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Abstract

We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation

of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely

on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object

instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting

weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single

view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us

to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods

cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various

settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves

performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-

the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance

improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v)

shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our

approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.

Keywords Single-image 3D reconstruction · Generative models · Shape from shading · Neural networks

1 Introduction

Reconstructing 3D objects from 2D images is a long-standing

research area in computer vision. While traditional methods

rely on multiple images of the same object instance (Seitz

et al. 2006; Furukawa and Hernández 2015; Broadhurst et al.

2001; Laurentini 1994; De Bonet and Viola 1999; Gargallo

et al. 1999; Liu and Cooper 2010), there has recently been

a surge of interest in learning-based methods that can infer

3D structure from a single image, assuming that it shows an

Communicated by Ling Shao, Hubert P. H. Shum, Timothy Hospedales.

B Paul Henderson

paul@pmh47.net

Vittorio Ferrari

vittoferrari@google.com

1 Institute of Science and Technology (IST) Austria,

Klosterneuburg, Austria

2 Google Research, Zurich, Switzerland

object of a class seen during training (e.g. Fan et al. 2017;

Choy et al. 2016; Yan et al. 2016; see Sect. 2.1). A related

problem to reconstruction is that of generating new 3D shapes

from a given object class a priori, i.e. without conditioning

on an image. Again, there have recently been several works

that apply deep learning techniques to this task (e.g. Wu et al.

2016; Zou et al. 2017; Gadelha et al. 2017; see Sect. 2.2).

Learning-based methods for single-image reconstruction

are motivated by the fact that the task is inherently ambigu-

ous: many different shapes project to give the same pixels,

for example due to self-occlusion. Hence, we must rely on

prior knowledge capturing what shapes are likely to occur.

However, most reconstruction methods are trained discrim-

inatively to predict complete shapes from images—they do

not represent their prior knowledge about object shapes as

an explicit distribution that can generate shapes a priori. In

this work, we take a generative approach to reconstruction,

where we learn an explicit prior model of 3D shapes, and

integrate this with a renderer to model the image formation
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Fig. 1 Given only unannotated 2D images as training data, our model

learns (1) to reconstruct and predict the pose of 3D meshes from a single

test image, and (2) to generate new 3D mesh samples. The generative

process (solid arrows) samples a Gaussian embedding, decodes this to

a 3D mesh, renders the resulting mesh, and finally adds Gaussian noise.

It is trained end-to-end to reconstruct input images (dashed arrows), via

an encoder network that learns to predict and disentangle shape, pose,

and lighting. The renderer produces lit, shaded RGB images, allowing

us to exploit shading cues in the reconstruction loss

process. Inference over this joint model allows us to find the

most likely 3D shape for a given image.

Most learning-based methods for reconstruction and gen-

eration rely on strong supervision. For generation (e.g. Wu

et al. 2016; Zou et al. 2017), this means learning from large

collections of manually constructed 3D shapes, typically

ShapeNet (Chang et al. 2015) or ModelNet (Wu et al. 2015).

For reconstruction (e.g. Choy et al. 2016; Fan et al. 2017;

Richter and Roth 2018), it means learning from images paired

with aligned 3D meshes, which is very expensive supervision

to obtain (Yang et al. 2018). While a few methods do not rely

on 3D ground-truth, they still require keypoint annotations on

the 2D training images (Vicente et al. 2014; Kar et al. 2015;

Kanazawa et al. 2018), and/or multiple views for each object

instance, often with pose annotations (Yan et al. 2016; Wiles

and Zisserman 2017; Kato et al. 2018; Tulsiani et al. 2018;

Insafutdinov and Dosovitskiy 2018). In this paper, we con-

sider the more challenging setting where we only have access

to unannotated 2D images for training, without ground-truth

pose, keypoints, or 3D shape, and with a single view per

object instance.

It is well known that shading provides an important cue

for 3D understanding (Horn 1975). It allows determination

of surface orientations, if the lighting and material char-

acteristics are known; this has been explored in numerous

works on shape-from-shading over the years (Horn 1975;

Zhang et al. 1999; Barron and Malik 2015). Unlike learning-

based approaches, these methods can only reconstruct non-

occluded parts of an object, and achieving good results

requires strong priors (Barron and Malik 2015). Conversely,

existing learning-based generation and reconstruction meth-

ods can reason over occluded or visually-ambiguous areas,

but do not leverage shading information in their loss. Fur-

thermore, the majority use voxel grids or point clouds as an

output representation. Voxels are easy to work with, but can-

not explicitly model non-axis-aligned surfaces, while point

clouds do not represent surfaces explicitly at all. In both

cases, this limits the usefulness of shading cues. To exploit

shading information in a learning-based approach, we there-

fore need to move to a different representation; a natural

choice is 3D meshes. Meshes are ubiquitous in computer

graphics, and have desirable properties for our task: they

can represent surfaces of arbitrary orientation and dimen-

sions at fixed cost, and are able to capture fine details. Thus,

they avoid the visually displeasing ‘blocky’ reconstructions

that result from voxels. We also go beyond monochromatic

light, considering the case of coloured directional lighting;

this provides even stronger shading cues when combined

with arbitrarily-oriented mesh surfaces. Moreover, our model

explicitly reasons over the lighting parameters, jointly with

the object shape, allowing it to exploit shading information

even in cases where the lighting parameters are unknown—

which classical shape-from-shading methods cannot.

In this paper, we present a unified framework for both

reconstruction and generation of 3D shapes, that is trained

to model 3D meshes using only 2D supervision (Fig. 1).

Our framework is very general, and can be trained in similar

settings to existing models (Tulsiani et al. 2017b, 2018; Yan

et al. 2016; Wiles and Zisserman 2017), while also supporting

weaker supervision scenarios. It allows:
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(a) (b) (c)

Fig. 2 Lighting: coloured directional lighting a provides strong cues for

surface orientation; white light b provides less information; silhouettes c

provide none at all. Our model is able to exploit the shading information

from coloured or white lighting

– Use of different mesh parameterisations, which lets us

incorporate useful modeling priors such as smoothness or

composition from primitives.

– Exploitation of shading cues due to monochromatic or

coloured directional lighting (Fig. 2), letting us discover

concave structures that silhouette-based methods cannot

(Gadelha et al. 2017; Tulsiani et al. 2017b, 2018; Yan et al.

2016; Soltani et al. 2017).

– Training with varying degrees of supervision: single or

multiple views per instance, with or without ground-truth

pose annotations.

To achieve this, we design a probabilistic generative model

that captures the full image formation process, whereby the

shape of a 3D mesh, its pose, and incident lighting are first

sampled independently, then a 2D rendering is produced from

these (Sect. 3). We use stochastic gradient variational Bayes

for training (Kingma and Welling 2014; Rezende et al. 2014)

(Sect. 4). This involves learning an inference network that

can predict 3D shape, pose and lighting from a single image,

with the shape placed in a canonical frame of reference, i.e.

disentangled from the pose. Together, the model plus its infer-

ence network resemble a variational autoencoder (Kingma

and Welling 2014) on pixels. It represents 3D shapes in a

compact latent embedding space, and has extra layers in the

decoder corresponding to the mesh representation and ren-

derer. As we do not provide 3D supervision, the encoder and

decoder must bootstrap and guide one another during train-

ing. The decoder learns the manifold of shapes, while at the

same time the encoder learns to map images onto this. This

learning process is driven purely by the objective of recon-

structing the training images. While this is an ambiguous

task and the model cannot guarantee to reconstruct the true

shape of an object from a single image, its generative capa-

bility means that it always produces a plausible instance of

the relevant class; the encoder ensures that this is consistent

with the observed image. This works because the genera-

tive model must learn to produce shapes that reproject well

over all training images, starting from low-dimensional latent

representations. This creates an inductive bias towards reg-

ularity, which avoids degenerate solutions with unrealistic

shapes that could, in isolation, explain each individual train-

ing image.

