT (x)∇xH(x),
(12)

where J(x) = −JT (x) ∈ Rn×n is a skew-symmetric inter-

connection matrix, R(x) = RT (x) ∈ Rn×n is a symmetric

dissipation matrix, H(x) is the system Hamiltonian, and y is

a collocated output with g(x) ∈ Rn×m. In this paper, we apply

the energy-balancing actor-critic (EB-AC) [22] and intercon-

nection and damping assignment actor-critic (A-IDA-AC) [23]

techniques to learn new controllers.

1) Energy-balancing Actor-critic: In this method, the goal

is to find a feedback control law such that the desired closed-

loop Hamiltonian Hd(x) has a local minimum at the equilib-

rium x∗, i.e.,

x∗ = arg minHd(x). (13)

The control law combines an energy-shaping (ES) term with

a damping-injection (DI) term

u(x) = ues + udi (14)

=
(

gT (x)g(x)
)−1

gT (x)
(

J(x)−R(x)
)

∇xHa(x)

−K(x)gT (x)∇xHd(x),

where K(x) = KT (x) is a symmetric positive semi-definite

damping injection matrix and Ha(x) is an added energy term

that satisfies the energy balancing equation

Ha(x) = Hd(x)−H(x). (15)

The supplied energy function Ha(x) is found by solving a set

of partial differential equations, called “matching condition”

and given by
[

g⊥(x)
(

J(x)−R(x)
)

gT (x)

]

∇xHa(x) = 0, (16)

with g⊥(x) ∈ R(n−m)×n the left annihilator matrix of the

input matrix g(x) (i.e., g⊥(x)g(x) = 0). A solution of (16) that

satisfies the equilibrium condition (13) is selected as Ha(x).
This can be solved using the EB-AC method.

The approximated desired Hamiltonian in the EB-AC

method is given by

Ĥd(x, ξ) = Hdi + ξTΨes(x), (17)

where ξ ∈ Rnes is an unknown parameter vector and Ψes(x) ∈
Rnes is a user-defined basis function vector. The “hat” symbol

represents the approximated terms. The damping injection

matrix K(x) is parameterized as

K̂(x, ψ) = ψTΨdi(x), (18)

with an unknown parameter vector ψ ∈ Rndi and a user-

defined basis function vector Ψdi(x) ∈ Rndi . Substituting (15),

(17) and (18) in (14) results in the control policy

π̂(x, ξ, ψ) = g†(x)
(

J(x)−R(x)
)

(

ξT∇xΨes(x)−∇xH(x)
)

− ψTΨdi(x)g
T (x)∇xĤd(x) (19)

where g†(x) =
(

gT (x)g(x)
)−1

gT (x) is the pseudo inverse of

matrix g(x). The parameter vectors ξ and ψ are learned using

the actor-critic RL method, following the same procedure

described in [22]. Consequently, the control input of the

EB-AC method is computed at each time step by

uk(x, ξ, ψ) = sat
(

π̂(xk, ξk, ψk) + ∆uk
)

, (20)

where ∆uk is a zero-mean Gaussian noise, as an exploration

term, and sat is a saturation function.

2) Algebraic Interconnection and Damping Assignment

Actor-critic: Interconnection and damping assignment

passivity-based control (IDA-PBC) is an effective nonlinear

state-feedback control approach that can be used for

stabilizing and tracking problems [24]. The control objective

in IDA-PBC is to find a state-feedback law for the nonlinear

system (12) such that the resulting closed-loop system can be

written as

ẋ =
(

Jd(x)−Rd(x)
)

∇xHd(x), (21)

where Jd(x) and Rd(x) are the desired interconnection and

dissipation matrices, respectively. The control law that fulfills

the desired closed-loop system (21) is of the form

u(x) = g†(x)
(

Fd(x)∇xHd(x)− f(x)
)

, (22)
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where Fd(x) = Jd(x) − Rd(x) is the desired system matrix.

The unknown desired matrices Fd(x) and Hd(x) are obtained

from the matching condition

g⊥(x)
(

Fd(x)∇xHd(x)− f(x)
)

= 0. (23)

Depending on how this condition is solved, the type of

the IDA-PBC controller can vary. We employ algebraic in-

terconnection and damping assignment passivity-based control

(A-IDA-PBC), which can be used for tracking and regulation

problems in various physical systems such as mechanical,

electrical or electromechanical systems [25]. In this method,

instead of explicitly solving the matching condition (23) for

the unknown elements of the desired system matrix Fd(x), we

parameterize Fd(x) as

F̂d(x, ϑ) = ϑTΨal(x), (24)

where ϑ ∈ Rnal is an unknown parameter vector and Ψal(x) ∈
Rnal is a user-defined basis function vector. Applying the

approximated parameterized F̂d(x, ϑ) yields the control law

π̂(x, ϑ) = g†
(

ϑTΨal(x)∇xHd(x)− f(x)
)

(25)

The parameter vector ϑ is learned using the actor-critic RL

method, following the same procedure described in [23].

