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Abstract

The goal of this work is to automatically learn a large

number of British Sign Language (BSL) signs from TV

broadcasts. We achieve this by using the supervisory infor-

mation available from subtitles broadcast simultaneously

with the signing.

This supervision is both weak and noisy: it is weak due

to the correspondence problem since temporal distance be-

tween sign and subtitle is unknown and signing does not fol-

low the text order; it is noisy because subtitles can be signed

in different ways, and because the occurrence of a subtitle

word does not imply the presence of the corresponding sign.

The contributions are: (i) we propose a distance function

to match signing sequences which includes the trajectory of

both hands, the hand shape and orientation, and properly

models the case of hands touching; (ii) we show that by

optimizing a scoring function based on multiple instance

learning, we are able to extract the sign of interest from

hours of signing footage, despite the very weak and noisy

supervision.

The method is automatic given the English target word

of the sign to be learnt. Results are presented for 210 words

including nouns, verbs and adjectives.

1. Introduction
Television programs are now routinely broadcast with

both subtitles and a person signing (usually as an overlay)

to provide simultaneous ‘translation’ of the spoken words

for deaf people. Our objective is to learn the translation

of English words to British Sign Language signs from this

material. We cast the problem as one of (multiple instance)

learning from weakly aligned text – an approach that has

been increasingly explored for learning visual recognition

of objects [8, 14], people [1, 9] and actions [12, 17].

Our aim in this work is, given an English word, to au-

tomatically and accurately obtain the corresponding BSL

video sequence. We use the English word to select a set of

subtitles which contain the word – these form the positive

training set – and a much larger set of subtitles that do not

contain the word – these form the negative set, see Figure 1.

and maybe take out a tree from somewhere and letting in a bit more light or something like that

a 50 ft crane, is attempting tree planting on a mammoth scale in readiness for a grand occasion

His Royal Highness from Saudi Arabia wanted to know about the history of the trees

One thing that always strikes me about the roundabout, is it's got this huge urn in the middle of it

Figure 1. Example training data for the target sign ‘tree’. The

top three rows are positive subtitle frame sequences, selected be-

cause they contain the text word ‘tree’. However, the sign only

appears in the first two (outlined in yellow). The final row is an

example negative subtitle sequence which does not contain the text

word ‘tree’ and also does not, in fact, contain the sign for tree.

Signs are learnt from such weakly aligned and noisy data.

This is a tremendously challenging learning task given that

the signing is continuous and there is certainly not a one

to one mapping between signs and subtitle words. For ex-

ample, BSL has a different ordering to English, and there

are ambiguities in translation where the same English word

may have different meanings and therefore signs, or the

same sign may correspond to multiple English words. This

introduces a significant correspondence problem between

the subtitle text and overlapping video sequence, so the su-

pervision is weak. The difficulties are akin to those encoun-

tered in statistical machine translation of written text [18],

but here our data set is far smaller than the huge corpora of

written language available. Furthermore, the text word can

appear in the subtitle, but may not be signed, so the super-

vision is noisy.

Previous research in sign language recognition has typi-

cally required manual training data to be generated for each
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sign [7, 15, 20, 21, 22] e.g. a signer ‘performing’ each sign

in controlled conditions – a time-consuming and expensive

procedure. Many such systems have also considered only

constrained situations for example requiring the use of data-

gloves [23] or coloured gloves to assist with image process-

ing at training and/or test time. Farhadi and Forsyth [10]

have considered the problem of aligning an American Sign

Language sign with an English text subtitle, but under much

stronger supervisory conditions. To some extent we have

traded accurate and labour intensive manual training for a

labour-free and potentially plentiful supply of training data,

but at the cost of moving from strong supervision (i.e. man-

ually signed) to weak and noisy supervision. However, our

approach is scalable, and imposes no constraints on the

signer e.g. wearing gloves or a clean background.

Overview. Our source material consists of many hours

of video with simultaneous signing and subtitles recorded

from BBC digital television. Section 2.1 describes the data

and the supervisory information which can automatically be

extracted, consisting of ‘positive’ and ‘negative’ video se-

quences. We track the signer, paying special attention to the

fidelity of the hand, and generate a feature vector for each

frame which describes the position and appearance of the

hands – see Section 2.2. The combination of visual descrip-

tors of hand shape and trajectories with weak supervision

from the subtitles forms our training data.