In Sect. 5, we demonstrate our method on 13 diverse object

classes. This includes several highly concave classes, which

methods relying on silhouettes cannot learn correctly (Yan

et al. 2016; Gadelha et al. 2017; Tulsiani et al. 2017b, 2018).

We first display samples from the distribution of shapes learnt

by our model, showing that (i) the use of meshes yields

smoother, more natural samples than those from voxel-based

methods (Gadelha et al. 2017), (ii) different mesh parame-

terisations are better suited to different object classes, and

(iii) our samples are diverse and realistic, covering multiple

modes of the training distribution. We also demonstrate that

our model learns a meaningful latent space, by showing that

interpolating between points in it yields realistic intermediate

samples. We then quantitatively evaluate performance of our

method on single-view reconstruction and pose estimation,

showing that: (i) it learns to predict pose, and disentangle it

from shape, without either being given as supervision; (ii)

exploiting information from shading improves results over

using silhouettes in the reconstruction loss, even when the

model must learn to estimate the lighting parameters and

disentangle them from surface normals; (iii) when using a

standard single white light, our model outperforms state-of-

the-art 2D-supervised methods (Kato et al. 2018), both with

and without pose supervision, thanks to exploiting shading

cues; (iv) performance improves further when using multi-

ple coloured lights, even approaching that of state-of-the-art

3D-supervised methods (Fan et al. 2017; Richter and Roth

2018). Finally, we evaluate the impact of design choices such

as different mesh parameterisations and latent space dimen-

sionalities, showing which choices work well for different

object classes.

A preliminary version of this work appeared as Hender-

son and Ferrari (2018). That earlier version assumed fixed,

known lighting parameters rather than explicitly reasoning

over them; also here we present a much more extensive exper-

imental evaluation.

2 RelatedWork

2.1 Learning Single-Image 3D Reconstruction

In the last 3 years, there has been a surge of interest in single-

image 3D reconstruction; this has been enabled both by the

growing maturity of deep learning techniques, and by the

availability of large datasets of 3D shapes (Chang et al.

2015; Wu et al. 2015). Among such methods, we differentiate

between those requiring full 3D supervision (i.e. 3D shapes

paired with images), and those that need only weaker 2D

supervision (e.g. pose annotations); our work here falls into

the second category.
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3D-Supervised Methods Choy et al. (2016) apply a CNN

to the input image, then pass the resulting features to a 3D

deconvolutional network, that maps them to to occupancies

of a 323 voxel grid. Girdhar et al. (2016) and Wu et al. (2016)

proceed similarly, but pre-train a model to auto-encode or

generate 3D shapes respectively, and regress images to the

latent features of this model. Instead of directly producing

voxels, Soltani et al. (2017), Shin et al. (2018) and Richter and

Roth (2018) output multiple depth-maps and/or silhouettes,

from known (fixed) viewpoints; these are subsequently fused

if a voxel reconstruction is required. Fan et al. (2017) and

Mandikal et al. (2018) generate point clouds as the output,

with networks and losses specialised to their order invariant

structure. Like ours, the concurrent works of Groueix et al.

(2018) and Wang et al. (2018) predict meshes, but parame-

terise them differently to us. Tulsiani et al. (2017a) and Niu

et al. (2018) both learn to map images to sets of cuboidal

primitives, of fixed and variable cardinality respectively.

Finally, Gwak et al. (2017) and Zhu et al. (2017) present

methods with slightly weaker requirements on ground-truth.

As in the previous works, they require large numbers of 3D

shapes and images; however, these do not need to be paired

with each other. Instead, the images are annotated only with

silhouettes.

2D-SupervisedMethods A few recent learning-based recon-

struction techniques do not rely on 3D ground-truth; these

are the closest in spirit to our own. They typically work

by passing input images through a CNN, which predicts a

3D representation, which is then rendered to form a recon-

structed 2D silhouette; the loss is defined to minimise the

difference between the reconstructed and original silhou-

ettes. This reliance on silhouettes means they cannot exploit

shading and cannot learn to reconstruct concave object

classes—in contrast to our approach. Moreover, all these

methods require stronger supervision than our own—they

must be trained with ground-truth pose or keypoint anno-

tations, and/or multiple views of each instance presented

together during training.

Rezende et al. (2016) briefly discuss single-image recon-

struction using a conditional generative model over meshes.

This models radial offsets to vertices of a spherical base mesh,

conditioning on an input image. The model is trained in a

variational framework to maximise the reconstructed pixel

likelihood. It is demonstrated only on simple shapes such as

cubes and cylinders.

Yan et al. (2016) present a method that takes single image

as input, and yields a voxel reconstruction. This is trained

to predict voxels that reproject correctly to the input pix-

els, assuming the object poses for the training images are

known. The voxels are projected by computing a max oper-

ation along rays cast from each pixel into the voxel grid, at

poses matching the input images. The training objective is

then to maximise the intersection-over-union (IOU) between

these projected silhouettes and the silhouettes of the origi-

nal images. Kato et al. (2018) present a very similar method,

but using meshes instead of voxels as the output representa-

tion. It is again trained using the silhouette IOU as the loss,

but also adds a smoothness regularisation term, penalising

sharply creased edges. Wiles and Zisserman (2017) propose

a method that takes silhouette images as input, and produces

rotated silhouettes as output; the input and output poses are

provided. To generate the rotated silhouettes, they predict

voxels in 3D space, and project them by a max operation

along rays.

Tulsiani et al. (2017b) also regress a voxel grid from a sin-

gle image; however, the values in this voxel grid are treated

as occupancy probabilities, which allows use of probabilistic

ray termination (Broadhurst et al. 2001) to enforce consis-

tency with a silhouette or depth map. Two concurrent works

to ours, Tulsiani et al. (2018) and Insafutdinov and Doso-

vitskiy (2018), extend this approach to the case where pose

is not given at training time. To disentangle shape and pose,

they require that multiple views of each object instance be

presented together during training; the model is then trained

to reconstruct the silhouette for each view using its own pre-

dicted pose, but the shape predicted from some other view.

Yang et al. (2018) use the same principle to disentangle shape

and pose, but assume that a small number of images are anno-

tated with poses, which improves the accuracy significantly.

Vicente et al. (2014) jointly reconstruct thousands of

object instances in the PASCAL VOC 2012 dataset using

keypoint and silhouette annotations, but without learning

a model that can be applied to unseen images. Kar et al.

(2015) train a CNN to predict keypoints, pose, and silhou-

ette from an input image, and then optimise the parameters

of a deformable model to fit the resulting estimates. Con-

currently with our work, Kanazawa et al. (2018) present a

method that takes a single image as input, and produces a

textured 3D mesh as output. The mesh is parameterised by

offsets to the vertices of a learnt mean shape. These three

methods all require silhouette and keypoint annotations on

the training images, but only a single view of each instance.

