
Learning Similarity Measures in Non-orthogonal Space*

Ning Liu 1, Benyu Zhang2, Jun Yan 3, Qiang Yang4, Shuicheng Yan 2,
 Zheng Chen2, Fengshan Bai 1, Wei-Ying Ma2

1 Department of Mathematical Science, Tsinghua University, Beijing, 100084, P.R. China

liun01@mails.tsinghua.edu.cn
fbai@math.tsinghua.edu.cn

2Microsoft Research Asia, 49 Zhichun Road, Beijing 100080, P.R. China
{byzhang, zhengc, wyma}@microsoft.com

v-scyan@msrchina.research.microsoft.com
3 LMAM, Department of Information Science, School of Mathematical Science,

 Peking University, Beijing 100871, P.R. China
yanjun@math.pku.edu.cn

4Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong
qyang@cs.ust.hk

ABSTRACT
Many machine learning and data mining algorithms crucially rely
on the similarity metrics. The Cosine similarity, which calculates
the inner product of two normalized feature vectors, is one of the
most commonly used similarity measures. However, in many
practical tasks such as text categorization and document clustering,
the Cosine similarity is calculated under the assumption that the
input space is an orthogonal space which usually could not be
satisfied due to synonymy and polysemy. Various algorithms such
as Latent Semantic Indexing (LSI) were used to solve this
problem by projecting the original data into an orthogonal space.
However LSI also suffered from the high computational cost and
data sparseness. These shortcomings led to increases in
computation time and storage requirements for large scale realistic
data. In this paper, we propose a novel and effective similarity
metric in the non-orthogonal input space. The basic idea of our
proposed metric is that the similarity of features should affect the
similarity of objects, and vice versa. A novel iterative algorithm
for computing non-orthogonal space similarity measures is then
proposed. Experimental results on a synthetic data set, a real MSN
search click-thru logs, and 20NG dataset show that our algorithm
outperforms the traditional Cosine similarity and is superior to
LSI.

*This work conducted at Microsoft Research Asia.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering and Applications –
similarity measures, text processing.

General Terms
Algorithms, Measurement.

Keywords
Similarity Measures (SM), Vector Space Model (VSM), Non-
Orthogonal Space (NOS), Latent Semantic Indexing (LSI).

1. INTRODUCTION
The performance of many data mining algorithms such as
document clustering and text categorization critically depends on
a good metric that reflects the relationship between the data
objects in the input space [2] [15]. It is therefore important to
calculate the similarity as effectively as possible [12]. In the
classical Vector Space Model (VSM) [1], queries and documents
are represented as vectors of terms. These vectors define an input
space where each distinct term represents an axis of that space.
Then the similarity of two documents or two queries equals to the
cosine of the angle between the high dimension vectors indexed
by the terms in corpus [9]. This approach is an effective
approximation, but it is nevertheless an oversimplification. The
major limitation is that it assumes that the terms are independent,
i.e. the dimensions of the input space are orthogonal. However, in
text application, the input space is usually non-orthogonal due to
the following issues.
There are two common problems with the Vector Space Model
[1], [4]. The first is synonymy. For example, the word “building”
can also be represented by “house” or “construction”. The second
is polysemy which means that most words have more than one
meaning. For example, “paper” refers to a material made of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’04, November 8-13, 2004, Washington D.C., U.S.A.
Copyright 2004 ACM 1-58113-874-1/04/0011…$5.00.

334

cellulose pulp, a formal written composition intended to be
published, or even an official document. These facts show that the
terms are not independent, i.e. the space is a non-orthogonal one.
Thus the similarity measured by cosine or inner product based on
Euclidean’s distance can not exactly describe the relationship
between objects.
Recently, attempts have been made to incorporate semantic
knowledge with the vector space representation. Latent Semantic
Indexing (LSI) [4] [5] [6] [1]is a well-known approach among
them. LSI attempts to capture the term-term statistical
relationships. In LSI, the document space in which each
dimension is an actual term occurring in the collection is replaced
by a much lower dimensional document space called the LSI
space in which each dimension is a derived concept. Documents
are represented by LSI space and vector similarity can be
calculated in the same way in LSI space as the traditional VSM.
Nevertheless, LSI has its own weakness. For instance, the concept
space of LSI is hard to be explained intuitively. Another problem
is that the computational complexity of SVD algorithm is too high,
which is O(N3), where N is less value of the number of terms and
documents, which makes LSI a time-consuming process. All these
problems make the LSI algorithm infeasible for large scale, sparse
data sets. Moreover, how to determine the optimal reduced
dimensionality is still not solved properly.