Given this training data, our goal is to determine the tem-

poral window in the video corresponding to the target En-

glish word. The task is cast as a search problem – intuitively

we are looking for a window which appears whenever the

target word appears in a subtitle, and does not appear other-

wise. As discussed above and in Section 2.1 the weak align-

ment of the subtitles and noise in the supervision means that

our notions of ‘appears’ and ‘whenever’ must be defined in

a soft and error-tolerant fashion. Section 3 describes the dis-

tance function defined to measure similarity between win-

dows, and how it is adapted to sign-specific visual features

by weighting the dominant/non-dominant hands. Section 4

discusses the scoring function used to assess the correlation

between appearances of a sign and the target word, based

on the probability of predicting incorrect labels for the pos-

itive vs. negative sequences, incorporating a model of label

noise. We cast this problem as one of Multiple Instance

Learning (MIL) [19]. The window finally chosen for a sign

is that with highest score over a sliding window search of

the positive sequences.

As reported in Section 5.1, with this framework we can

learn over 100 signs completely automatically.

2. Automatic generation of training data
This section describes how training data is generated

from subtitles and video. By processing subtitles we ob-

tain a set of video sequences labelled with respect to a given

target English word as ‘positive’ (likely to contain the cor-

responding sign) or ‘negative’ (unlikely to contain the sign).

Articulated upper-body tracking and feature extraction are

then applied to extract visual descriptions for the sequences.

To reduce the problems of polysemy and visual variabil-

ity for any given target word we generate training data from

the same signer and from within the same topic (e.g. by us-

ing a single TV program). Even when working with the

same signer, the intra-class variability of a given sign is typ-

ically high due to ‘co-articulation’ where the preceding or

following signs affect the way the sign is performed, ex-

pression of degree (e.g. ‘very’) or different emotions, and

varying locations relative to the body.

2.1. Text processing

Subtitle text is extracted from the recorded digital TV

broadcasts by simple OCR methods [9] (UK TV transmits

subtitles as bitmaps rather than text). Each subtitle instance

consists of a short text, and a start and end frame indicat-

ing when the subtitle is displayed. Typically a subtitle is

displayed for around 100–150 frames.

Given a target word specified by the user, e.g. “golf”,

the subtitles are searched for the word and the video is di-

vided into ‘positive’ and ‘negative’ sequences. A simple

stemming approach is used to match common inflections

(e.g. “s”, “’s”, “ed”, “ing”) of the target word.

Positive sequences. A positive sequence is extracted for

each occurrence of the target word in the subtitles. The

alignment between subtitles and signing is generally quite

imprecise because of latency of the signer (who is translat-

ing from the soundtrack) and differences in word/sign or-

der, so some ‘slack’ is introduced in the sequence extrac-

tion. Given the subtitle in which the target word appears,

the frame range of the extracted positive sequence is de-

fined as the start frame of the previous subtitle until the end

frame of the next subtitle. Consequently, positive sequences

are, on average, around 400 frames in length. In contrast, a

sign is typically around 7–13 frames long. This represents

a significant correspondence problem.

The presence of the target word is not an infallible in-

dicator that the corresponding sign is present – examples

include polysemous words or relative pronouns e.g. signing

“it” instead of “golf” when the latter has been previously

signed. As measured quantitatively in Table 1 (first and sec-

ond columns), in a set of 41 ground truth labelled signs only

67% (10 out of 15 on average) of the positive sequences ac-

tually contain the sign for the target word.

Negative sequences. Negative sequences are determined

in a corresponding manner to positive sequences, by search-

ing for subtitles where the target word does not appear. For

any target word an hour of video yields around 80,000 neg-

ative frames which are collected into a single negative set.
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The absence of the target word does not always imply

that the corresponding sign is not present in the negative

sequences. This is because different words might be signed

similarly, or a sign might be present in the video but not

appear in the subtitles (e.g. referred to as “it”).