Novotny et al. (2017) learn to perform single-image recon-

struction using videos as supervision. Classical multi-view

stereo methods are used to reconstruct the object instance in

each video, and the reconstructions are used as ground-truth

to train a regression model mapping images to 3D shapes.

2.2 Generative Models of 3D Shape

The last 3 years have also seen increasing interest in deep

generative models of 3D shapes. Again, these must typically

be trained using large datasets of 3D shapes, while just one

work requires only images (Gadelha et al. 2017).
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3D-Supervised Methods Wu et al. (2015) and Xie et al.

(2018) train deep energy-based models on voxel grids; Huang

et al. (2015) train one on surface points of 3D shapes, jointly

with a decomposition into parts. Wu et al. (2016) and Zhu

et al. (2018) present generative adversarial networks (GANs;

Goodfellow et al. 2014) that directly model voxels using 3D

convolutions; Zhu et al. (2018) also fine-tune theirs using

2D renderings. Rezende et al. (2016) and Balashova et al.

(2018) both describe models of voxels, based on the varia-

tional autoencoder (VAE; Kingma and Welling 2014). Nash

and Williams (2017) and Gadelha et al. (2018) model point

clouds, using different VAE-based formulations. Achlioptas

et al. (2018) train an autoencoder for dimensionality reduc-

tion of point clouds, then a GAN on its embeddings. Li et al.

(2017) and Zou et al. (2017) model shapes as assembled from

cuboidal primitives; Li et al. (2017) also add detail by mod-

elling voxels within each primitive. Tan et al. (2018) present a

VAE over parameters of meshes. Calculating the actual vertex

locations from these parameters requires a further energy-

based optimisation, separate to their model. Their method is

not directly applicable to datasets with varying mesh topol-

ogy, including ShapeNet and ModelNet.

2D-Supervised Methods Soltani et al. (2017) train a VAE

over groups of silhouettes from a set of known viewpoints;

these may be fused to give a true 3D shape as a post-

processing stage, separate to the probabilistic model. The

only prior work that learns a true generative model of 3D

shapes given just 2D images is Gadelha et al. (2017); this is

therefore the most similar in spirit to our own. They use a

GAN over voxels; these are projected to images by a simple

max operation along rays, to give silhouettes. A discrimina-

tor network ensures that projections of sampled voxels are

indistinguishable from projections of ground-truth data. This

method does not require pose annotations, but they restrict

poses to a set of just eight predefined viewpoints. In con-

trast to our work, this method cannot learn concave shapes,

due to its reliance on silhouettes. Moreover, like other voxel-

based methods, it cannot output smooth, arbitrarily-oriented

surfaces. Yang et al. (2018) apply this model as a prior for

single-image reconstruction, but they require multiple views

per instance during training.

3 Generative Model

Our goal is to build a probabilistic generative model of 3D

meshes for a given object class. For this to be trainable with

2D supervision, we cast the entire image-formation process

as a directed model (Fig. 1). We assume that the content

of an image can be explained by three independent latent

components—the shape of the mesh, its pose relative to the

camera, and the lighting. These are modelled by three low-

dimensional random variables, z, θ , and λ respectively. The

joint distribution over these and the resulting pixels x fac-

torises as P(x, z, θ, λ) = P(z)P(θ)P(λ)P(x | z, θ, λ).

Following Gadelha et al. (2017), Yan et al. (2016), Tul-

siani et al. (2017b), and Wiles and Zisserman (2017), we

assume that the pose θ is parameterised by just the azimuth

angle, with θ ∼ Uniform(−π, π) (Fig. 4a, bottom). The

camera is then placed at fixed distance and elevation relative

to the object. We similarly take λ to be a single azimuth angle

with uniform distribution, which specifies how a predefined

set of directional light sources are to be rotated around the

origin (Fig. 4a, top). The number of lights, their colours,

elevations, and relative azimuths are kept fixed. We are

free to choose these; our experiments include tri-directional

coloured lighting, and a single white directional light source

plus an ambient component.

Following recent works on deep latent variable mod-

els (Kingma and Welling 2014; Goodfellow et al. 2014), we

assume that the embedding vector z is drawn from a standard

isotropic Gaussian, and then transformed by a deterministic

decoder network, Fφ , parameterised by weights φ which are

to be learnt (“Appendix A” details the architecture of this

network). This produces the mesh parameters Π = Fφ(z).

Intuitively, the decoder network Fφ transforms and entan-

gles the dimensions of z such that all values in the latent

space map to plausible values for Π , even if these lie on a

highly nonlinear manifold. Note that our approach contrasts

with previous models that directly output pixels (Kingma and

Welling 2014; Goodfellow et al. 2014) or voxels (Wu et al.

2016; Gadelha et al. 2017; Zhu et al. 2018; Balashova et al.

2018) from a decoder network.

We use Π as inputs to a fixed mesh parameterisation func-

tion M(Π), which yields vertices vobject of triangles defining

the shape of the object in 3D space, in a canonical pose (dif-

ferent options for M are described below). The vertices are

transformed into camera space according to the pose θ , by a

fixed function T : vcamera = T (vobject, θ). They are then ren-

dered into an RGB image I0 = G (vcamera, λ) by a rasteriser

G using Gouraud shading (Gouraud 1971) and Lambertian

surface reflectance (Lambert 1760).

The final observed pixel values x are modelled as inde-

pendent Gaussian random variables, with means equal to the

values in an L-level Gaussian pyramid (Burt and Adelson

1983), whose base level equals I0, and whose L th level has

smallest dimension equal to one:

Pφ(x | z, θ, λ) =
∏

l

Pφ(xl | z, θ, λ) (1)

xl ∼ Normal
(

Il ,
ǫ

2l

)

(2)

I0 = G (T (M(Fφ(z)), θ), λ) (3)

Il+1 = Il ∗ kG (4)
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(a) (b) (c)

Fig. 3 Mesh parameterisations: ortho-block and full-block (assem-

bly from cuboidal primitives, of fixed or varying orientation) are suited

to objects consisting of compact parts (a–b); subdivision (per-vertex

deformation of a subdivided cube) is suited to complex continuous sur-

faces (c)

where l indexes pyramid levels, kG is a small Gaussian ker-

nel, ǫ is the noise magnitude at the base scale, and ∗ denotes

convolution with stride two. We use a multi-scale pyramid

instead of just the raw pixel values to ensure that, during

training, there will be gradient forces over long distances in

the image, thus avoiding bad local minima where the recon-

struction is far from the input.

Mesh Parameterisations After the decoder network has

transformed the latent embedding z into the mesh param-

eters Π , these are converted to actual 3D vertices using a

simple, non-learnt mesh-parameterisation function M . One

possible choice for M is the identity function, in which case

the decoder network directly outputs vertex locations. How-

ever, initial experiments showed that this does not work well:

it produces very irregular meshes with large numbers of

intersecting triangles. Conversely, using a more sophisticated

form for M enforces regularity of the mesh. We use three dif-

ferent parameterisations in our experiments.