Among the various approaches used to deal with non-orthogonal
space problem, which gained more interest recently, the distance
metric learning approach [11] [13] is based on posing metric
learning as a convex optimization problem and other approaches
[7] used the Mahalanobis distance to describe the similarity.
However, all of them are supervised learning algorithms which
learn the similarity metric or distance matrix that critically
depends on training samples. Due to this reason, such methods are
limited in flexibility due to the lack of enough training data which
often occurs in most real tasks.

In this paper, we propose a novel iterative similarity learning
approach to measure the similarity among the objects in the non-
orthogonal feature space. Our proposed algorithm is based on an
intuitive assumption that the similarity of features should affect
the similarity of objects and vice versa. Compared with the
traditional algorithms such as LSI, our method has the following
advantages: (1) it can learn the similarity in the original feature
space. Thus, it preserves the sparse structure of the original data
and consequently the storage complexity is lower; (2) the time
complexity is much lower than SVD. Experimental results show
that our algorithm outperforms Cosine similarity, and is no worse
and often is better than LSI.

The rest of the paper is organized as follows. In Section 2, we
introduce some background knowledge on similarity measurement
and learning, such as Cosine similarity, LSI algorithms and
supervised algorithms. Following that, we present the problem
formulation and the detailed algorithm in Section 3. The
experimental results on the synthetic datasets and the real data are
demonstrated in Section 4. Conclusion and future work are
presented in Section 5.

2. BACKGROUND
Many information mining problems, such as text classification
and text clustering are suffering from the problems to understand
the representation of documents and to capture the relationship

between documents. In this section, we will introduce three
popular approaches relative to these problems: Cosine similarity,
Latent Semantic Indexing and supervised learning algorithms.

2.1 Cosine Similarity in Vector Space Model
Vector Space Model (VSM) is the first approach to represent
documents as a set of terms [3] [9]. This set of terms defines a
space such that each distinct term represents the entries in that
space. Since we are representing the documents as a set of terms,
we can view this space as a “document space”. We can then
assign a numeric weight to each term in a given document,
representing an estimate of the usefulness of the given term as a
descriptor of the given documents [8]. The weights assigned to
the terms in a given documents can then be interpreted as the
coordinates of the document in the documents space. For instance,

t dB × is the matrix of term by documents in the case of text data,

where ,i jb is the term weighting. Then, a vector similarity

function, such as the cosine of the angle between the high
dimension vectors indexed by the terms in corpus, can be used to
compute the similarity matrix among documents. For two vectors

ib and jb the Cosine similarity is given by:

cos ,
(,) cos() i j

i j
i j

b b
sim b b

b b
θ

< >
= = (1)

where θ is the angle between ib and jb . For the term by

document matrix B , if the entire column vectors in B have been
normalized, the similarity matrix will be:

cos (,) Tsim doc doc B B= . (2)

For an ideal similarity measure, the maximum similarity is one,
corresponding to the two document vectors being identical (angle
between them is zero). The minimum similarity is zero,
corresponding to the two vectors having no terms in common
(angle between them is 90 degree). Others should between zero
and one since any cosine value of an acute angle should between
zero and one.

The major limitation of Cosine similarity is that it assumes the
terms are independent, orthogonal dimensions of the space, but in
fact it is usually not orthogonal. Thus mistakes occur under this
assumption. For instance, consider the following two sentences:

C1: Human machine interface for Lab ABC computer applications.

C5: Relation of user-perceived response time to error measurement

Using the simplest counting strategy to establish a vector space
model, the transposed object matrix TB could be shown in Table
1.

Table 1. VSM Example

 computer Human interface response time user

C1 1 1 1 0 0 0

C5 0 0 0 1 1 1

Following the example above, c1 and c5 are both talking about
the human-computer interaction [4], thus similar in semantic
space. However, the Cosine similarity of c1 and c5 by formula (1)
are zero which means that they are not similar at all. This mistake
occurs due to our assumption that the input space is orthogonal
while it is not. The terms are not orthogonal due to there are

335

correlations among different words, for example, ‘user’ in c5 and
‘human’ in c1 have strong relationship in semantic space, but we
assume that they are orthogonal basis of the vector space. Figure 1
gives the intuitive interpretation of Cosine similarity in non-
orthogonal space.

Figure 1 Cosine similarity in non-orthogonal space. Since the
basis vectors are not orthogonal, the projections and the

components of vectors are not the same.

For simplicity, we consider a two dimensional case. Suppose that
“e1” and “e2” are basis vectors (i.e., terms) of a vector space
model, “a” and “b” are two vectors (i.e. documents) in this space.
Since the basis vectors are not orthogonal, the projections
(pictured by broken line with square end) and the components
(pictured by dot line) of these vectors are not the same. The
Cosine similarity of a and b which considers the components as
projections will certainly lead to the wrong solution. Thus, the
Cosine similarity is less suitable for non-orthogonal vector space.