In addition to using the English target word, we also

exclude subtitles which contain words that can be repre-

sented by signs similar to the target sign. For example the

sign for “island” is also used for “building”, “place” and

“town”. This information is readily available: the BSL Dic-

tionary [3] contains a list of such polysemes.

2.2. Visual processing
A description of the signer’s actions for each frame in

the video is extracted by tracking the hands via an articu-

lated upper-body model. Descriptors for the hand position

and shape are collected over successive frames to form a

window descriptor which forms the unit of classification for

learning. The temporal length of the window is between 7

and 13 frames, and is learnt.

Upper-body tracking. We use our upper body pose es-

timator [4] to track the head, torso, arms and hands of the

signer. This method uses a ‘generative’ approach consist-

ing of a layered pictorial structure model. It requires a few

frames (around forty) of manual initialization to specify the

size of the parts and learn their colour and shape, and then

tracking proceeds automatically for the length of the video

(around 90K frames).

This method proves capable of robust tracking for long

videos, e.g. an hour, despite the complex and continuously-

changing background (the signer is overlaid on the TV pro-

gram). Previous approaches to hand tracking have applied

skin colour models [5, 13, 11, 20] or sliding window hand

detectors [15]. These methods perform poorly when the

hands overlap or are in front of the head, and lose track due

to the ambiguities that routinely arise, resulting in poor es-

timation of hand position or unreliable assignment of hands

to ‘left’ or ‘right’. By using a full upper-body model and

accounting for self-occlusion our method [4] performs ro-

bustly. Figure 1 shows example output of the tracker. In the

following, we use the wrist position and rectangular region

estimated by the tracker for each hand.

Hand shape description. The ‘shape’ of the hands is ex-

tracted by segmentation, and represented by a HOG descrip-

tor [6, 16], see Figure 2. By ‘shape’ we mean both the sil-

houette of the imaged hand and the configuration of the fin-

gers, visible in the internal image features of the hand. To

deal with cases where the hands are overlapping or touch-

ing, descriptors for each hand and also for the pair of hands

are extracted in parallel, and combined as described in Sec-

tion 3. The size of the hand is up to around 80 pixels square

for the left and right hand, and 150 pixels for the case of

touching hands.

(a) (b) (c) (d)

Figure 2. Segmentation and representation of the hands.

(a) The area around the left hand and estimated position of the

wrist (blue cross) obtained from the upper-body tracker. (b) The

probability of a pixel being skin (red) or background (green) vi-

sualized as RGB components. (c) A graph cut method is used to

segment the hand. Note that whole hand is successfully segmented

despite pixels around the fingers having a relatively low skin prob-

ability. (d) The HOG descriptor for the masked hand image of (c).

A graph cut method [2] is used to segment the hand re-

gion predicted by the tracker into hand or background. The

unary potential is given by the probability of each pixel be-

ing explained by skin or background colour models (Fig-

ure 2b). The potential is clamped to background for pix-

els which are far from the approximate hand rectangle and

clamped to foreground for pixels well within the rectangle.

HOG descriptors are chosen for their ability to capture

both boundary edges and internal texture, and the contrast

normalization they employ gives some invariance to light-

ing. The HOG descriptor is computed with 4 orientation

bins, a cell size of 10 × 10 pixels and a block size of 1 cell.

Representation by vector quantization. While the raw

HOG descriptors could be used to compute similarity be-

tween hand shapes, the high dimensionality makes this

onerous for large datasets, and errors in the segmentation

artificially inflate the distance. In addition, we wish to iso-

late differences in hand appearance in terms of (i) shape

and (ii) orientation. We adopt a vector quantization ap-

proach, representing a hand’s HOG descriptor by its nearest

‘exemplar’ hand shape (think visual word). The similarity

between hand shapes is then estimated via the distance be-

tween the corresponding exemplars, computed off-line and

with invariance to rotation (see Section 3).

Representation of hand shape as one of a discrete set

is compatible with linguistic analysis of sign language [3],

where signs are described as using e.g. a “C” or “F” shape

taken from the hand configurations used in BSL finger-

spelling. Because our descriptor is based on the 2-D image

alone, however, we require a considerably larger number of

exemplar hand shapes to cover variation in 3-D pose.