In our first parameterisation, Π specifies the locations and

scales of a fixed number of axis-aligned cuboidal primitives

(Fig. 3a), from which the mesh is assembled (Zou et al. 2017;

Tulsiani et al. 2017a). Changing Π can produce configu-

rations with different topologies, depending which blocks

touch or overlap, but all surfaces will always be axis-aligned.

The scale and location of each primitive are represented by

3D vectors, resulting in a total of six parameters per primitive.

In our experiments we call this ortho-block.

Our second parameterisation is strictly more powerful

than the first: we still assemble the mesh from cuboidal prim-

itives, but now associate each with a rotation, in addition to

its location and scale. Each rotation is parameterised as three

Euler angles, yielding a total of nine parameters per primi-

tive. In our experiments we call this full-block (Fig. 3b).

The above parameterisations are naturally suited to objects

composed of compact parts, but cannot represent complex

continuous surfaces. For these, we define a third parameteri-

sation, subdivision (Fig. 3c). This parameterisation is based

on a single cuboid, centred at the origin; the edges and faces

of the cuboid are subdivided several times along each axis.

Then, Π specifies a list of 3D displacements, one per vertex,

which deform the subdivided cube into the required shape. In

practice, we subdivide each edge into four segments, result-

ing in 98 vertices, hence 294 parameters.

4 Variational Training

We wish to learn the parameters of our model from a training

set of 2D images of objects of a single class. More precisely,

we assume access to a set of images {x(i)}, each showing

an object with unknown shape, at an unknown pose, under

unknown lighting. Note that we do not require that there are

multiple views of each object (in contrast with Yan et al.

(2016) and Tulsiani et al. (2018)), nor that the object poses

are given as supervision (in contrast with Yan et al. (2016),

Tulsiani et al. (2017b), Wiles and Zisserman (2017), and Kato

et al. (2018)).

We seek to maximise the marginal log-likelihood of the

training set, which is given by
∑

i log Pφ(x(i)), with respect

to φ. For each image, we have

log Pφ(x(i))

= log

∫

z,θ,λ

Pφ(x(i) | z, θ, λ)P(z)P(θ)P(λ) dz dθ dλ (5)

Unfortunately this is intractable, due to the integral over

the latent variables z (shape), θ (pose), and λ (lighting).

Hence, we use amortised variational inference, in the form of

stochastic gradient variational Bayes (Kingma and Welling

2014; Rezende et al. 2014). This introduces an approximate

posterior Qω(z, θ, λ | x), parameterised by some ω that we

learn jointly with the model parameters φ. Intuitively, Q

maps an image x to a distribution over likely values of the

latent variables z, θ , and λ. Instead of the log-likelihood (5),

we then maximise the evidence lower bound (ELBO):

E
z, θ, λ∼Qω(z, θ, λ | x(i))

[

log Pφ(x(i) | z, θ, λ)
]

−KL
[

Qω(z, θ, λ | x(i))

∣

∣

∣

∣

∣

∣ P(z)P(θ)P(λ)
]

≤ log Pφ(x(i))

(6)

This lower-bound on the log-likelihood can be evaluated

efficiently, as the necessary expectation is now with respect

to Q, for which we are free to choose a tractable form. The

expectation can then be approximated using a single sample.

We let Q be a mean-field approximation, i.e. given by a

product of independent variational distributions:

Qω(z, θ, λ | x) = Qω(z | x)Qω(θ | x)Qω(λ | x) (7)
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Fig. 4 a We parameterise the object pose relative to the camera by

the azimuth angle θ , and rotate the lights around the object as a group

according to a second azimuth angle λ. b To avoid degenerate solutions,

we discretise θ into coarse and fine components, with θcoarse categori-

cally distributed over R bins, and θfine specifying a small offset relative

to this. For example, to represent the azimuth indicated by the pink line,

θcoarse = 3 and θfine = −18◦. The encoder network outputs softmax

logits ρ for a categorical variational distribution over θcoarse, and the

mean ξ and standard deviation ζ of a Gaussian variational distribution

over θfine, with ξ bounded to the range (−π/R, π/R)

The parameters of these distributions are produced by an

encoder network, encω(x), which takes the image x as

input. For this encoder network we use a small CNN with

architecture similar to Wiles and Zisserman (2017) (see

“Appendix A”). We now describe the form of the variational

distribution for each of the variables z, θ , and λ.

Shape For the shape embedding z, the variational poste-

rior distribution Qω(z | x) is a multivariate Gaussian with

diagonal covariance. The mean and variance of each latent

dimension are produced by the encoder network. When train-

ing with multiple views per instance, we apply the encoder

network to each image separately, then calculate the final

shape embedding z by max-pooling each dimension over all

views.

Pose For the pose θ , we could similarly use a Gaussian pos-

terior. However, many objects are roughly symmetric with

respect to rotation, and so the true posterior is typically multi-

modal. We capture this multi-modality by decomposing the

rotation into coarse and fine parts (Mousavian et al. 2017):

an integer random variable θcoarse that chooses from Rθ rota-

tion bins, and a small Gaussian offset θfine relative to this

(Fig. 4b):

θ = −π + θcoarse
2π

Rθ

+ θfine (8)

We apply this transformation in both the generative P(θ) and

variational Qω(θ), giving

P(θcoarse = r) = 1/Rθ (9)

P(θfine) = Normal(θfine | 0, π/Rθ ) (10)

Qω

(

θcoarse = r

∣

∣

∣
x(i)

)

= ρθ
r

(

x(i)
)

(11)

Qω(θfine) = Normal
(

θfine

∣

∣

∣ ξ
θ (x(i)), ζ θ (x(i))

)

(12)

where the variational parameters ρθ
r , ξ θ , ζ θ for image x(i) are

again estimated by the encoder network encω(x(i)). Specifi-

cally, the encoder uses a softmax output to parameterise ρ
θ ,

and restricts ξ θ to lie in the range (−π/Rθ , π/Rθ ), ensuring

that the fine rotation is indeed a small perturbation, so the

model must correctly use it in conjunction with θcoarse.

Provided Rθ is sufficiently small, we can integrate directly

with respect to θcoarse when evaluating (6), i.e. sum over all

possible rotations. While this allows our training process to

reason over different poses, it is still prone to predicting the

same pose θ for every image; clearly this does not correspond

to the prior on θ given by (9). The model is therefore relying

on the shape embedding z to model all variability, rather than

disentangling shape and pose. The ELBO (6) does include a

KL-divergence term that should encourage latent variables

to match their prior. However, it does not have a useful

effect for θcoarse: minimising the KL divergence from a uni-

form distribution for each sample individually corresponds to

independently minimising all the probabilities Qω(θcoarse),

which does not encourage uniformity of the full distribution.

The effect we desire is to match the aggregated posterior

distribution
〈

Qω(θ | x(i))
〉

i
to the prior P(θ), where 〈 · 〉i is

the empirical mean over the training set. As θcoarse follows

a categorical distribution in both generative and variational

models, we can directly minimise the L1 distance between

the aggregated posterior and the prior

Rθ
∑

r

∣

∣

∣

∣

〈

Qω

(

θcoarse = r | x(i)
)〉

i
− P (θcoarse = r)

∣

∣

∣

∣

=

Rθ
∑

r

∣

∣

∣

∣

〈

ρθ
r (x(i))

〉

i
−

1

Rθ

∣

∣

∣

∣

(13)

We use this term in place of KL
[

Q(θcoarse | x(i))
∣

∣

∣

∣

P(θcoarse)
]

in our loss, approximating the empirical mean

with a single minibatch.