Consequently, the control input of the A-IDA-AC method is

computed at each time step by

uk(x, ϑ) = sat
(

π̂(xk, ϑk) + ∆uk
)

, (26)

where ∆uk is again a zero-mean Gaussian noise as an explo-

ration term.

B. Monitoring the Domain of Attraction

While learning is in progress, the DOA of the new learned

controller typically enlarges around its goal set, but not nec-

essarily monotonically. If the DOA of the learned controller is

monitored, the supervisor can terminate learning as soon as it

gets large enough to contain the goal set of other controllers,

allowing the creation of a new arc in the learning control

automaton. This strategy allows the supervisor to learn a new

controller in a short amount of time.

Methods for computing the DOAs for stable equilibrium

points of nonlinear systems have been studied for several

years [10]. Since the DOAs of nonlinear systems are typically

very complex, there are no general analytic methods for

their exact computation, but approximations can be found

using parametric shapes [26], [27]. An analytical conservative

method to approximate the DOA has been proposed via

Lyapunov stability theory, where a Lyapunov function that

satisfies the locally asymptotic stability of the controller’s goal

set (equilibrium point) is considered for approximating the

DOA [28]. Any sublevel set of this Lyapunov function in

which its time derivative is negative is an estimate for the

DOA. Since the largest sublevel gives a better estimate, ap-

proximating the controller’s DOA is transferred to the problem

of finding the largest sublevel set of a candidate Lyapunov

function [29].

Theorem 1: [30] A closed set M ⊂ Rn, including the

origin as an equilibrium point of the autonomous nonlinear

system (2), approximates the DOA of the origin if:

1) M is an invariant set for system (2).

2) A Lyapunov function L(x) can be found such that:

a) L(x) is positive definite over M;

b) L̇(x) is negative definite over M.

Note that M is invariant under the flow (2) if x(t, x0) ∈ M
for all t ≥ 0 and x0 ∈M. In the case of non-zero equilibrium

point, without loss of generality, we can replace the variable

x by z = x − x̄∗, where x̄∗ is the non-zero equilibrium

point. Hence, the study of the stability of x̄∗ is transferred

to investigating the stability of its associated zero equilibrium

point [31].

Although the conditions of Theorem 1 are quite conserva-

tive, they ensure that the approximated set M is contained in

the DOA. To compute the largest DOA estimate, one needs to

find the maximum value of c ∈ R for the sublevel set V(c),
described for the Lyapunov function L(x) by

V(c) = {x ∈ Rn : L(x) ≤ c}, (27)

such that the computed sublevel set respects the conditions

defined in Theorem 1.

Theorem 2: [10] The invariant set V(cm) provides the largest

estimate for the DOA of the origin of system (2) with respect

to the Lyapunov function L(x) if










cm = max c

s.t. V(c) ⊆ H(x)

H(x) = {0} ∪ {x ∈ Rn : L̇(x) < 0}.

(28)

Consequently, the controller’s DOA approximation is ob-

tained by finding the maximum value of c in the opti-

mization problem (28), which is typically solved via SOS

programming [32], [33]. The SOS methods are usually used

to approximate the DOAs of polynomial systems [34]. In

addition to SOS programming, we use a sampling method that

can compute approximations of the DOAs of both polynomial

and non-polynomial systems [11]. In this method, a sampling

algorithm searches for the largest sublevel set of a candidate

Lyapunov function such that the computed sublevel set sat-

isfies the conditions of Theorem 1. Using PBC provides a

system’s total energy function (Hamiltonian, locally positive

definite) that can be used as a candidate Lyapunov function

for approximating the DOA.

C. Control Algorithm

Algorithm 1 summarizes the procedure of the proposed

learning sequential composition control. In this algorithm, the

loop counter w counts the number of learning trials after which

the DOA of the learned controller Φℓ is sufficiently large to

cover the goal set G(Φi), which is reachable from the initial

state. In addition, k counts the number of samples in a learning

trial, ns denotes the number of samples defined for the learning

trials, and nt represents the scheduled number of trials for the

learning process.