2.2 Latent Semantic Indexing
Latent Semantic Indexing (LSI) [6] [4] is a information retrieval
method designed to overcome two common problems in
information retrieval: synonymy and polysemy. In other words,
LSI aims at projecting original data in vector space to an
orthogonal space in where the Cosine similarity will not lead to
mistakes. From a very high level, LSI tries to take advantage of
the conceptual content of documents. A technique known as
Singular Value Decomposition (SVD) is used to create this
concept space. Below is a simplistic overview of what happens in
the preprocessing stage of LSI and how SVD is used [14].

LSI takes the original term by document matrix m nB × as input.

Then, the SVD projection is computed by decomposing matrix B
into the product of three matrices T

m n m m m n n nB T S D× × × ×= ,

where min(,)N m n= , T and D have orthonormal columns and
S is diagonal. By restricting the matrixes T , D and S to their

first k n< rows one obtains the matrix T
m n m k k k k nB T S D× × × ×= �� � � . B� is

the best square approximation of B by a matrix of rank k.

The inner product between two column vectors of B� reflects the
extent to which two documents have a similar profile of terms.
Thus the matrix TB B� � contains the document-to-document
similarity:

2(,)LSI T Tsim doc doc B B DS D= = �� � � � (3)

The research into LSI so far has been encouraging. However, LSI
has some shortcomings in performance. One is the computational
complexity of SVD algorithm is O(N3) where N is the minor value
between the number of terms and documents. It makes the LSI
algorithm unfeasible for large sparse dataset. Meanwhile, LSI has

the storage space problem. After performing an SVD, the
approximate matrix B� is not a sparse matrix. Furthermore, the
problem with LSI is that the concept space is hard to understand
by humans and the similarity between documents will appear
negative values. Besides, a parameter k under the user’s control
can affect the information reservation, i.e. the choice of parameter
k is still an opening issue and different choice may be affect the
final similarity greatly.

2.3 Supervised Similarity Learning
Recently, researchers have considered using distance metrics to
measure the similarity of objects. They present some algorithms
that can learn a distance metric to increase the accuracy of
information retrieval [11] [13]. The Mahalanobis distance is a
very considerable way of determining the similarity of a dataset.
Mahalanobis distance uses TB AB to replace the original inner
product, where A is a parameterized family of distance metrics.
The learning distance algorithms discriminately searches for the
parameters that best fulfill the training data. These methods were
shown to be very effective; however, measuring the similarity of
individual web objects may not be precise when using their
algorithms due to no enough training data to learn the parameters.

3. LEARNING SIMLARITY IN NON-
ORTHOGONAL SPACE
In this section, we present the problem formulation and give the
detailed similarity learning algorithm in non-orthogonal space
[10]. We derivate our algorithm from a simple intuitive
assumption: “the similarity of features should affect the similarity
of objects and vice versa.” Following that is the convergence
proof of this algorithm. Then, the parameter choosing strategy is
given at the end of this section.

3.1 Problem Formulation
Since we are interested in not only the problem of terms and
documents, but also other information retrieval problems such as
measuring the similarity among queries and pages and so on, in
the interest of generality, we use ‘object’ and ‘feature’ to
represent the detailed problems such as documents and terms or
queries and pages in the sequel. The classical Cosine similarity is
in fact the inner product of two normalized vectors in an
orthogonal vector space. Mistakes occur since we apply it in the
non-orthogonal space. This motivates us to give a novel similarity
measure which is suitable for a non-orthogonal space.

Suppose that x , y are objects in an n-dimensional vector

space nH . The thi entry of x is denoted as ix which is the value

of x on the thi feature. Let Tx be the transpose of vector x . Matrix
is represented by capital letter B whose columns are objects
in nH and ,i jb is the value of the thi object on the thj feature

space. Since these bag of words like vectors have very sparse
structure, this sparse structure could save storage requirement
greatly and perform quick algorithm so as to save time
requirement. As discussed above, our problem is learning the
similarity based on the feature-object matrix B of which the
features may not be independent, i.e. the space is a non-
orthogonal one, and preserving the sparse structure of matrix B.

e2

e1

b

a

336

3.2 Equations for Similarity Learning
There are many approaches such as kernel based algorithms [7]
measure the similarity in non-orthogonal space by,

(,)
i

T
i j jS o o o Po= ,

where io and jo are two objects and P is a semantic proximity

matrix satisfies the symmetric and positive semi-definite. Let
m nB R ×∈ be a feature by object matrix, which could be looked as

objects in feature space from columns or features in object space
from rows. Suppose oS and fS are the similarity matrix between

objects and the similarity matrix between features respectively.
Firstly, let us interpret our basic assumption, “the similarity of
features should affect the similarity of objects and vice versa.” In
other words, two objects should be more similar if their features
are more similar; on the other hand, two features should be more
similar if their corresponding objects are more similar, the two
factors should affect each other and could not be considered
individually until converge.