Lighting For the lighting angle λ, we perform the same

decomposition into coarse and fine components as for θ ,

giving new variables λcoarse and λfine, with λcoarse selecting

from among Rλ bins. Analogously to pose, λcoarse has a cat-

egorical variational distribution parameterised by a softmax

output ρλ from the encoder, and λfine has a Gaussian vari-

ational distribution with parameters ξλ and ζ λ. Again, we

integrate over λcoarse, so the training process reasons over

many possible lighting angles for each image, increasing the
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predicted probability of the one giving the best reconstruc-

tion. We also regularise the aggregated posterior distribution

of λcoarse towards a uniform distribution.

Loss Our final loss function for a minibatch B is then given

by

Rθ
∑

rθ

Rλ
∑

rλ

{

−

〈

E
z, θfine, λfine∼Qω

[

log Pφ

(

x(i)
∣

∣

∣ z, θcoarse = rθ , θfine, λcoarse = rλ, λfine

)

]

ρθ
rθ

(

x(i)
)

ρλ
rλ

(

x(i)
)

〉

i∈B

}

+α

Rθ
∑

r

{∣

∣

∣

∣

〈

ρθ
r

(

x(i)
)〉

i∈B
−

1

Rθ

∣

∣

∣

∣

}

+α

Rλ
∑

r

{∣

∣

∣

∣

〈

ρλ
r

(

x(i)
)〉

i∈B
−

1

Rλ

∣

∣

∣

∣

}

+β

〈

KL
[

Qω

(

z, θfine, λfine

∣

∣

∣ x(i)
) ∣

∣

∣

∣

∣

∣ P(z)P(θfine)P(λfine)
]

〉

i∈B

(14)

where β increases the relative weight of the KL term as in

Higgins et al. (2017), and α controls the strength of the prior-

matching terms for pose and lighting. We minimise (14) with

respect to φ and ω using ADAM (Kingma and Ba 2015) with

gradient clipping, applying the reparameterisation trick to

handle the Gaussian random variables (Kingma and Welling

2014; Rezende et al. 2014). Hyperparameters are given in

“Appendix B”.

Differentiable Rendering Note that optimising (14) by

gradient descent requires differentiating through the mesh-

rendering operation G used to calculate Pφ(x | z, θ, λ), to

find the derivative of the pixels with respect to the vertex loca-

tions and colours. While computing exact derivatives of G is

very expensive, Loper and Black (2014) describe an efficient

approximation. We employ a similar technique here, and have

made our TensorFlow implementation publicly available.1

5 Experiments

We follow recent works (Gadelha et al. 2017; Yan et al. 2016;

Tulsiani et al. 2017b, 2018; Fan et al. 2017; Kato et al. 2018;

Richter and Roth 2018; Yang et al. 2018) and evaluate our

approach using the ShapeNet dataset (Chang et al. 2015).

Using synthetic data has two advantages: it allows controlled

experiments modifying lighting and other parameters, and it

1 DIRT: a fast Differentiable Renderer for TensorFlow, available at

https://github.com/pmh47/dirt.

lets us evaluate the reconstruction accuracy using the ground-

truth 3D shapes.

We begin by demonstrating that our method successfully

learns to generate and reconstruct 13 different object classes

(Sect. 5.1). These include the top ten most frequent classes

of ShapeNet, plus three others (bathtub, jar, and pot) that we

select because they are smooth and concave, meaning that

prior methods using voxels and silhouettes cannot learn and

represent them faithfully, as shading information is needed

to handle them correctly.

We then rigorously evaluate the performance of our model

in different settings, focusing on four classes (aeroplane, car,

chair, and sofa). The first three are used in Yan et al. (2016),

Tulsiani et al. (2017b), Kato et al. (2018), and Tulsiani et al.

(2018), while the fourth is a highly concave class that is

hard to handle by silhouette-based approaches. We conduct

experiments varying the following factors:

– Mesh parameterisations (Sect. 5.2): We evaluate the

three parameterisations described in Sect. 3: ortho-

block, full-block, and subdivision.

– Single white light versus three coloured lights (Sect. 5.3):

Unlike previous works using silhouettes (Sect. 2), our

method is able to exploit shading in the training images.

We test in two settings: (i) illumination by three coloured

directional lights (colour, Fig. 2a); and (ii) illumination

by one white directional light plus a white ambient com-

ponent (white, Fig. 2b).

– Fixed versus varying lighting (Sect. 5.3): The variable

λ represents a rotation of all the lights together around

the vertical axis (Sect. 3). We conduct experiments in

two settings: (i) λ is kept fixed across all training and test

images, and is known to the generative model (fixed);

and (ii) λ is chosen randomly for each training/test image,

and is not provided to the model (varying). In the latter

setting, the model must learn to disentangle the effects

of lighting angle and surface orientation on the observed

shading.

– Silhouette versus shading in the loss (Sect. 5.3): We

typically calculate the reconstruction loss (pixel log-

likelihood) over the RGB shaded image (shading),

but for comparison with 2D-supervised silhouette-based

methods (Sect. 2). we also experiment with using only

the silhouette in the loss (silhouette), disregarding dif-

ferences in shading between the input and reconstructed

pixels.

– Latent space dimensionality (Sect. 5.4): We experiment

with different sizes for the latent shape embedding z,

which affects the representational power of our model.

We found that 12 dimensions gave good results in initial

experiments, and use this value for all experiments apart

from Sect. 5.4, where we evaluate its impact.
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– Multiple views (Sect. 5.5): Yan et al. (2016), Wiles and

Zisserman (2017), Tulsiani et al. (2018) and Yang et al.

(2018) require that multiple views of each instance are

presented together in each training batch, and Tulsiani

et al. (2017b) also focus on this setting. Our model does

not require this, but for comparison we include results

with three views per instance at training time, and either

one or three at test time.

– Pose supervision: Most previous works that train for 3D

reconstruction with 2D supervision require the ground-

truth pose of each training instance (Yan et al. 2016; Wiles

and Zisserman 2017; Tulsiani et al. 2017b). While our

method does not need this, we evaluate whether it can

benefit from it, in each of the settings described above

(we report these results in their corresponding sections).

Finally, we compare the performance of our model to

several prior and concurrent works on generation and recon-

struction, using various degrees of supervision (Sect. 5.6).

Evaluation Metrics We benchmark our reconstruction and

pose estimation accuracy on a held-out test set, following the

protocol of Yan et al. (2016), where each object is presented at

24 different poses, and statistics are aggregated across objects

and poses. We use the following measures:

– iou: to measure the shape reconstruction error, we cal-

culate the mean intersection-over-union between the

predicted and ground-truth shapes. For this we voxelise

both meshes at a resolution of 323. This is the metric

used by recent works on reconstruction with 2D super-

vision (e.g. Yan et al. 2016; Tulsiani et al. 2017b; Kato

et al. 2018; Wiles and Zisserman 2017).

– err: to measure the pose estimation error, we calculate

the median error in degrees of predicted rotations.

– acc: again to evaluate pose estimation, we measure the

fraction of instances whose predicted rotation is within

30◦ of the ground-truth rotation.

