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Abstract. Application of a neural network approach to data explo-
ration and the generation of a model of system normality is described
for use in novelty detection of vibration characteristics of a modern jet
engine. The analysis of the shape of engine vibration signatures is shown
to improve upon existing methods of engine vibration testing, in which
engine vibrations are conventionally compared with a fixed vibration
threshold. A refinement of the concept of “novelty scoring” in this ap-
proach is also presented.

1 Introduction

Novelty detection, defined to be the identification of departures from a model
of “normal” behaviour of a system, is particularly suited to the monitoring of
jet engines, in which examples of normal engine behaviour greatly outnumber
examples of abnormal behaviour (in common with many high-integrity systems).

Current engine testing techniques depend on the comparison of engine vibra-
tion to a simple maximum vibration threshold. This paper presents a method
for novelty detection of engine vibration characteristics developed for use with a
modern civil jet engine to improve these existing methods, and provides a worked
example of the use of neural networks in developing a model of normality for use
within novelty detection.

Existing work in the analysis of the shape of engine vibration characteristics is
extended for use with the new engine type, in which novelty scores are computed
for each pattern and compared to a decision threshold. This paper presents a
refinement of the score definition, such that novelty scores have an intuitive
interpretation. Results of applying this technique are shown to emphasise the
benefits over existing methods, and the exploration of data and resultant models
of normality using neural network methods are presented.

2 Example Data

This investigation considers a modern civil jet engine, consisting of several ro-
tating engine shafts, mounted concentrically. In normal operation, air enters the
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Fig. 1. Speed-based vibration signature a(s) for an example engine (y-axis units
anonymised)

low pressure (“LP”) shaft for compression, and is passed to the high pressure
(“HP”) shaft, before ultimately being used within the fuel combustion chamber.
A further radial drive shaft, mechanically connected to the HP shaft, is used
to start the engine and provide power during take-off. Vibration energy at the
frequency of rotation of each shaft is referred to as the fundamental tracked order
of each shaft.

During product testing, engines of the class considered within this investiga-
tion perform a controlled two-minute acceleration from idle to maximum speed,
followed by a two-minute deceleration back to idle. Vibration amplitude levels of
the fundamental tracked orders corresponding to each shaft are recorded during
these tests, from which the speed-based vibration signature a(s) is constructed
for rotational speeds s of each engine shaft.

Engines are tested against a contractual limit H which must not be exceeded
for the engine to be deliverable; i.e., a(s) < H .

An example vibration signature from the data set used in this investigation is
shown in Figure 1. The vibration signature for the fundamental tracked order of
an engine shaft is constructed with respect to the percentage speed for that shaft ;
thus, amplitude of vibration of the HP shaft is plotted against the percentage of
maximum speed for the HP shaft.

The data set used in the investigation described in this article consists of 71
engine examples, initially divided into four sub-sets D1 . . . D4 , according to
their maximum vibration amplitude max{a(s)} compared with the contractual
vibration limit H , as shown in Table 1. Note that sub-set D4 is formed from
recordings of engines with seeded fault conditions, in which small masses are
deliberately applied to the engine fan blades.1 This unbalance is noted by engine

1 Weights are deliberately applied to fan (and sometimes turbine) blades in order to
correct any imbalances during rotation of those blades about the shaft to which
they are connected. In order to determine the effect upon engine vibration of adding
masses to fan blades, a small number of weights are applied, forcing the blades into
a state of unbalance. Examples from class 4 are recorded from an engine undergoing
this procedure.
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Table 1. Data classified according to maximum vibration amplitude

Sub-set |Dn| Class membership criteria

D1 29 Examples for which max{a(s)} < 0.9H
D2 15 Examples for which 0.9H ≤ max{a(s)} ≤ H
D3 17 Examples for which H < max{a(s)}
D4 10 Examples in which weights are deliberately applied to the engine fan

manufacturers to result in very large vibration amplitude levels of the LP shaft,
with approximately normal behaviour in other shafts. Novelty detection applied
to the HP shaft should therefore not identify examples from sub-set D4 as being
novel.