Therefore, under this assumption, we could adapt the similarity
measure in an orthogonal space to a non-orthogonal formulation.
In contrast to the Cosine similarity which is more suitable for
orthogonal space, we introduce our interactive similarity
measurement in a non-orthogonal space,

o

T
fS B S B= and

f

T
oS BS B= .

We assume that the similarity measurement is normalized. In
other words, the obtained similarity values should between zero
and one. That is, if two objects are not similar at all, then the
similarity between them should be zero; if two objects are the
same, then the similarity between them should be one; otherwise,
the similarity among objects should not less than zero and not
larger than one. In order to satisfy this constrain and for
convenience, we normalize our interactive similarity by two
positive real parameters 1λ , 2λ and solve these similarity
iteratively,

1
1o

k k T
fS BS Bλ+ = and 1

2f

k T k
oS B S Bλ+ = .

We will prove that if
1

2 2
1 2, B Bλ λ

∞
< < , the entries of similarity

matrices will between zero and one in the proof of lemma 2 in the
appendix. However, since the similarity of the same object should
be one, we can assign the diagonal of the similarity matrix a score
of 1. Then we rewrite the recursive equations as:

1
1 1 (4)

o

k T k k
fS B S B Lλ+ = +

1
2 2 (5)

f

k k T k
oS BS B Lλ+ = +

where
1 21 2(), ()k T k k k T

f oL I diag B S B L I diag BS Bλ λ= − = − and 1 2,λ λ

are positive real parameters which satisfy
1

2 2
1 2, B Bλ λ

∞
< < . In

this paper, we call (4) and (5) the basic Similarity equations in the
Non-Orthogonal Space (SNOS). We choose initial value

0 1 if
0 if ij

i j
S

i j
=�

= � ≠�

for the interactive iteration process. In other words, we take
0 0
o fS S I= = to initialize this iteration algorithm. In fact, there are

many other variations of our algorithm if we relax constrains of
the parameters or give other initial values.

From the algorithm equation, it could be seen that the vector
space, i.e. matrix B, has not been changed from the beginning to
the end during the iteration process. In other words, we preserved
the sparse structure of matrix B and thus save a lot of storage
space compare with LSI. Furthermore the time complexity of our
algorithm is ()O t m n⋅ ⋅ , where m is the number of features, n is
the number of objects and t is the number of iteration steps. The
average iteration steps before converge is about 8 by our
experiments. In contrast, in order to get the similarity matrix of
features and objects, the time complexity of LSI
is 3 2()O n m+ which is much higher than our proposed approach.

3.3 Convergence Proof
We give a proof summary of the existence and uniqueness for the
basic SNOS equations (4) and (5). The detailed proof could be
found in the appendix.

Definition 1 suppose matrices m nA R ×∈ , p qB R ×∈ , then their
Kronecker Product A B⊗ is,

11 12 1

21 22 2

1 2

n

n

m m mn mp nq

a B a B a B

a B a B a B
A B

a B a B a B
×

� �
� �
� �⊗ =
� �
� �� �
� 	

�

�

� � �

�

Definition 2 the Row-First Vectorization of a matrix m nA R ×∈ ,
denoted as A

�
, could be represented as 1 2(, , ,)T

mA a a a=
�

� ,

where n
ia R∈ , 1,2, ,i m= � are row vectors of A.

Lemma 1 supposes m nA R ×∈ and n nB R ×∈ are matrices,

then ()TABA
�

2mR∈ , moreover () ()TABA A A B= ⊗

� �
.

Lemma 2 the similarity matrices oS and fS defined in the basic

SNOS equations are bounded.

Lemma 3 the entries of similarity matrices oS and fS defined in

the basic SNOS equations are non-decreasing.

Theorem 1 the interactive iteration basic SNOS equations
converge to a unique solution.

Proof: from lemma 2 and 3 we know that oS and fS are bounded

and non-decreasing, so they converge to some solution. Let’s
prove the uniqueness of the solution.

Suppose ' '(,),(,)o f o fS S S S are two different group of solutions of

the basic SNOS equations. Then,

337

1

2

1

2

o f

T

T
f o

S B S B L

S BS B L

λ

λ

� = +

�

= +
�

 and 1

2

' ' '
1

' ' '
2

o f

o

T

T
f

S B S B L

S BS B L

λ

λ

� = +

�

= +
�

.

For all the non-diagonal elements, change the representation by

lemma 1. Entries of
k
fS
��

and
1k

oS
+��

could be denoted

as 1 2 2(), (), 1,2, , , 1,2, ,k k
f os l s g l n g m+ = =� � . Suppose the

element in oS correspond to ()os l is (,)os i j , we have

''
1 1

'
1

() () () ()

 () ()

f fo o i j i j

f fi j

s l s l b b S b b S

b b S S

λ λ

λ

− = ⊗ − ⊗

≤ ⊗ −

�� ��

�� ��
.

