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Abstract
The data mining and pervasive computing technologies found in smart homes offer unprecedented
opportunities for providing context-aware services, including health monitoring and assistance to
individuals experiencing difficulties living independently at home. In order to provide these
services, smart environment algorithms need to recognize and track activities that people normally
perform as part of their daily routines. However, activity recognition has typically involved
gathering and labeling large amounts of data in each setting to learn a model for activities in that
setting. We hypothesize that generalized models can be learned for common activities that span
multiple environment settings and resident types. We describe our approach to learning these
models and demonstrate the approach using eleven CASAS datasets collected in seven
environments.
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Introduction
A convergence of technologies in data mining and pervasive computing as well as the
increased accessibility of robust sensors and actuators has caused interest in the
development of smart environments to emerge. Furthermore, researchers are recognizing
that smart environments can assist with valuable functions such as remote health monitoring
and intervention. The need for the development of such technologies is underscored by the
aging of the population, the cost of formal health care, and the importance that individuals
place on remaining independent in their own homes.

To function independently at home, individuals need to be able to complete Activities of
Daily Living (ADLs) such as eating, grooming, cooking, drinking, and taking medicine.
Automating the recognition of activities is an important step toward monitoring the
functional health of a smart home resident. When surveyed about assistive technologies,
family caregivers of Alzheimer’s patients ranked activity identification and tracking at the
top of their list of needs [1].

In response to the recognized need for smart environments to provide context-aware
services, researchers have designed a variety of approaches to model and recognize
activities. The generally accepted approach is to model and recognize those activities that
are frequently used to measure the functional health of an individual. Recognizing resident
activities also allows the smart environment to respond in a context-aware way to needs for
achieving more comfort, security, and energy efficiency. A typical home may be equipped
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with hundreds or thousands of sensors. Because the captured data is rich in structure and
voluminous, the activity learning problem is a challenging one. Traditionally, each
environmental situation has been treated as a separate context in which to perform learning.
What can propel research in smart environments forward is the ability to leverage
experience of previous situations in new environments or with new residents.

When humans look at video or pictures of residents performing common activities such as
eating and sleeping, these activities are recognized immediately, even if the observer has
never seen the environment before and never met the residents. We therefore hypothesize
that general models of activities can be learned that abstract over specific environments and
residents. In this paper, we explore the use of supervised and semi-supervised machine
learning algorithms to learn setting-generalized activity models. We evaluate these methods
using datasets from the CASAS Smart Home project [2].

1. Datasets
To test our ideas, we analyze eleven separate sensor event datasets collected from seven
physical testbeds, shown in Figure 1. As can be seen in Table 1, the datasets exhibit a great
deal of diversity. In addition, because some of the residents were younger adults, some were
healthy older adults, some were older adults with dementia, and some were pets, the
activities exhibit a great deal of diversity. This makes our goal of learning models to
recognize activities across all of these settings even more challenging. Most of these datasets
are available on the CASAS web page (ailab.wsu.edu/casas).

Sensor data for each of the environments and datasets is captured using a sensor network
that was designed in-house and the data is stored in a SQL database. Our middleware uses a
jabber-based publish/subscribe protocol as a lightweight platform and language-independent
middleware to push data to client tools with minimal overhead and maximal flexibility.
Although each of the datasets was originally monitored for a large number of activities, for
this study we are interested in learning abstract models for eleven ADL activities that occur
in a majority of the datasets: Personal Hygiene, Sleep, Bed-to-toilet, Eat, Cook, Work,
Leave Home, Enter Home, Relax, Take Medicine, and Bathing. These activities are
frequently used to measure the functional health of an individual [3]. Figure 2 shows a graph
of the occurrences of these activities for a one month period in each of the datasets.