V. SIMULATION AND EXPERIMENTAL RESULTS

We implement the proposed learning sequential composition

on two nonlinear dynamical systems. In the first, we address a
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Algorithm 1 Learning sequential composition control using

the EB-AC algorithm

Require: system (12), Aℓ, x0, xd, λ, γ, αa, αc, ns, nt

1: if P (x0, xd) is true then

2: Execute: sequential composition controller

3: else

4: Execute: learning mode sℓ
5: w ← 0
6: Initialize ξ0, ψ0

7: repeat

8: w ← w + 1
9: Initialize x0

10: k ← 1
11: for ns do

12: Energy-balancing actor-critic:

13: uk(x, ξ, ψ) = sat (π̂(xk, ξk, ψk) + ∆uk)
14: Apply actor-critic RL to update ξk and ψk

15: end for

16: EB-AC controller Φℓ

17: Estimating the DOA of the learned controller:

18: Find the largest sublevel set D(Φℓ)
19: until G(Φi) ⊂ D(Φℓ)
20: Add controller Φℓ to the learning control automaton

21: end if

positioning problem in a simulated second-order system con-

sisting of a mass with a nonlinear damper, where the control

input is saturated. In the second, we study the stabilization of

a physical inverted pendulum with saturated control input.

A. System 1: Nonlinear Mass-damper

Consider a mass with a nonlinear damper, as illustrated

in Figure 4. The dynamics are given by

mq̈ = −B(q)q̇ + u, (29)

where q is the mass position measured from the origin,

B(q) = (1− q2) is the nonlinear damping coefficient and u is

the control input, which is saturated at ±3N. The state vector

of the system is described by x = [q p]T , where p = mq̇ is

the momentum with m = 1 kg.

q

m u
B(q)

Fig. 4. Schematic representation of a nonlinear mass-damper system with
damping coefficient B(q).

The sequential composition controller consists of two LQR

controllers Φ1 and Φ2. Controller Φ1 steers the mass to point

(q, p) = (−0.7, 0) and controller Φ2 to point (q, p) = (1, 0).
To design these controllers, the equation of motion (29) is

linearized around the operating points. Then, the gain matrices

for the linearized system are computed as K1 = [0.447 0.654]
and K2 = [2.000 0.663]. Figure 5(a) presents the approx-

imated DOAs and goal sets of controllers Φ1 and Φ2 and

Figure 5(b) illustrates the induced control automaton. As

G(Φ1) ⊂ D(Φ2), controller Φ1 prepares controller Φ2 via

event e1−2.
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Fig. 5. Sequential composition controller designed for the nonlinear mass-
damper system. (a) Approximated DOAs and goal sets. (b) Induced control
automaton.

Suppose the controller has to drive mass m to the origin

(q, p) = (0, 0) from an initial state within the existing DOAs.

Since the origin is not the goal set of either G(Φ1) or G(Φ2),
the supervisor cannot construct a sequence of controllers to

attain the desired state. Hence, the binary function P is false

and the supervisor executes the learning mode sℓ. In this

example, we apply the A-IDA-AC controller for the learning

mode, which is defined by (26). The reward function is

described as

ρ(xk+1, uk) = −α1q
2
k+1 − α2q̇

2
k+1 − α3u

2
k, (30)

which gives higher rewards to the transitions that fulfill the

learning objective. The learning experiment starts exploring

from the goal set G(Φ2). Since the learning process is

bounded, if the learner cannot reach the origin after a number

of samples, the experiment is safely reset to the goal set G(Φ2).
The learning process is scheduled to run for 60 trials, each

lasting 1 s. Figure 6 presents the sum of rewards that a learning

controller receives per trial over a simulated experiment with

60 trials.
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Fig. 6. Sum of rewards that a learning controller receives per trial over a
simulation with 60 trials for the nonlinear mass-damper system.

The desired Hamiltonian of the system is chosen to be

quadratic as Hd(x) = xTΛx with Λ = [1 0.5; 0.5 1] a sym-

metric positive definite matrix. We use the desired Hamiltonian
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as a candidate Lyapunov function for approximating the DOA

of the learned controller at every trial. Since the equations

of motion and basis functions are polynomial, we use SOS

programming to approximate the DOAs by following the same

procedure described in [10]. Figure 7 shows the DOA of the

new learned controller Φℓ after seven specific trials (within

60 simulated trials), where the trial numbers are indicated as

well. As long as learning is in progress, the approximated

DOA typically enlarges, but not necessarily monotonically.