For all the diagonal elements

''
1() () 1 1 0 () ()f fo o i js l s l b b S Sλ− = − = ≤ ⊗ −

�� ��
.

Then

' '
() ()o o f fS S S S− < −
�� �� �� ��

.

On the other hand

' '
() ()f f o oS S S S− < −
�� �� �� ��

.

This leads to the conclusion that
' '
,o o f fS S S S= =

�� �� �� ��
.

�

3.4 Parameter Selection
As mentioned above, several parameters are used in the original
algorithm. For normalization purposes, we change the diagonal
elements of similarity matrices into 1 at each iteration step
through matrices

1

kL and
2

kL . Although this rough revision will not

affect the convergence of algorithm, intuition tells us that too
much of this operation will lead to reduced effectiveness of our
algorithm. When choosing a parameter, we wish to minimize the
norm of 1L and

2
L after convergence occurs. In other words, we

suggest to solve the parameters through the optimization problems
listed bellow:

1 1

2 21 1

1 1 1
0 1/ 0 1/

2 2 2
0 1/ 0 1/

arg min arg min ()

arg min arg min ()

T
f

B B

T
o

B B

L I diag B S B

L I diag BS B

λ λ

λ λ

λ λ

λ λ
∞ ∞≤ < ≤ <

≤ < ≤ <

= = −

= = −

Note that the entries of
matrices ()T

fdiag BS B and ()T
odiag BS B are now bounded.

Furthermore, () 0T
fI diag BS B− ≥ and () 0T

oI diag BS B− ≥ , the

optimization problem could be changed into,

1

2 1

1 1
0 1/

2 2
0 1/

arg max ()

arg max ()

T
f

B

T
o

B

diag B S B

diag BS B

λ

λ

λ λ

λ λ
∞≤ <

≤ <

=

=
.

This implicates that we should choose the parameters as large as

possible under the constrains 10 1 / Bλ ∞≤ < , 2 10 1 / Bλ≤ < .

For convenience, we choose a same parameter in our experiments.
It must satisfies

1
0 1/ max{ , }B Bλ

∞
≤ < , and as large as

possible under this constrain. So we choose:

1 2 1
0.9 / max{ , }B Bλ λ

∞
= =

in all our experiments.

4. EXPERIMENTS
In this section, we discuss the experimental data set, evaluation
metric, and the experimental results based on cosine similarity,
LSI, and our proposed SNOS. The first experiment is conducted
on a synthetic data to demonstrate the drawbacks of cosine
similarity and LSI, which are mentioned in the previous sections.
The second experiment is performed on a real MSN click-through
log data to find similar queries. LSI failed to finish this
experiment due to the large scale of the data set. Our proposed
SNOS achieves 80.6% improvement on the precision of similar
queries. The third experiment is demonstrated the performance of
the proposed algorithm for classification.

4.1 The Synthetic Data
We conduct the first experiment on a sample dataset consisting of
the titles of 9 technical memoranda [4]. This dataset comes from
the paper in which LSI was proposed. Terms occurring in more
than one title are italicized. There are two classes of documents -
five about human-computer interaction (c1-c5) and four about
graphs (m1-m4). This dataset can be described by means of a term
by document matrix B , where each cell entry indicates the
frequency with a term in a document (Table 2).

Table 2. Technical Memo Example
c1 Human machine interface for Lab ABC computer applications

c2 A survey of user opinion of computer system response time

c3 The EPS user interface management system

c4 System and human system engineering testing of EPS

c5 Relation of user-perceived response time to error measurement

m1 The generation of random, binary, unordered trees

m2 The intersection graph of paths in trees

m3 Graph minors IV: Widths of trees and well-quasi-ordering

m4 Graph minors: A survey

In this simple intuitive example, the Cosine similarity in VSM,
LSI (2,3, 8k = �) and SNOS are used to compute the similarity
between documents. Without lose of generality, the similarity
between document a and all the collection is denoted
as (,)sim a doc . We use (1,)sim c doc to show the solution of
different approaches, where the bold entries are abnormal. (Eg.

the 5th entry of vector (1,)COSsim c doc denotes the cosine
similarity between c1 and c5)

338

()
()
()
()

(1)

(2)

(3)

(1,) 1 0.2 0.3 0.2 0 0 0 0
(1,) 1 1.0 1.0 1.0 1
(1,) 1 0.9 1.0 1.0 0.9 0
(1,) 1 0.6 1.0 1.0 0.2 0 0 0

COS

LSI k

LSI k

LSI k

sim c doc

sim c doc

sim c doc

sim c doc

si

=

=

=

=
=
=
=

 0
 1 1 1 1

-0.2 -0.2 -0.2
 0.3

()
()
()