Note that the metrics err and acc are used by Tulsiani

et al. (2018) to evaluate pose estimation in a similar setting

to ours.

Training Minibatches Each ShapeNet mesh is randomly

assigned to either the training set (80% of meshes) or the

test set. During training, we construct each minibatch by

randomly sampling 128 meshes from the relevant class, uni-

formly with replacement. For each selected mesh, we render

a single image, using a pose sampled from Uniform(−π, π)

(and also sampling a lighting angle for experiments with

varying lighting). Only these images are used to train the

model, not the meshes themselves. In experiments using mul-

tiple views, we instead sample 64 meshes and three poses per

mesh, and correspondingly render three images.

5.1 Generating and Reconstructing Diverse Object
Classes

We train a separate model for each of the 13 object classes

mentioned above, using subdivision parameterisation. Sam-

ples generated from these models are shown in Fig. 5. We

see that the sampled shapes are realistic, and the models have

learnt a prior that encompasses the space of valid shapes for

each class. Moreover, the samples are diverse: the models

generate various different styles for each class. For example,

for sofa, both straight and right-angled (modular) designs

are sampled; for aeroplane, both civilian airliners and mili-

tary (delta-wing) styles are sampled; for pot, square, round,

and elongated, forms are sampled; and, for vessel, boats both

with and without sails are sampled. Note also that our sam-

ples incorporate smoothly curved surfaces (e.g. car, jar) and

slanted edges (e.g. aeroplane), which voxel-based methods

cannot represent (Sect. 5.6 gives a detailed comparison with

one such method (Gadelha et al. 2017)).

Reconstruction results are given in Table 1, with qualita-

tive results in Fig. 6. We use fixed colour lighting, shading

loss, single-view training, and no pose supervision (columns

iou, err, acc); we also report iou when using pose supervi-

sion in column iou | θ . We see that the highest reconstruction

accuracy (iou) is achieved for cars, sofas, and aeroplanes,

and the lowest for benches, chairs, and lamps. Providing the

ground-truth poses as supervision improves reconstruction

performance in all cases (iou | θ ). Note that performance for

the concave classes sofa, bathtub, pot, and jar is comparable

or higher than several non-concave classes, indicating that

our model can indeed learn them by exploiting shading cues.

Note that in almost all cases, the reconstructed image is

very close to the input (Fig. 6); thus, the model has learnt

to reconstruct pixels successfully. Moreover, even when the

input is particularly ambiguous due to self-occlusion (e.g. the

rightmost car and sofa examples), we see that the model infers

a plausible completion of the hidden part of the shape (visible

in the third column). However, the subdivision parameteri-

sation limits the amount of detail that can be recovered in

some cases, for example the slatted back of the second bench

is reconstructed as a continuous surface. Furthermore, flat

surfaces are often reconstructed as several faces that are not

exactly coplanar, creating small visual artifacts. Finally, the

use of a fixed-resolution planar mesh limits the smoothness

of curved surfaces, as seen in the jar class.

The low values of the pose estimation error err (and cor-

responding high values of acc) for most classes indicate that

the model has indeed learnt to disentangle pose from shape,

without supervision. This is noteworthy given the model has

seen only unannotated 2D images with arbitrary poses—
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Fig. 5 Samples from our model for the ten most frequent classes in

ShapeNet in order of decreasing frequency, plus three other interesting

classes. Note the diversity and realism of our samples, which faithfully

capture multimodal shape distributions, e.g. both straight and right-

angled sofas, boats with and without sails, and straight- and delta-wing

aeroplanes. We successfully learn models for the highly concave classes

sofa, bathtub, pot, and jar, enabled by the fact that we exploit shading

cues during training. Experimental setting: subdivision, fixed colour

lighting, shading loss
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Table 1 Reconstruction and

pose estimation performance for

the ten most-frequent classes in

ShapeNet (first ten rows), plus

three smooth, concave classes

that methods based on voxels

and silhouettes cannot handle

(last three rows)

iou (shape) err (pose) acc (pose) iou | θ (shape)

Table 0.44 89.3 0.39 0.49

Chair 0.39 7.9 0.65 0.51

Airplane 0.55 1.4 0.90 0.59

Car 0.77 4.7 0.84 0.82

Sofa 0.59 6.5 0.88 0.71

Rifle 0.54 9.0 0.68 0.61

Lamp 0.40 87.7 0.19 0.41

Vessel 0.48 9.8 0.59 0.58

Bench 0.35 5.1 0.71 0.44

Loudspeaker 0.41 81.7 0.28 0.54

Bathtub 0.54 9.7 0.54 0.57

Pot 0.49 90.4 0.20 0.53

Jar 0.49 93.1 0.16 0.52

Metrics: iou measures shape reconstruction accuracy when pose supervision is not given (1 = best, 0 = worst);

err and acc measure pose estimation in this case, which requires the model to disentangle shape and pose

(err: best = 0, worst = 180; acc: best = 1, worse = 0); iou | θ measures shape reconstruction accuracy when

pose supervision is given during training (best = 1, worst = 0). Note that table, lamp, pot, and jar all typically

have rotational symmetry, and as such, it is not possible to define an unambiguous reference frame; this results

in high values for err and low for acc. Experimental setting: subdivision, single-view training, fixed colour

lighting, shading loss

disentanglement of these factors presumably arises because

it is easier for the model to learn to reconstruct in a canon-

ical reference frame, given that it is encouraged by our loss

to predict diverse poses. While the pose estimation appears

inaccurate for table, lamp, pot, and jar note that these classes

exhibit rotational symmetry about the vertical axis. Hence, it

is not possible to define (nor indeed to learn) a single, unam-

biguous canonical frame of reference for them.

5.2 ComparingMesh Parameterisations

We now compare the three mesh parameterisations of Sect. 3,

considering the four classes car, chair, aeroplane, and sofa.

We show qualitative results for generation (Fig. 7) and

reconstruction (Fig. 8); Table 2 gives quantitative results for

reconstruction. Again we use fixed colour lighting, shading

loss and single-view training.

We see that different parameterisations are better suited

to different classes, in line with our expectations. Cars have

smoothly curved edges, and are well-approximated by a sin-

gle simply-connected surface; hence, subdivision performs

well. Conversely, ortho-block fails to represent the curved

and non-axis-aligned surfaces, in spite of giving relatively

high IOU. Chairs vary in topology (e.g. the back may be

solid or slatted) and sometimes have non-axis-aligned sur-

faces, so the flexible full-block parameterisation performs

best. Interestingly, subdivision is able to partially reconstruct

the holes in the chair backs by deforming the reconstructed

surface such that it self-intersects. Aeroplanes have one dom-

inant topology and include non-axis-aligned surfaces; both

full-block and subdivision perform well here. However, the

former sometimes has small gaps between blocks, failing to

reflect the true topology. Sofas often consist of axis-aligned

blocks, so the ortho-block parameterisation is expressive

enough to model them. We hypothesise that it performs bet-

ter than the more flexible full-block as it is easier for training

to find a good solution in a more restricted representation

space. This is effectively a form of regularisation. Overall, the

best reconstruction performance is achieved for cars, which

accords with Tulsiani et al. (2017b), Yan et al. (2016), and

Fan et al. (2017). On average over the four classes, the best

parameterisation is subdivision, both with and without pose

supervision.