Approximately after 11 trials, the DOA D(Φℓ) is large enough

to cover the goal set G(Φ2). Hence, the learning process

achieves the control objective after a short amount of time

while it was scheduled to run for 60 trials.
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Fig. 7. Approximated DOAs of the learned controllers after seven specific
trials for the nonlinear mass-damper system. The trial numbers are also
indicated.

Figure 8 illustrates the learning control automaton during

and after learning. In Figure 8(a), event eℓ connects mode s2
to sℓ and executes the learning mode sℓ. Conversely, event e′ℓ
connects mode sℓ to s2 and enables the supervisor to execute

controller Φ2 if the learner reaches the boundary of the union

set D(Φ1) ∪ D(Φ2). When the learning objective is obtained

and the goal set G(Φ2) is covered by the DOA of the learned

controller, the learning process can be terminated. Figure 9

depicts the approximated DOA of the learned controller Φℓ

together with the DOAs of controllers Φ1 and Φ2. Once

learning is completed, controller Φℓ is appended to the control

system by introducing a new node s3 with corresponding

events “e2−3”, “e3−2”, “e1−3”, and “e3−1”. These are added

to the learning control automaton with respect to the prepare

relation, as shown in Figure 8. Consequently, the resulting

learning sequential composition controller is able to switch

from controller Φ2 to Φ1 via the new learned controller.

B. System 2: Inverted Pendulum

The inverted pendulum, as shown in Figure 10, is modeled

by the nonlinear equation of motion

Jq̈ = mgl sin(q)−
(

b+
K2

R

)

q̇ +
K

R
u, (31)

with q the angle of the pendulum measured from the upright

position, J the inertia, m the mass, l the length of the

pendulum, and b the viscous mechanical friction. Moreover,

K is the motor constant, R is the electrical motor resistance,
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Fig. 8. Learning control automaton for the nonlinear mass-damper system.
(a) During learning. (b) After learning.
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Fig. 9. Approximated DOAs and goal sets of the controllers for the nonlinear
mass-damper system after learning.

and u is the control input in Volts, which is saturated at ±3V.

Table I presents the physical parameters of the pendulum. The

values are found partly by measuring and partly estimated

using nonlinear system identification.

Motor

m

l

q

Fig. 10. Inverted pendulum and its schematic.

TABLE I
PHYSICAL PARAMETERS OF THE INVERTED PENDULUM

Physical parameter Symbol Value Unit

Pendulum inertia J 1.91× 10−4 kg·m2

Pendulum mass m 6.8× 10−2 kg

Gravity g 9.81 m·s−2

Pendulum length l 4.20× 10−2 m

Damping in joint b 3× 10−6 Nm·s
Torque constant K 5.36× 10−2 Nm·A−1

Rotor resistance R 9.5 Ω

The control system comprises two LQR controllers Φup and

Φdown to stabilize the pendulum at the up and down equilibria,

respectively. To design these controllers, first the equation of

motion (31) is linearized around the operating points q = 0 and

q = π with respect to the state vector x = [q p]T . Then, the
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gain matrices are computed as Kdown = [0.025 72.850] and

Kup = [8.486 3.439× 103], which generate the approximated

DOAs represented in Figure 1(b).

The control task is defined as tracking a reference string of

events Sref = (up down)∗, where event up triggers mode sup
and event down triggers mode sdown in the control automaton.

The initial hybrid state of the system is given by (up, 0, 0),
meaning that the system starts from the continuous state (0, 0)
with controller Φup is activated. According to the reference

string, the initial event Sref(0) = up can be executed since

mode sup has a self triggered event up [35]. If x ∈ G(Φup),
the supervisor fires the next event Sref(1) = down. Since

this event (transition from mode sup to sdown) is feasible, the

pendulum can switch to the down position by simply activating

controller Φdown. The next event in the reference string is

Sref(2) = up, but there is no connection from mode sdown

to sup. The supervisor triggers the learning mode sℓ to learn

a new controller online and create the required connections

through the learning control automaton. In this example, we

apply the EB-AC controller for the learning mode, which is

described by (20). The reward function for the learning method

is defined as

ρ(xk+1, uk) = −α1

(

1− cos(qk+1)
)

− α2q̇
2
k+1 − α3u

2
k, (32)

which gives higher rewards to the transitions where the learn-

ing controller can stabilize the pendulum at the up equilibrium

point.