(4)

(5)

(6)

(7)

(1,) 1 0.3 0.4 0.2 0 0 0 0

(1,) 1 0.2 0.4 0.2 0 0 0 0
(1,) 1 0.3 0.3 0.2 0 0 0 0
(1,) 1 0.3 0.3 0.2 0 0 0

LSI k

LSI k

LSI k

LSI k

m c doc

sim c doc

sim c doc

sim c doc

=

=

=

=

=
=
=
=

 0
 0
 0
 0 ()

()
()

(8)

0
(1,) 1 0.2 0.3 0.2 0 0 0 0
(1,) 1 0.5 0.4 0.2 0.1 0 0 0 0

LSI k

SNOS

sim c doc

sim c doc

= =
=

 0

It can be seen that: (1) the Cosine similarity between c1 and c5 is
zero although they are in the same predefined class. This is due to
the non-orthogonal features of the input space; (2) there exists
some negative values among the similarity solved by LSI, the
meaning of which could not be intuitively understood; (3) the
performance of LSI is crucially dependent on the parameter k.
However, the selection of k is still an open issue in LSI. In
contrast, our proposed SNOS can design the similarity effectually,
in other words, the similarity values solved by SNOS are all
between zero and one, truly reflecting the similarity values of the
intra class objects are larger than those of inter class objects.

4.2 The MSN Search Click-thru Log Data
In this section, we compare SNOS with cosine similarity on the
real MSN click-through logs data on the task of finding similar
queries. It is noticed that LSI failed on this data set because SVD
can not deal with the large scale, and sparse matrices. This is a
predominance of our method than LSI.

4.2.1 Dataset
In order to study the effectiveness of SNOS for measuring the
similarity of web objects, experiments are conducted on a real
user query click-through log collected by the MSN Web search
engine in December, 2003. It contains about 4.2 million query
requests recorded sampled from a period of six hours. The log we
obtained has already been processed into a predefined format, i.e.
each query request is associated with the URL of one clicked web
page. A single query (or web page URL) can occur multiple times
in the query click-through log.

Before running the experiments, some preprocessing steps are
applied to the queries and web page URLs. All queries are
converted to lower-cases, stemmed by the Porter algorithm. The
stop-words in the queries are removed. After these steps, the
average query length is about 2.7 words. All URLs are converted
into canonical form by performing such tasks as replacing unsafe
characters with their escape sequences and collapsing sequences
like “..\..”. Each URL is considered as a feature, while each query
is treated as an object. (We can also treat URLs as objects, and
treat queries as features). Our proposed algorithm can solve
similarities between objects and between features at the same
iteration.) The weight for a query on a URL is the frequency of
the query leading to the URL.

4.2.2 Evaluation Metrics
Since our proposed algorithm aims to find better similarity
between objects, we developed an operational measure of

precision to evaluate the performance. Given an object as input,
we ask 10 volunteers to identify the correct similar objects from
the top N returned results by each algorithm. The precision is
defined as

||
||

N
M

Precision = (6)

where || N is the number of top N similar objects to be evaluated,
and || M is the number of correct similar objects tagged by the
volunteers. The final relevance judgment for each object is
decided by majority vote. In our experiment, || N is set as 10.

4.2.3 Finding Similar Queries
In this experiment, the volunteers were asked to evaluate the
precision of results for the selected 10 queries (which are air
tickets, auto trader, bank of America, cannon cameras, Disney,
mapquest, msn content, Presario 2100, united airlines, and
weather report). Figure 2 shows the comparison of the SNOS
approach with cosine similarity. We found that SNOS
outperforms the cosine similarity in precision by 80.6%.

Through careful study of the query “Presario 2100” which was a
popular laptop model, we found that our proposed algorithm not
only can filter some un-related queries, but also can find some
close-related laptop models. In Table 3 the tag “Y” represents that
the query is similar to the given query “Presario 2100”; “N”
indicates “not similar”. Although the cosine similarity returns
some similar queries (the 1st – 5th results), it suffers from the
“topic drift” issue (the 6th – 10th results), e.g. “Presario 2100” and
“Linux Compaq 2100” share some clicked web pages, however,
those web pages discuss how to install Linux in Presario 2100,
and therefore, those common clicked web pages is actually a kind
of “noise feature” for “Presario 2100”, which causes “Linux
Compaq 2100” to be returned as a similar query by cosine
similarity. On the other hand, SNOS finds out similar models
which are not revealed by the cosine similarity. Although different
models have many different clicked web pages, those clicked web
pages are computed as “similar” since they are queried by
“similar” queries, such as “Compaq Presario”, “Compaq
notebook”, “Compaq laptop”, etc. Hence, different models have
higher similarity based on SNOS than based on cosine similarity.