Exemplars are learnt separately for the left hand, right

hand, and hand pairs, using automatically chosen ‘clean’

images: the hands must not be in front of the face, and

should be separate for individual hands or connected for

hand pairs. K-means clustering of the corresponding HOG

descriptors is used to determine the exemplar set. We use

1,000 clusters for each of left/right hands and hand pairs.

Given the exemplars, the segmented hands in each frame

are then assigned to their nearest exemplar (as measured
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by Euclidean distance between HOG descriptors) using the

position of the wrists in the frame and in the hand exem-

plar for approximate alignment. Figure 3 shows examples

of segmented hands and the exemplars to which they are as-

signed. Note that by using exemplars extracted from clean

images, the correct hand shape is found even in the case

where the hands are touching the face.

While facial expression is also used in sign language, we

omit its use for the moment since it is challenging to model,

and many signs can be distinguished without it.

3. Measuring visual distance between signs
As noted in Section 2.2, our learning approach seeks

temporal windows of video which represent the same sign,

where a window is the concatenation of visual descriptors

for a sequence of frames. In order to compare two such

windows a distance function is needed which captures dif-

ferences in position and motion of the hands and their ap-

pearance. We assume frame by frame alignment when com-

paring window descriptors. This is stronger than the as-

sumption typically made in Hidden Markov Models of signs

e.g. [20], but is justified here because we are generating

training data from the same signer.

For each frame t of the window, each hand is described

by a vector x(t) = 〈xpos,xhex,xhex,P 〉 which combines

hand position (pos) and the identified hand exemplar (hex)

for both the individual hand and the combined hand pair

(subscript P). The descriptor for a window X is the con-

catenation of the per-frame descriptors x(t).
In BSL one hand (usually the right) is dominant, while

the position and appearance of the other hand is unimportant

for some signs. We build this into our distance function.

Given two windows X and X
′ the distance between them

is defined as the weighted sum of distances for the right

(dominant) and left (non-dominant) hands:

D(X,X′) = dR(X,X′) + wLdL(X,X′) (1)

where dL(·) and dR(·) select the descriptor components for

the left and right hands respectively. The weight wL ≤ 1
enables down-weighting of the non-dominant hand for signs

where it does not convey meaning. Section 4 describes how

wL is learnt for each individual target sign.

The distance measure for the left and right hand alike is

defined as a weighted sum over the distances of the posi-

tion, shape and orientation components (we drop the hand

subscript to simplify notation):

d(X,X′) = wposdpos(X,X′) + wdezddez(X,X′)

+ woridori(X,X′) (2)

This is in accordance with linguistic sign research [3],

where different hand configurations are described sepa-

rately by shape (ddez) and orientation (dori).

The positive weights wpos, wdez and wori are learnt off-

line from a small number of training examples. In the fol-

lowing we describe each term in the distance measure.

Position distance (dpos). Different repetitions of the same

sign vary in position relative to the torso. Especially when

a sign is performed in front of the chest, the vertical posi-

tion in the image can change significantly. In computing the

distance between trajectories we therefore introduce some

invariance to these effects. The distance is defined as the

minimum over a set of feasible transformations:

dpos(X,X′) = min
T

n
∑

t=1

||xpos(t) − T (x′
pos(t))||

2 (3)

where n is the temporal length of the window, xpos(t) is the

(x, y) hand position for frame t and T (·) represents a trans-

lation (in both x and y). The maximum translation T (·) in

the distance function is again learnt from training data, and

is set at 5 pixels. We investigated additional transformations

(scaling and rotation), but found this extra invariance to be

slightly detrimental to the final performance, for example

confusing signs which are mainly distinguished by the ori-

entation of the trajectory.