3 Quantisation of Vibration Signatures

Increasing dimensionality of data requires exponentially increasing numbers of
patterns within the data set used to construct a general model; this is termed
the curse of dimensionality [2]. In order to avoid this problem, each signature
is summarised by a shape vector x. This is performed by computing a weighted
average of the vibration amplitude values a(s) over N = 10 speed sub-ranges
[7]. The nth dimension of shape vector xn, for n = 1 . . .N , is defined to be:

xn =
∫ smax

smin

a(s)ωn(s)ds (1)

in which the vibration amplitude a(s) is integrated over the speed range s :
[smin smax], using weighting functions ωn(s), for n : 1 . . .N .

In setting the interval of speeds s : [smin smax], the operational range of each
shaft must be considered independently. For example, the gas-turbine engines of
the class considered within this investigation are idle at HP shaft speeds below
60% of maximum rotational speed, during which no measurements of vibration
amplitude are made. Thus, the interval [60% 100%] of maximum shaft speed is
used when quantising vibration signatures from the HP shaft.

Component-wise normalisation [1, 3] (in which the normalised vibration sig-
nature has zero mean and unit variance at each quantised speed) was found
to emphasise the separation between “good” (D1, D2) and “bad” engines (D3).
Labelling the data by comparison with a contractual limit is intended only as
initial guide to model construction.

4 Visualisation Using a NeuroScale RBF Network

In order to confirm the results of normalisation, the data set was visualised by
projecting the set of 10-dimensional shape vectors into 2 dimensions.
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Fig. 2. Projections of HP shaft vibration signatures: (a) un-normalised; (b) component-
wise normalisated. Data sub-sets {D1 . . . D4} are shown by {• × � ∗}, respectively.
Separation of “abnormal” D3 patterns (�) is clearly better in (b) than (a).

Topographic projection is a transformation that attempts to best preserve,
in the projected space of lower-dimensionality (latent space, R

q), distances be-
tween data in their original high-dimensional space (data space, R

d). Typically
d > q, q = 2 or 3. The Sammon stress metric[8] is based upon the distance dij be-
tween points (xi, xj) in R

d, and the distance d∗ij between projected points (yi, yj)
in R

q:

Esam =
N∑

i=1

N∑
j>i

(dij − d∗ij)
2 (2)

in which the distance measure is typically Euclidean. The NeuroScale model [4, 5]
trains a radial basis function (RBF ) neural network to perform the mapping
from R

d to R
q, in which Esam is minimised; i.e. distances between points are

best preserved after projection.
A NeuroScale network was used for projecting shape vectors derived from the

example data set described previously, with d = 10 inputs (corresponding to the
number of elements in each shape vector) and q = 2 outputs (for 2-dimensional
projection).

Projection of all 10-dimensional shape vectors before and after component-
wise normalisation is shown in Figure 2, with clear separation of “abnormal”
patterns (from sub-set D3) evident.

5 Modelling Normality

The k-means clustering algorithm was used, as described in [6], to construct a
model of normality from “normal” patterns (i.e. those from sub-sets D1, D2).
In this method, the distribution of “normal” patterns is defined by Ck cluster
centres in R

10 space, each with an associated cluster width σk. A novelty score
z(x) may be computed for shape vector x with respect to the K cluster centres:
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z(x) =
K

min
k=1

d(x,Ck)
σk

(3)

where d(x,Ck) is Euclidean distance. We propose a new definition of width σk:

σk =

√√√√ 1
Ik

Ik∑
i=1

d(xi,Ck)2. (4)

for the Ik points which have closest cluster centre Ck. This allows an intuitive
interpretation of the magnitude of novelty scores: novelty scores z(x) computed
using (3) are the number of standard deviations that pattern x lies from its
closest cluster centre, relative to the distribution of training data about Ck. A
threshold Hz is applied to z(x) such that all patterns z(x) ≥ Hz are classified
“abnormal”. Hz is set to best separate the “normal” and “abnormal” patterns
in the data set.