Figure 2 Precision of similarity between queries

339

Table 3. Similar queries for "Presario 2100"

 Cosine Similarity SNOS

1 Compaq Presario Y Compaq Presario Y

2 Compaq notebook Y Compaq notebook Y

3 Compaq laptop Y Compaq laptop Y

4 online Compaq Presario Y online Compaq Presario Y

5 Compaq Presario laptop Y Compaq Presario laptop Y

6 compaque N Compaq Presario 9642 Y

7 Notebook price compare N Presario 2800 sale Y

8 Compaq support N Compaq 2575us Y

9 Linux Compaq 2100 N Presario 9642 Y

10 Used Compaq reseller N Compaq batteries N

4.3 The 20NG Data
To demonstrate the classification performance of the proposed
algorithm, the commonly used 20NG data was used here
(http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.ht
ml). We choose the five classes about computer which contains
4881 documents altogether. The Cosine similarity in non-
orthogonal space was used as the baseline. We use the simple
Nearest Neighbor classifier to assess the performance of SNOS on
20NG data. Figure 3 shows the error rate of Cosine similarity in
contrast to our SNOS. The X-axis denotes the proportion of data
used for training.

Figure 3 The classification error rate on 20NG dataset by the

nearest neighbor classifier

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose a novel approach to calculate the
similarity metric in the non-orthogonal space (SNOS). In contrast
to LSI, which aims at solving the non-orthogonal space similarity
problem, our proposed approach has the following advantages: (1)
lower cost both in storage computation (2) preserves the sparse
structure of VSM by avoiding orthogonalizing the input space.

We demonstrated the disadvantage of classical Cosine similarity
in the non-orthogonal space and showed the performance of
SNOS by experiments on a synthetic dataset as well as a large
sampled MSN search click-thru log.

In the next step, we will explore the efficiency, effectiveness, and
generality of the SNOS approach. We notice that there is
considerable room for improvement in the quality of clustering of
both Web pages and queries. We believe that SNOS could be
successfully applied to improve the effectiveness of clustering.
Finally, we plan to apply our approach to more complex settings,
such as in digital libraries, where there are more types of objects,
so as to demonstrate further the generality of SNOS. Besides, we
will give some variations of SNOS in our future work.

6. ACKNOWLEDGEMENT
Jun Yan thanks the support of the Lab of Mathematics and
Applied Mathematics of Peking University. Qiang Yang would
like to thank Hong Kong RGC for their support.

7. REFERENCES
[1] Ando, R.K., Latent Semantic Space: Iterative Scaling

Improves Precision of Inter-document Similarity
Measurement. In Proceedings of the SIGIR, (Athens,
Greece, 2000), 216--223.

[2] Atnafu, S., Brunie, L. and Kosch, H., Similarity-Based
Operators and Query Optimization for Multimedia
Database Systems. In Proceedings of the International
Database Engineering and Application Symposium,
(Grenoble, France, 2001), 346-355.

[3] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information
Retrieval. Addison Wesley Longman, 1999.

[4] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K.
and Harshman, R.A. Indexing by Latent Semantic Analysis.
Journal of the American Society for Information Science,
41(6). 391-407.

[5] Dumais, S.T., Letsche, T.A., Littman, M.L. and Landauer,
T.K., Automatic cross-language retrieval using latent
semantic indexing. In Proceedings of the AAAI Spring
Symposuim on Cross-Language Text and Speech Retrieval,
(1997).

[6] Dumais, S.T., Platt, J., Heckerman, D. and Sahami, M.,

Inductive Learning Algorithms and Representations for Text
Categorization. In Proceedings of the 7th International
Conference on Information and Knowledge Management.,
(Bethesda, Maryland, 1998).

[7] Kandola, J., Taylor, J.S., Cristianini, N. and Davis.,
Learning Semantic Similarity. In Proceedings of the Neural
Information Processing Systems (NIPS), (Whistler, B.C.,
2003).

[8] Leopold, E. and Kinderman, J. Text Categorization with
Support Vector Machines. How to Represent Texts in Input
Space? Machine Learning, 46. 423-444.

[9] Salton, G. and McGill, M.J. Introduction to Modern
Retrieval. McGraw-Hill Book Company, 1983.

[10] Sanders, I. and Kenny, L., Heuristics for placing non-
orthogonal axial lines to cross the adjacencies between

340

orthogonal rectangles. In Proceedings of the 13th Canadian
Conference on Computational Geometry, (2001), 153--156.

[11] Schultz, M. and Joachims, T., Learning a Distance Metric
from Relative Comparison. In Proceedings of the Neural
Information Processing Systems, (Whistler, B.C., 2003).

[12] Tosun, A.S. and Ferhatosmanoglu, H., Vulnerabilities in
Similarity Search Based Systems. In Proceedings of the 11th
ACM International Conference on Information and
Knowledge Management (CIKM), (McLean,VA, 2002).