Hand shape distance (ddez). The distance between hand

shapes is designed to account reliably for cases where the

hands are either apart or touching each other. When the

hands are separated the individual hand shape descriptors

are very reliable, however when they overlap, the individ-

ual hand shape cannot be reliable determined, and the com-

bined hand pair descriptor should be used. If the hands are

not clearly separate, then for a given pair of frames the dis-

tance is defined as the minimum over the two cases:

ddez(x,x′) = min
γ∈{0,1}

γd1(x,x′) + (1 − γ)d2(x,x′) (4)

where d1(x,x′) measures the distance for the hand pair de-

scriptor

d1(x,x′) = min
φ∈[−90,90]

||xhex,P − Rφ(x′
hex,P )||2 (5)

and d2(x,x′) is defined accordingly for the individual hand

descriptors by replacing the per-frame descriptors xhex,P

and x
′
hex,P in Eqn. 5 by xhex and x

′
hex respectively. The

rotation R(φ) which minimizes the distance between two

hand shapes is computed off-line for each pair of exemplars.

The choice of which descriptors to use (γ in Eqn. 4) is

made independently for each frame and the window dis-

tance is then defined as the sum of distances over all frames:

ddez(X,X′) =

n
∑

t=1

ddez(x(t),x′(t)) (6)

In order for the choice between costs in Eqn. 4 to be bal-

anced, the distance on hand pair versus individual hands is

normalized appropriately.
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Figure 3. Examples of hand shape for an instance of the sign “different”. Top row: segmentation results for every frame of the sign

(from left to right). Bottom row: identified hand exemplars. If the hands do not touch (computed for each frame) then only the left hand is

shown, otherwise the combined hand exemplar is shown.

Hand orientation distance (dori). The distance between

hand orientation for a given frame is defined as the square

of the angle needed to rotate one hand exemplar to the other

(Eqn. 5). As noted, this is pre-computed for each pair of ex-

emplars. The orientation difference for either the individual

hands or hand pair is taken according to the γ value used

for the dez descriptor for the corresponding frame (Eqn. 4),

and summed over all frames of the window.

4. Automatic sign extraction
Given a target word, our aim is to identify the corre-

sponding sign. The key idea is to search the positive se-

quences to provide an example of the sign. Each positive

sequence in turn is used as a ‘driving sequence’ where each

temporal window of length n within the sequence is consid-

ered as a template for the sign. The template is scored using

the other positive sequences and the negative data. Since

the only positive labels available for learning are at the sub-

title sequence rather than window level, we can formulate

the task naturally as a MIL problem. We require a clas-

sifier to determine where the template matches within the

sequences, and a score function to assess the contribution

from matches within the positive and negative data. The

sign is determined by maximizing the score function over

all templates and the sign specific dominant/non-dominant

hand weighting.

4.1. Sliding window classifier
The classifier is used to determine if a temporal window

X matches the ‘template’ window X̂. The label for a win-

dow X is predicted by simple thresholding:

f(X, θ) =

{

1 : D(X̂,X) ≤ τ
0 : otherwise

(7)

where a positive output indicates that the window represents

the sign, and the vector θ specifies all the parameters of the

classifier: the threshold τ and the weight wL.

We next introduce the MIL formulation, and the scoring

function.

4.2. Multiple Instance Learning method
For a given target word we are provided with a set of

positive bags B+ = {B+
1 , . . . , B+

n+
}, where each bag cor-

responds to a sequence within which the target word ap-

pears in the subtitles (Section 2.1). Each bag consists of a

set of instances B+
i = {Xi

1, . . . ,X
i
ni
}, with each instance

being a window descriptor (Section 2.2). Conceptually we

assume that a bag should be labelled positive (contains the

target sign) if any of the instances represent the sign, and

thus we can predict the bag label from the instance labels

predicted by the classifier as:

f(Bi, θ) =

{

1 : ∃j : f(Xi
j , θ) = 1

0 : otherwise
(8)

where ni is the number of instances (windows) in the bag

(sequence) Bi. As is usual in an MIL formulation, this con-

struction avoids the need for per-instance labels.

In addition we have a set of negative instances X− =
{X−

1 , . . . ,X−
n
−

} which is the union of all windows in the

video far from the target word according to the subtitles

(Section 2.1). Note that there is an ‘asymmetry’ here in

that the negative data is not naturally aggregated into bags.