2. ADL Recognition
We treat a smart environment as an intelligent agent that perceives the state of the resident
and the physical surroundings using sensors and acts on the environment using controllers in
such a way that the specified performance criteria is optimized [4]. Researchers have
designed smart environment algorithms that track the location and activities of residents,
that generate reminders, and that react to hazardous situations. Resulting from recent
advances, researchers are now beginning to recognize the importance of applying smart
environment technology to health assistance and companies are recognizing the potential of
this technology for a quickly-growing consumer base.

Activity recognition is not an untapped area of research. Because the need for activity
recognition technology is great, researchers have explored a number of approaches to this
problem. Researchers have found that different types of sensor information are effective for
classifying different types of activities. When trying to recognize body movements (e.g.,
walking, running), data collected from accelerometers positioned on the body has been
effective [5]. Other activities are not as easily distinguishable by body position. In these
cases, researchers [6] observe the smart home resident’s interaction with objects of interest
such as doors, windows, refrigerators, keys, and medicine containers. Other researchers [7]
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rely upon motion sensors as well as item sensors to recognize ADL activities that are being
performed. We note here that while the current study utilizes primarily motion and door
sensors, the approach can be applied to a much greater range of sensor types.

The number of machine learning models that have been used for activity recognition varies
almost as greatly as the types of sensor data that have been tested. Some of the most
commonly-used approaches are naïve Bayes classifiers, decision trees, Markov models, and
conditional random fields [5][6][7][8]. In our approach we initially test three models: a
naïve Bayes classifier (NBC), a hidden Markov model (HMM), and a conditional random
field (CRF) model. These three approaches are considered because they traditionally are
robust in the presence of a moderate amount of noise, are designed to handle sequential data,
and generate probability distributions over the class labels. These features are all useful for
our task. However, among these three choices there is no clear best model to employ – they
each employ methods that offer strengths and weaknesses for the task at hand.

The NBC uses the relative frequencies of feature values (the length of the activity, the
previous activity, and the sensor event frequencies) as well as the frequency of activity
labels found in the sample training data to learn a mapping from activity features, D, to an
activity label, a, calculated using the formula arg maxa e AP(a|D)=P(D|a)P(a)/P(D).

The HMM is a statistical approach in which the underlying model is a stochastic Markovian
process that is not observable (i.e., hidden) which can be observed through other processes
that produce the sequence of observed (emitted) features. In our HMM we let the hidden
nodes represent activities. The observable nodes represent combinations of the features
described earlier. The probabilistic relationships between hidden nodes and observable
nodes and the probabilistic transition between hidden nodes are estimated by the relative
frequency with which these relationships occur in the sample data. An example HMM for
three of the activities is shown in Figure 3. Given an input sequence of sensor events, our
algorithm finds the most likely sequence of hidden states, or activities, which could have
generated the observed event sequence. We use the Viterbi algorithm [9] to identify this
sequence of hidden states.

Like the HMM, the CRF model makes use of transition likelihoods between states and
emission likelihoods between activity states and observable states to output a label for the
current data point. The CRF learns a label sequence, A, which corresponds to the observed
sequence of features. Unlike the HMM, weights are applied to each of the transition and
emission features. These weights are learned through an expectation maximization process
based on the training data [10].

Table 2 summarizes the recognition accuracy of the three models for each of the eleven
datasets, calculated using 3-fold cross validation and averaged over all of the activities. As
the table indicates, the accuracy varies dramatically between datasets. The accuracy also
varies between individual activities and is affected by the amount of available data, the
quality of the labels that were provided for the data, the number of residents in the space that
are interacting and performing activities in parallel, and the consistency of the activities
themselves.

3. Abstracting Activity Models
One approach to learning a setting-generalized activity model is to combine sensor events
from all of the environments into one dataset. The first step in generalizing these models is
to create a uniform sensor label. Instead of using all of the original sensor IDs, which carry
different meanings in each different setting, we map them onto labels corresponding to the
room in which the sensor resides: Bathroom, Bedroom, Kitchen, LivingRoom, WorkArea,
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MedCabinet, and Lounge. We further differentiate the type of sensor: motion, door, or other.
The result of applying the three models to this combined dataset is 74.87% for the naïve
Bayes classifier, 75.05% for the hidden Markov model, and 72.16% for the conditional
random field using 3-fold cross validation over the set of annotated activities.