5.3 Lighting

Fixed Lighting Rotation Table 3 shows how reconstruction

performance varies with the different choices of lighting,

colour and white, using shading loss. Coloured directional

lighting provides more information during training than

white lighting, and the results are correspondingly better.

We also show performance with silhouette loss for

coloured light. This considers just the silhouette in the recon-

struction loss, instead of the shaded pixels. To implement

it, we differentiably binarise both our reconstructed pixels

I0 and the ground-truth pixels x(i) prior to calculating the

reconstruction loss. Specifically, we transform each pixel p

into p/(p + η), where η is a small constant. This performs

significantly worse than with shading in the loss, in spite

of the input images being identical. Thus, back-propagating
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Fig. 6 Qualitative examples of reconstructions for different object

classes. Each group of three images shows (i) ShapeNet ground-truth;

(ii) our reconstruction; (iii) reconstruction placed in a canonical pose,

with the different viewpoint revealing hidden parts of the shape. Exper-

imental setting: subdivision, single-view training, fixed colour lighting,

shading loss.
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Fig. 7 Samples for four object classes, using our three different mesh

parameterisations. ortho-block and full-block perform well for sofas

and reasonably for chairs, but are less well-suited to aeroplanes and

cars, which are naturally represented as smooth surfaces. subdivision

gives good results for all four object classes

Fig. 8 Qualitative examples of reconstructions, using different mesh

parameterisations. Each row of five images shows (i) ShapeNet ground-

truth; (ii) our reconstruction with subdivision parameterisation; (iii)

reconstruction placed in a canonical pose; (iv) our reconstruction with

blocks; (v) canonical-pose reconstruction. Experimental setting: single-

view training, fixed colour lighting, shading loss

Table 2 Reconstruction performance for four classes, with three different mesh parameterisations (Sect. 3)

Car Chair Aeroplane Sofa

iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ

Ortho-block 0.72 7.6 0.90 0.78 0.41 9.2 0.69 0.49 0.30 7.9 0.73 0.24 0.59 7.3 0.94 0.74

Full-block 0.54 6.5 0.82 0.63 0.46 4.6 0.69 0.51 0.55 1.7 0.90 0.57 0.39 9.1 0.70 0.68

Subdivision 0.77 4.7 0.84 0.82 0.39 7.9 0.65 0.51 0.55 1.4 0.90 0.59 0.59 6.5 0.88 0.71

Entries in bold are the best result in each column

For each class, the first three columns are in the default setting of no pose supervision and correspond to the metrics in Sect. 5; iou | θ is the IOU

when trained with pose supervision. Higher is better for iou and acc; lower is better for err. Experimental setting: single-view training, fixed colour

lighting, shading loss
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Table 3 Reconstruction performance with different lighting and loss

Car Chair Aeroplane Sofa

iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ

Colour 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51 0.55 1.4 0.90 0.59 0.59 7.3 0.94 0.74

White 0.58 13.8 0.82 0.81 0.31 37.7 0.43 0.42 0.42 7.7 0.85 0.54 0.51 56.1 0.49 0.71

Col+ sil 0.46 65.2 0.29 0.64 0.28 51.7 0.35 0.48 0.20 17.8 0.57 0.47 0.27 89.8 0.15 0.57

Entries in bold are the best result in each column

Colour indicates three coloured directional lights with shading loss; white indicates a single white directional light plus white ambient, with shading

loss; col+sil indicates coloured lighting with only the silhouette used in the loss. Our model can exploit the extra information gained by considering

shading in the loss, and coloured directional lighting helps further. Experimental setting: single-view training, best mesh parameterisations from

Table 2, fixed lighting rotation

Table 4 Reconstruction performance with fixed and varying lighting

Car Chair Aeroplane Sofa

iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ

Fixed White 0.58 13.8 0.82 0.81 0.31 37.7 0.43 0.42 0.42 7.7 0.85 0.54 0.51 56.1 0.49 0.71

Varying White 0.48 23.6 0.58 0.79 0.31 31.1 0.47 0.43 0.40 2.5 0.82 0.55 0.47 60.7 0.47 0.71

Fixed Colour 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51 0.55 1.4 0.90 0.59 0.59 7.3 0.94 0.74

Varying Colour 0.60 10.5 0.82 0.79 0.32 36.5 0.42 0.46 0.52 2.4 0.89 0.59 0.69 7.5 0.96 0.73

In the varying case, our model must learn to predict the lighting angle, simultaneously with exploiting the shading cues it provides. Experimental

setting: single-view training, best mesh parameterisations from Table 2, shading loss

Fig. 9 Effect of varying the dimensionality of the latent embedding

vector z on reconstruction performance (iou | θ). Experimental setting:

subdivision, fixed colour lighting, shading loss

information from shading through the renderer does indeed

help with learning—it is not merely that colour images con-

tain more information for the encoder network. As in the

previous experiment, we see that pose supervision helps the

model (column iou | θ versus iou). In particular, only with

pose supervision are silhouettes informative enough for the

model to learn a canonical frame of reference reliably, as evi-

denced by the high median rotation errors without (column

err).

Varying Lighting Rotation We have shown that shading cues

are helpful for training our model. We now evaluate whether

it can still learn successfully when the lighting angle varies

Fig. 10 Interpolating between shapes in latent space. In each row,

the leftmost and rightmost images show ground-truth shapes from

ShapeNet, and the adjacent columns show the result of reconstructing

each using our model with subdivision parameterisation. In the centre

three columns, we interpolate between the resulting latent embeddings,

and display the decoded shapes. In each case, we see a semantically-

plausible, gradual deformation of one shape into the other

across training samples (varying). Table 4 shows that our

method can indeed reconstruct shapes even in this case. When

the object pose is given as supervision (column iou | θ ), the

reconstruction accuracy is on average only slightly lower

than in the case of fixed, known lighting. Thus, the encoder

successfully learns to disentangle the lighting angle from the

surface normal orientation, while still exploiting the shading

information to aid reconstruction. When the object pose is
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Table 5 Reconstruction

performance with multiple

views at train/test time

Views Car Chair

Train Test iou err acc iou | θ iou err acc iou | θ

1 1 0.77 4.7 0.84 0.82 0.46 4.6 0.69 0.51

3 1 0.82 1.3 0.94 0.83 0.50 2.1 0.83 0.52

3 3 0.83 1.7 0.94 0.84 0.53 3.1 0.80 0.56

Entries in bold are the best result in each column

Our model is able to exploit the extra information gained through multiple views, and can benefit even

when testing with a single view. Experimental setting: best mesh parameterisations from Table 2, fixed colour

lighting, shading loss

not given as supervision (column iou), the model must learn

to simultaneously disentangle shape, pose and lighting. Inter-

estingly, even in this extremely hard setting our method still

manages to produce good reconstructions, although of course

the accuracy is usually lower than with fixed lighting. Finally,

note that our results with varying lighting are better than those

with fixed lighting from the final row of Table 3, using only

the silhouette in the reconstruction loss. This demonstrates

that even when the model does not have access to the lighting

parameters, it still learns to benefit from shading cues, rather

than simply using the silhouette.

5.4 Latent Space Structure

The shape of a specific object instance must be entirely cap-

tured by the latent embedding vector z. On the one hand,

using a higher dimensionality for z should result in better

reconstructions, due to the greater representational power.