For a hypothesized setting of the classifier parameters

θ, we assign a ‘score’ S(θ) to the classifier as a function

of (i) its predictions on the positive bags and negative in-

stances, and (ii) our prior knowledge about the likely tem-

poral location of target signs

S(θ) = S+(B+, θ) + S−(X−, θ) + St(B
+, θ) (9)

and seek the value of θ which maximizes this score.

4.3. Score function for noisy labels
Unfortunately we know that some non-negligible pro-

portion of our ‘ground truth’ labels obtained via the sub-

titles will be incorrect, e.g. in a positive bag the target word

appears but the corresponding sign is not present, or in the

negative data the target sign is present but not the corre-

sponding target word. A model of such errors must be in-

corporated to achieve successful learning.

Since we have no prior knowledge of which positive bags

or negative instances are likely to have incorrect labels we

score the classifier in terms of the number of apparent er-

rors made on the training data. The score is defined as the

probability of predicting a particular proportion of ‘incor-

rect’ labels with the correct classifier, given a model of the
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Figure 4. Distributions used to score template windows. Plots

(a) and (b) show the empirical distribution of errors (bars) and the

fitted exponential distribution (curve). Note the scale on the x-

axis. Plot (c) shows the temporal distribution of signs within cor-

responding positive sequences.

proportion of errors in the ‘ground truth’ labels:

S+(B+, θ) = log p

(

1

n+

n+
∑

i=1

1 − f(B+
i , θ)

∣

∣

∣

∣

λ+

)

(10)

S−(X−, θ) = log p





1

n−

n
−

∑

j=1

f(X−
j , θ)

∣

∣

∣

∣

λ−



 (11)

where the sum operation simply counts the number of

negative/positive predictions respectively. The distribution

p(r|λ) models the probability of there being a proportion of

r errors in the labels in the positive bags/negative instances.

Modelling the distribution of errors. For positive bags,

p(r|λ+) is estimated by fitting a parametric model to

ground truth training data. For a subset of target signs we

count the number of errors (missing signs) in the subtitle

sequences (positive bags). Figure 4a shows a histogram of

the proportion of errors for positive bags. The distribution

very approximately follows an inverse power law, and we

therefore adopt an exponential model:

p(r|λ) = λe−λr (12)

The single parameter λ is fitted by maximum likelihood

estimation.

It is difficult to estimate the distribution of errors for the

negative data since this requires ground truth labelling of

the entire video. We use a heuristic: “for each sign missing

from a positive sequence we assume it is seen somewhere in

the negative data.” Figure 4b shows the resulting distribu-

tion – again an exponential model fits the data well. While

there will be other causes of errors in the negative data e.g.

signs which represent more than one word, this heuristic

gives good results and we found that our results are not sen-

sitive to the parameter λ− within an order of magnitude.

With the estimated parameters λ+ and λ− the expected

proportion of errors in positive labels is 0.25. For the neg-

ative data the expected proportion is 5 × 10−5. Given a

negative set of 80000 frames this corresponds to around 4
‘false’ positives expected if the correct sign is learnt.

It is worth noting that most previous work on modelling

errors in labels has assumed a Bernoulli model i.e. that la-

bels are independently ‘flipped’ according to some fixed

probability, resulting in a binomial model of proportions.

We tried this model but found that it gives a poor fit to the

empirical distribution of errors, which has a heavier tail.

4.4. Temporal prior
The sign instances which correspond to a target word are

more likely to be temporally located close to the centre of

positive sequences than at the beginning or end. We model

this by positively scoring classifiers which make predictions

close to the centre of the positive sequences:

St(B
+, θ) = log

n+
∏

i=1

St(B
+
i , θ) (13)

For bags where the classifier output is negative a uniform

distribution St(B
+
i |θ) = 1/ni is used. For other bags the

maximum likelihood of the temporal locations of positive

predictions is used:

St(B
+
i , θ) = max

{j:f(Xi
j
,θ)=1}

pt

(

2j

ni

− 1

)

(14)

where temporal locations in a sequence are scaled to lie in

the range [−1,+1].
The temporal prior pt is learnt from a subset of signs as

for the score functions. As shown in Figure 4c, a Gaussian

model gives a good fit to the empirical distribution.