Investigation of the placement of cluster centres is possible using the Neu-
roScale RBF technique. The position of cluster centres with respect to the data
set may be determined by projection using the NeuroScale network previously
trained using the patterns from the example data set. Selecting a model of nor-
mality for use can be assisted through use of the projections generated by the
neural network, such that the cluster centres accurately represent the distribu-
tion of patterns from the data set.

6 Results of Application to Example Engine Data

The NeuroScale RBF neural network method is further used to examine the
results of novelty detection. Selected results are presented within this section
from the HP shaft, and the radial drive shaft.

6.1 HP Shaft Results

Figure 3 shows all HP shaft patterns projected into 2 dimensions.
Of the 17 “abnormal” patterns (from sub-set D3), 12 were classified as “abnor-

mal” by the novelty detection scheme. From these 12 patterns, 5 corresponded
to engines with vibration signatures that, though above the simple contractual
limit (thus placing them into sub-set D3, which would thus not pass product
testing), exhibited very similar signature shapes to engines that were deemed fit
for service. This indicates that the comparison of an engine’s maximum vibration
level to a fixed contractual limit, as is the standard means of pass-off testing,
may not adequately detect abnormal engines.

Of those engines which were deemed fit for service, based on comparison to
the simple threshold, two were classified “abnormal” by the scheme investigated
in this article. These corresponded to engines which were identified by engine
developers as requiring rebuilding due to high vibration levels within the HP
shaft.
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Fig. 3. Projection of all HP shaft patterns. Cluster centres CK are shown as ’+’ sym-
bols. Patterns classified as “abnormal” are circled. Data sub-sets {D1 . . . D4} are shown
by {• × � ∗}, respectively.

The NeuroScale projection also shows that engines that were deliberately
unbalanced (from sub-set D4) exhibit similar vibration signatures, which are
classified “normal”, agreeing with the observation that weights applied to the
engine fan only affect vibration of the LP shaft.

6.2 Radial Drive Shaft Results

Due to no contractual vibration limit being specified for the radial drive shaft,
patterns for this shaft could not be divided into the 4 sub-sets described previ-
ously. With no prior distinction made between “normal” and “abnormal” pat-
terns, a different approach was taken, in which engines that were released into
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Fig. 4. Projection of all radial drive shaft patterns. Patterns classified as “abnormal”
are circled. Engines that failed testing are shown as �. Engines that were re-fitted
during service are shown as �. Engines with forced unbalance are shown as ∗.
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service following pass-off testing formed the training set for the construction of
the model of normality.

Figure 4 shows a NeuroScale projection of all patterns derived from radial
drive shaft vibration signatures.

The NeuroScale projection shows that the older engines, re-fitted during ser-
vice, form a distinct cluster in the lower-left of the plot, indicating that extended
use of the engine in service results in a change in vibration characteristics. Fur-
thermore, it can be seen that unbalanced patterns show significant difference to
“normal” engines in the radial drive shaft, indicating that this condition is not
limited only to the LP shaft.

It can also be seen that several engines which fail pass-off testing appear
“normal” according to radial drive shaft vibration levels.

7 Conclusions

The method of vibration analysis presented in this paper has shown that the
“shape analysis”process is effective for novelty detection in vibration data from
new engine classes. Results from analysis of vibration signatures from each shaft
of the example engine have shown that the majority of patterns derived from ab-
normal engine recordings are correctly classified, whilst false-positive detections
associated with normal patterns are low.

The method presented provides a more accurate assessment of abnormality
than comparison of vibration levels to a simple threshold, whilst visualisation
by neural network allows changes in engine condition to be examined. Hence,
increasing accuracy of engine assessment allows improved control of engine main-
tenance, and enhances the diagnostic process.
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