This result indicates that it is possible to find general patterns for ADL activities across
multiple environment and resident settings. However, the experimental approach does not
reflect a real-life situation. In a real deployment of this technology a user would set up a new
smart home and use activity models learned from other setting to immediately start
recognizing activities in their new setting. The appropriate testing for this scenario is a leave
one out experiment where activity models are trained on ten of the datasets, then tested on
the left-out dataset. Table 3 summarizes the result of this experiment, where the accuracies
are averaged over all of the eleven test datasets. As the summary indicates, activity
recognition performance fluctuates between datasets and is much lower than when training
data is provided specific to the testing environment.

We note from the earlier experiments that the best-performing recognition model varies
from one dataset to another (see Table 2). Factors that influence this outcome are the size of
the environment, the number of residents (and thus the amount of activity interleaving that
occurs), and the type of activity that is being performed. In order to harness the power of
each of these models, our second approach to constructing an abstract activity model is to
construct an ensemble of classifiers [11]. The base classifiers for this ensemble are the NBC,
HMM, and CRF models and we use a boosted decision tree for the top classifier. The input
features to the top classifier are the probability distributions that the three base models
output for each of the activity label possibilities and the activity feature values. In addition,
dataset-descriptive features are also input including the size of the environment (small,
medium, or large) and the number of residents (one, two, or three).

As we can see from Table 3, the ensemble method greatly boosts the accuracy of the
classifier for all of the datasets except Tulum1. In fact, for several of the datasets the
accuracy is close to the value that is achieved when training data is available from the test
environment, and in the Kyoto3 and Kyoto4 datasets the accuracy is actually far better than
when only data from the test set is available. These results indicate that abstract activity
models can be learned that generalize over multiple environment and resident situations.
They also indicate that activity models can in fact be strengthened by providing data
available from other sources outside one particular environment and selection of residents.

In our final approach, we consider a semi-supervised learning method [12]. This approach is
inspired by the observation that our ensemble learning approach might actually benefit by
having access to data collected in a new setting, even if it is unlabeled data. To make use of
the unlabeled data, we first use the ensemble classifier described above to label the new data
in the test set. Then we add the newly-labeled data to the training set and reconstruct the
classifier with the larger set of labeled data. We iteratively evaluate the new model on the
test data and see if accuracy has improved. As is shown in Table 3 the performance does
sometimes improve over the original ensemble method. This is not always the case,
however. In general, the datasets which are the largest and offer the best original recognition
accuracy do not benefit from semi-supervised learning, likely because the erroneous labels
generated from the other datasets are reinforced when they applied to the test set and
integrated into the model. In contrast, the smaller datasets and those which originally yielded
low recognition accuracy (as shown in Table 2) benefitted the most from the semi-
supervised approach.
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A few additional observations can be made about this study. First, the decision tree that is
created from the ensemble and semi-supervised methods utilizes almost all of the base
features in the top levels of the tree. This indicates that no single base classifier performs
consistently best. It also indicates that the environment description features are useful when
deciding which base model to consult when selecting an activity label.

Second, we note that the ensemble methods in general offered a significant (p < .005)
improvement over the original leave one out method, yielding a 25.56% improvement on
average. In contrast, the decrease in accuracy from the original models (shown in Table 2) to
the ensemble method is less significant (p < 0.600) and represents an average performance
decrease of only 3.26%.

4. Conclusions
In order to provide context-aware services such as health monitoring and intervention, smart
environment designers need to design robust methods for recognizing ADL activities in
these smart spaces. In the past, activity recognition methods have required that training data
be collected and labeled in each new environment or even in an existing environment with
new residents. In this paper we proposed that general activity models could be learned that
abstract over these differences in environment and resident differences.