4.5. Searching for the sign by maximizing the score
Given a template window X̂ of length n from a posi-

tive sequence, the score function is maximized by searching

over the weight for the left hand wL, and a set of thresh-

olds τ . This operation is repeated for all such template win-

dows, and the template window that maximizes the score is

deemed to be the sign corresponding to the target word.

Using a per-sign window length allows for some signs

being significantly longer than others. The weight wL al-

lows the importance of the left hand to be down-weighted

for signs which are performed by the right hand alone.

The optimization is carried out as a grid search with the

parameter space discretised into 3 different window lengths

of n ∈ {7, 10, 13} frames, 4 values for down-weighting

the left hand wL ∈ {1, 0.5, 0.25, 0}, and a search over all

relevant thresholds, i.e. one threshold per positive bag.

Given an average of 15 positive sequences per word, an

average of 400 frames per positive sequence, and 3 different

window lengths, the number of template windows consid-

ered is around 18,000.

5. Experiments and Datasets
Given an English word our goal is to identify the cor-

responding sign. We deem the output a success if (i) the

selected template window, i.e. the window with the highest

score, shows the true sign (defined as a temporal overlap

of at least 50% with ground truth) and (ii) at least 50% of

all windows within the positive sequences which match the

template window show the true sign.
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If the window with highest score is not the true sign, we

examine the second, third etc. (up to 20) ranked windows by

the scoring function to determine which, if any, are correct.

Datasets. We tested our approach on 10.5 hours of sign-

ing sequences recorded from BBC broadcasts (including

subtitles), aired between 2005 and 2006, and covering such

diverse topics as politics, motoring and gardening. Signing

is performed by three different persons. The image size af-

ter cropping the area around the signer is 300 × 330 pixels.

Test set. The method is evaluated on 210 words. These

words were selected and fixed before running the experi-

ments, without knowledge of the appearance of the target

signs, i.e. how the corresponding sign is performed. Selec-

tion was based on: (i) the target word must occur more than

5 times in the subtitles; (ii) the target word is a verb, noun

or adjective as opposed to linking words such as “then”,

“from”, “the”, etc.; (iii) the target word does not have mul-

tiple meanings (as opposed to e.g. the word ‘bank’).

For 41 of these words we carry out an extensive anno-

tation, determining where all the occurrences of the target

sign (if any) are in all positive sequences. These signs are

listed in Table 1 together with the number of positive subti-

tle sequences, and the number of times that the target sign

actually occurs at least once within these sequences.

The full list of signs used is given at www.robots.ox.

ac.uk/˜vgg/research/sign_language/, which also

contains example sequences of the detected signs.

5.1. Results

Results for the 41 word dataset. In the following we re-

port quantitative results for the 41 word dataset for which

more extensive ground truth was annotated (see Table 1).

For 30 of these 41 words, we are able to automatically

find the corresponding sign. For a further 3 the second best

estimate corresponds to the correct sign, and for 1 the third

best estimate. The remaining 7 signs are not within the best

3 estimates.

We achieve good results for a variety of signs: (i) signs

where the movement of the hand is important e.g. “golf”,

(ii) signs where the hands do not move but the hand shape

is important e.g. “animal”, (iii) signs where both hands are

together to form a sign e.g. “plant”, (iv) signs which are

finger spelled e.g. “bamboo”, and even (v) signs which are

performed in front of the face e.g. “visitor”, which makes

identifying the hand shape difficult.

Some of the mistakes are understandable: For the word

“wood”, our rank 1 result is the sign for “fire”. This is not

surprising since these two words often appeared together.