[13] Xing, E., Y., A., Jordan, M. and Russell, S., Distance
Metric Learning, with Application to Clustering with Side-
Information. In Proceedings of the Neural Information
Processing Systems (NIPS), (Whistler, B.C., 2003).

[14] Zelikovitz, S. and Hirsh, H., Using LSI for Text
Classification in the Presence of Background Text. In
Proceedings of the 10th ACM International Conference on
Information and Knowledge Management (CIKM), (Atlanta,
US, 2001), ACM Press, New York, US, 113--118.

[15] Zhai, C. and Lafferty, J., Model-based Feedback in the
Language Modeling Approach to Information Retrieval. In
Proceedings of the 10th ACM International Conference on
Information and Knowledge Management (CIKM), (Atlanta,
US, 2001), 403-410.

APPENDIX
Definition 3: the 1-norm of matrix () m n

ijA a R ×= ∈ ,

is 11 1
max{ }m

iji
j n

A a=≤ ≤
= � .

Definition 4: the infinite-norm of matrix () m n
ijA a R ×= ∈ ,

is 11
max{ }n

ijj
i m

A a=∞ ≤ ≤
= � .

Lemma 1 for matrices m nA R ×∈ , n nB R ×∈ , the Line-First

Vectorization of matrix TABA equal to a vector
2

() mA A B R⊗ ∈
�

.

Proof:

11 12 1 11

21 22 2 12

1 2

1, 1, ,
1 1

1, 2, ,
1 1

, , ,
1 1 1

()

()

n

n

m m mn nn

m n

i j i j
i j

m n

i j i j T
i j

m n

m i m j i j
i j mm

a A a A a A b

a A a A a A b
A A B

a A a A a A b

a a b

a a b
ABA

a a b

= =

= =

= = ×

� �� �
� �� �
� �� �⊗ =
� �� �
� �� �� �� �
� 	� 	

� �
� �
� �
� �
� �= =� �
� �
� �
� �
� �� �
� 	

� �

� �

� �

�

� �

� � � �

�

�

�

�.

Lemma 2 the similarity matrices ,o fS S defined in (1) and (2) are

bounded.

Proof: from lemma 1,
1

11()
k k k
o fS B B S Lλ

+
= ⊗ +

�� �� ��
 (4).

Entries of
k
fS
��

and
1k

oS
+��

could be denoted

as 1 2 2(), (), 1,2, , , 1,2, ,k k
f os l s g l n g m+ = =� � . From the initial

value, we know that 00 () 1fs l≤ ≤ . Suppose the element

in 1k
oS + correspond to 1()k

os g+ is 1(,)k
os i j+ .

Note that 1() 1k
os g+ = when its corresponding element in matrix

1k
oS + is a diagonal element, i.e. i j= , due to 1

k
L
��

. Otherwise,

when i j≠ , if 0 () 1k
fs l≤ ≤ , 21,2, ,l n= � ,

1
1

1
0 () () ()

1
 () 1

f

f

k kk T T
fo i j i j

kT
i j

i j

s g b b S b b S
B

b b S
b b

λ+

∞

≤ = ⊗ ≤ ⊗

≤ ⊗ ≤

�� ��

�� ,

where ib is the thi line of matrix B and ib is the number of non-

zero elements in ib . Then we could draw the conclusion that the

entries of
1k

oS
+��

belong to [0,1] by induction.

In the same way, 10 1k
fS +≤ ≤ for all k. �

Lemma 3 the entries of similarity matrices ,o fS S defined in (1)

and (2) are non-decreasing.

Proof: The same as the proof of lemma 2, we transform the
algorithm into an equal formulation:

1
11

1
22

()

()

k k k
o f

k k kT T
f o

S B B S L

S B B S L

λ

λ

+

+

= ⊗ +

= ⊗ +

�� �� ��

�� �� ��

It is obviously that () 1k
os l = if it corresponds to a diagonal entry

of matrix 1S due to the effectiveness of 1
k

L
��

. On the other hand, for

all the non-diagonal entries, 1 0() 0 ()o os l s l≥ = since the initial value

of 0 ()os l is zero. We could draw the conclusion that 1 0
o oS S≥ .

If 1k k
o oS S −≥ , for all the non-diagonal entries (,)k

fs i j who

correspond to ()k
fs l , we have,

11
2 2

1
2

() () () ()

()() 0

k kk k
o of f i j i j

k k
o oi j

s l s l b b S b b S

b b S S

λ λ

λ

−+

−

− = ⊗ − ⊗

= ⊗ − ≥

�� ��

�� ��

For all the corresponding diagonal entries of fS , we

have () 1k
fs l = .

From the discussion talked above, the entries of fS are non-

decreasing. Moreover, the entries of oS are non-decreasing due to

the same reason [3]. �

341