Of the approaches that we considered, the fully-supervised and semi-supervised ensemble
methods performed best. These approaches made use of a variety of information including
the base classifier output probability distributions and features of the environments
themselves. The results from the experiments indicate that activity recognition in a new
setting can be accomplished by generating a model specific to the setting or by using the
setting-generalized model with almost the same accuracy. In some cases, the generalized
model actually outperforms the setting-specific model due to the increased availability of
training data for a particular type of activity. These results are encouraging and offer users
the possibility of employing smart home technologies “out of the box” with very little or no
training.

Ultimately, we want to use our algorithm design as a component of a complete system that
performs functional assessment of adults in their everyday environments. This type of
automated assessment also provides a mechanism for evaluating the effectiveness of
alternative health interventions. We believe these activity profiling techniques are valuable
for providing automated health monitoring and assistance in an individual’s everyday
environments.

Evidence from our experiments suggests that this approach to activity recognition will
effectively generalize to settings with new floor plans, new sensor layouts, and new
residents. This generalization is very useful for applying activity recognition algorithms in
new settings with little or no training data. The type of generalization we have not
considered is generalization to new, similar activities. This can be considered in the future.

We also hypothesize that utilizing ensemble classifiers with abstracted features can be
applied to other types of learning problems as well. Future work can investigate applying
this type of abstracted learning problem to classification of sequences in transaction data or
in gene data.
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Figure 1.
Sensor layout for the seven CASAS smart environment testbeds: Bosch1 (first row left),
Bosch2 (first row right), Bosch3 (second row left), Cairo (second row right), Kyoto (third
row left), Milan (third row right), and Tulum (bottom row).
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Figure 2.
Activity recognition charts for a single month of data from the eleven datasets: Bosch1 (row
1 left), Bosch2 (row 1 middle), Bosch3 (row 1 right), Cairo (row 2 left), Kyoto1 (row 2
middle), Kyoto2 (row 2 right), Kyoto 3 (row 3 left), Kyoto 4 (row 3 middle), Milan (row 3
right), Tulum1 (row 4 left), and Tulum2 (row 4 middle).
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Figure 3.
HMM for an activity recognition task with four hidden states (activities) and a set of
observable nodes that correspond to possible sensor events. The a values represent the
transition probabilities and the b values represent emission probabilities.
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Table 2

NBC, HMM, and CRF recognition accuracies for each of the eleven datasets.

Dataset NBC HMM CRF

Bosch1 92.91% 92.07% 85.09%

Bosch2 90.74% 89.61% 82.66%

Bosch3 88.81% 90.87% 90.36%

Cairo 82.79% 82.41% 68.07%

Kyoto1 78.38% 78.38% 97.30%

Kyoto2 63.98% 65.79% 66.20%

Kyoto3 77.50% 81.67% 87.33%

Kyoto4 63.27% 60.90% 58.41%

Milan 76.65% 77.44% 61.01%

Tulum1 59.05% 75.12% 79.45%

Tulum2 66.87% 57.83% 39.76%
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Table 3

Leave one out, ensemble, and semi-supervised results for the eleven datasets.

Dataset Leave One Out Ensemble Semi-Supervised

Bosch1 67.75% 89.76% 89.18%

Bosch2 73.52% 85.37% 85.32%

Bosch3 64.74% 88.46% 88.07%

Cairo 46.08% 68.07% 64.82%

Kyoto1 37.84% 59.56% 59.56%

Kyoto2 33.20% 62.78% 62.98%

Kyoto3 36.89% 100.00% 100.00%

Kyoto4 37.32% 100.00% 100.00%

Milan 53.39% 76.39% 78.24%

Tulum1 38.16% 34.73% 32.84%

Tulum2 36.14% 39.16% 40.96%
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