The sign “year” is difficult since the signs for “last year”,

“this year” and “next year” differ – our method picks the

sign for “next year”. In the three cases where the true sign

does not lie in the top 20 ranked windows, the proportion of

Sign n+ GT Rank TP FP

animal 14 13 1 10 0

auction 7 6 1 4 1

bamboo 20 15 1 14 0

boy 9 3 ×
cabbage 22 21 1 11 0

charcoal 19 16 1 11 1

children 7 7 1 5 1

clothing 7 7 1 5 0

cut 10 7 1 4 0

different 11 10 1 3 1

flower 26 23 1 3 3

fungi 11 9 1 10 0

gang 8 4 ×
garden 24 15 2 9 0

golf 9 9 1 9 0

great 13 9 1 4 1

help 7 5 2 4 0

house 23 14 5 5 0

identification 9 4 1 4 1

island 9 7 11 3 0

kew 40 31 1 29 0

Sign n+ GT Rank TP FP

know 9 2 ×
navy 7 7 1 7 0

new 12 5 1 7 1

office 6 5 1 3 0

old 11 8 2 5 1

plant 51 21 1 17 0

prince 10 9 1 6 0

seed 18 15 1 16 0

series 6 5 1 4 0

species 23 14 5 4 1

student 15 12 1 9 0

think 28 21 3 8 2

three 9 4 1 2 2

tree 28 19 1 10 0

visitor 7 4 5 3 1

wood 9 7 5 5 0

work 18 8 1 6 2

world 10 5 1 5 1

wreath 11 9 1 6 0

year 25 14 1 7 0

MEAN 15 10 7 0.5

Table 1. Ground truth and performance for 41 words. The first

two columns show statistics of the training data; the last three show

the performance of the method on these words. n+ refers to the

total number of positive sequences, while GT shows the number

of positive sequences in which the target sign occurs. The result

has rank 1 if the window with the highest score correctly identi-

fies the sign, rank 2 if the correct window has the second highest

score, etc. An× indicates that none of the top 20 ranked windows

are correct. The number of correctly detected target signs in the

positive sequences is given in TP, while FP gives the number of

incorrect detections.

positive sequences which actually contain the target sign is

≤ 0.5.

For 30 out of the 41 words, the weight of the left hand

wL is learned to be greater than zero. Out of these, 26 signs

are performed with two hands (referred to in BSL as double-

dez). In contrast, for the remaining 11 signs where wL = 0,

only 6 signs are performed with both hands.

Results for full 210 word dataset. For the full 210 word

dataset, in 136 cases (65%) we are able to automatically

find the template window which corresponds to the target

sign (see Figure 6 for two examples).

The precision-recall curve in Figure 5 (blue dashed line)

shows that the score associated with a template window can

be used as a confidence measure, giving an extremely good

guide to success: at 11% recall (23 signs) precision is 100%;

at a recall of 50% (105 signs) the precision is 77%.
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Figure 5. Precision

recall curve

computed using

the score of the

template window

to rank learned

signs.

Some words in our dataset co-occur with other words

in the subtitles e.g. “prince” and “charles”, which ren-

ders the correct template window ambiguous. Often these

incorrectly-learned signs have a high associated score and
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Figure 6. Example sequences for the signs “different” and “wa-

tering” performed by two different signers and learned automati-

cally. In each figure, the first row shows the template window with

the highest score; rows 2 and 3 show identified instances of the

sign within the positive sequences.

hence reduce the precision even at low recall. By using sim-

ple statistics generated from the subtitles we can identify 24

words for which we expect the proportion of correctly iden-

tified signs to be low. Indeed, out of these 24 signs only 36%
are learned correctly, as opposed to the average accuracy of

65%. Figure 5 (red solid line) shows the precision-recall

curve for the remaining 186 signs.

We evaluated the influence of various components of our

method. Without the temporal prior the accuracy decreases

from 65% to 57%, and without searching over weights for

the non-dominant hand the accuracy decreases from 65%
to 59%. We also investigated a voting scheme to select

the learnt template window, instead of selecting the win-

dow with highest score, and tried learning all the weights

{wpos, wdez, wori} in Eqn. 2 for each individual sign. Nei-

ther change improved results.

6. Conclusions

We propose a framework based on multiple instance

learning which can learn a large number of British Sign

Language signs from TV broadcasts. We achieve very

promising results even under these weak and noisy condi-

tions by using a state-of-the-art upper-body tracker, descrip-

tors of the hands that properly model the case of touching

hands, and a plentiful supply of data. A similar method

could be applied to a variety of fields where weak supervi-

sion is available, such as learning gestures and actions.
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