Since the DOA of the down controller is the entire state

space, the learning process is bounded. As such, controller

Φdown can safely reset each experiment to the down equi-

librium point if the learner cannot reach D(Φup) after a

number of samples. Figure 11 represents the sum of rewards

that a learning controller receives per trial over a simulated

experiment with 60 trials, each lasting 1 s.
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Fig. 11. Sum of rewards that a learning controller receives per trial over a
simulation with 60 trials for the inverted pendulum.

Using the EB-AC method provides the Hamiltonian of the

system that can be exploited as a candidate Lyapunov function

for approximating the DOA of the learned controller at every

trial. Since the equations of motion and desired Hamiltonian

are non-polynomial, we use the sampling method to approxi-

mate the DOAs by following the same procedure described

in [11]. Figure 12 illustrates the DOA of the new learned

controller Φswing after seven specific trials (among 60 trials),

where the trial numbers are indicated as well. Approximately

after 13 trials, the DOA D(Φswing) is large enough to cover the

goal set G(Φdown) and the learning process can be terminated.
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Fig. 12. Approximated DOAs of the learned controllers after seven specific
trials for the inverted pendulum. The trial numbers are also indicated.

Figure 13 shows the learning control automaton during and

after learning. In Figure 13(a), event eℓ connects mode sdown

to sℓ and executes the learning mode sℓ. Conversely, event

e′ℓ connects mode sℓ to sdown and enables the supervisor to

execute controller Φdown if the learner reaches the boundary of

D(Φdown). When the learning goal is attained and D(Φswing)
covers the goal set G(Φdown), the learning process can be

stopped. Figure 14 represents the approximated DOA of the

learned controller Φswing by a sublevel set of the system

Hamiltonian, together with the DOAs of controllers Φup and

Φdown. Once learning is terminated, the new controller Φswing

is appended to the control system and the new mode sswing

with the associated events “swing” and “up” are added to the

learning control automaton with respect to the prepare relation,

as shown in Figure 13(b).

(a) (b)
learning is complete

e‘

e s

Fig. 13. Learning control automaton for the inverted pendulum. (a) During
learning. (b) After learning.

Figure 15 illustrates the experimental results of the proposed

learning sequential composition on the inverted pendulum

(presented in a compressed form for the sake of space). The

first time the pendulum is in mode sdown and the reference

event is up, the learning mode sℓ is activated. After a number

of trials (here after 13 trials), the DOA of controller Φswing is

sufficiently large such that G(Φdown) ⊂ D(Φswing). Although
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Fig. 15. Experimental results of the learning sequential composition controller for the inverted pendulum. The reference events are displayed at the top and
the controllers at the bottom. When the pendulum is in the down mode and the reference event is up, the control system learns how to swing the pendulum
up. The results of the learning process have been shown in part due to the space limitation. Once learning is completed, the new mode sswing is added to
the learning control automaton. Consequently, the resulted controller can track the reference event up by executing events swing and up, respectively. For a
video that shows the implementation of the learning sequential composition control approach see: https://youtu.be/NF5ihL06SV4.
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Fig. 14. The approximated DOAs and goal sets of the controllers for the
inverted pendulum after learning.

learning can be terminated at this stage, we let it to run for 60
trials for illustration purposes. Once learning is completed, the

new mode sswing is added to the learning control automaton.

Afterward, the resulting learning sequential composition con-

troller can track the reference event up by triggering events

swing and up, respectively.

VI. CONCLUSIONS

We have developed a learning sequential composition con-

trol approach that can handle unmodeled situations using

learning online. In this approach, a learning mode is added

to the standard sequential composition framework to learn

new controllers on a need basis when the supervisor cannot

attain the desired state with its pre-designed controllers. The

learning process is guaranteed to be safe since it is bounded

to the union of all existing DOAs. After each learning trial,

the DOA of the learned controller is approximated. Once it

is sufficiently large, the learning process is stopped and the

new controller is added to the learning control automaton. A

stopping criterion is provided for learning that can effectively

speed up the learning process. Simulation and experimental

results of two nonlinear systems validate the capability of the

proposed control approach to cope with unmodeled situations

that might occur at runtime.

The design of a generic learning experiment to learn proper

control laws in a short amount of time is a real challenge

since for each system the reward function, the learning rates

and the parametrization of the value function must be chosen

carefully. This paper did not address the automatic choice of

these parameters which can be a research line for future work.
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