On the other hand, a lower dimensionality makes it easier

for the model to learn to map any point in z to a reasonable

shape, and to avoid over-fitting the training set. To evaluate

this trade-off, we ran experiments with different dimensional-

ities for z (Fig. 9). We see that for all classes, increasing from

6 to 12 dimensions improves reconstruction performance on

the test set. Beyond 12 dimensions, the effect differs between

classes. For car and chair, higher dimensionalities yield lower

performance (indicating over-fitting or other training diffi-

culties). Instead, aeroplane and sofa continue to benefit from

higher and higher dimensionalities, up to 48 for aeroplane

and 64 (and maybe beyond) for sofa.

For all our other experiments, we use a 12-dimensional

embedding, as this gives good performance on average

across classes. Note that our embedding dimensionality is

much smaller than its counterpart in other works. For exam-

ple, Tulsiani et al. (2017b) have a bottleneck layer with

dimensionality 100, while Wiles and Zisserman (2017) use

dimensionality 160. This low dimensionality of our embed-

dings facilitates the encoder mapping images to a compact

region of the embedding space centred at the origin; this in

turn allows modelling the embeddings by a simple Gaussian

from which samples can be drawn.

Fig. 11 Samples from the voxel-based method of Gadelha et al. (2017)

(odd rows), shown above stylistically-similar samples from our model

(even rows). Both methods are trained with a single view per instance,

and without pose annotations. However, our model outputs meshes, and

uses shading in the loss; hence, it can represent smooth surfaces and

learn concave classes such as vase

Interpolating in the Latent Space To demonstrate that our

models have learnt a well-behaved manifold of shapes for

each class, we select pairs of ground-truth shapes, reconstruct

these using our model, and linearly interpolate between their

latent embeddings (Fig. 10). We see that the resulting inter-

mediate shapes give a gradual, smooth deformation of one

shape into the other, showing that all regions of latent space

that we traverse correspond to realistic samples.
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Table 6 Reconstruction

performance (iou | θ) in a setting

matching Yan et al. (2016),

Tulsiani et al. (2017b), Kato

et al. (2018), and Yang et al.

(2018), which are

silhouette-based methods

trained with pose supervision

and multiple views (to be

precise, Yang et al. (2018)

provide pose annotations for

50% of all training images)

Nviews Lighting Loss Car Chair Aeroplane Sofa

PTN (Yan et al. 2016) 24 White Silhouette 0.71 0.50 0.56 0.62

DRC (Tulsiani et al. 2017b) 5 White Silhouette 0.73 0.43 0.50 −−

DRC (Tulsiani et al. 2017b) 5 White Depth 0.74 0.44 0.49 −−

NMR (Kato et al. 2018) 2 White Silhouette 0.71 0.50 0.62 0.67

LPS (Yang et al. 2018) 2 White Silhouette 0.78 0.44 0.57 0.54

PTN, our images 24 Colour Silhouette 0.66 0.22 0.42 0.46

Ours 3 White Silhouette 0.79 0.46 0.58 0.67

Ours 3 White Shading 0.81 0.48 0.60 0.67

Ours 3 Colour Shading 0.83 0.50 0.61 0.73

PSG (Fan et al. 2017) – White 3D 0.83 0.54 0.60 0.71

MN (Richter and Roth 2018) – White 3D 0.85 0.55 0.65 0.68

Entries in bold are the best among 2D-supervised methods for each class

PTN, our images is running the unmodified public code of Yan et al. (2016) with their normal silhouette loss,

on our coloured images. Nviews indicates the number of views of each instance provided together in each

minibatch during training. The final rows (in italic) show performance of two state-of-the-art methods with

full 3D supervision (Fan et al. 2017; Richter and Roth 2018)—note that our colour results are comparable

with these, in spite of using only 2D images. Experimental setting: subdivision, three views per object during

training, fixed lighting rotation

Table 7 Comparison of our method with the concurrent work MVC (Tulsiani et al. 2018) in different settings, on the three classes for which they

report results

Lighting Loss Car Chair Aeroplane

iou err acc iou | θ iou err acc iou | θ iou err acc iou | θ

Ours White Silhouette 0.62 19.4 0.55 0.79 0.45 13.1 0.60 0.46 0.56 1.4 0.83 0.58

Ours White Shading 0.77 3.0 0.91 0.81 0.46 4.2 0.83 0.48 0.57 1.0 0.89 0.60

Ours Colour Shading 0.82 1.3 0.94 0.83 0.47 2.7 0.82 0.50 0.58 0.9 0.88 0.61

MVC White Silhouette 0.74 5.2 0.87 0.75 0.40 7.8 0.81 0.42 0.52 14.3 0.69 0.55

MVC White Depth 0.71 4.9 0.85 0.69 0.43 8.6 0.83 0.45 0.44 21.7 0.60 0.43

Entries in bold are the best result in each column

Note that they vary elevation as well as azimuth, and their images are rendered with texturing under white light; hence, this comparison to our

method is only approximate. Experimental setting: subdivision, three views per object during training, fixed lighting rotation

5.5 Multi-viewTraining/Testing

Table 5 shows results when we provide multiple views of each

object instance to the model, either at training time only, or

during both training and testing. In both cases, this improves

results over using just a single view—the model has learnt to

exploit the additional information about each instance. Note

that when training with three views but testing with one,

the network has not been optimised for the single-view task;

however, the additional information present during training

means it has learnt a stronger model of valid shapes, and this

knowledge transfers to the test-time scenario of reconstruc-

tion from a single image.

5.6 Comparison to Previous and ConcurrentWorks

Generation Figure 11 compares samples from our model,

to samples from that of Gadelha et al. (2017), on the four

object classes we have in common. This is the only prior

work that trains a 3D generative model using only single

views of instances, and without pose supervision. Note how-

ever that unlike us, all images in the training set of Gadelha

et al. (2017) are taken from one of a fixed set of eight poses,

making their task a little easier. We manually selected sam-

ples from our model that are stylistically similar to those

shown in Gadelha et al. (2017) to allow side-by-side com-

parison. We see that in all cases, generating meshes tends to

give cleaner, more visually-pleasing samples than their use

of voxels. For chair, our model is able to capture the very

narrow legs; for aeroplane, it captures the diagonal edges of

the wings; for car and vase, it captures the smoothly curved

edges. Note that as shown in Fig. 5, our model also success-

fully learns models for concave classes such as bathtub and

sofa—which is impossible for Gadelha et al. (2017) as they

do not consider shading.
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Reconstruction Table 6 compares our results with previous

and concurrent 2D-supervised methods that input object pose

at training time. We consider works that appeared in 2018 to

be concurrent to ours (Henderson and Ferrari 2018). Here, we

conduct experiments in a setting matching Yan et al. (2016),

Tulsiani et al. (2017b), Kato et al. (2018), and Yang et al.

(2018): multiple views at training time, with ground-truth

pose supervision [given for 50% of images in Yang et al.

(2018)].

Even when using only silhouettes during training, our

results are about as good as the best of the works we compare

to, that of Kato et al. (2018), which is a concurrent work. Our

results are somewhat worse than theirs for aeroplanes and

chairs, better for cars, and identical for sofas. On average

over the four classes, we reach the same iou of 62.5%. When

we add shading information to the loss, our results show

a significant improvement. Importantly, Yan et al. (2016),

Tulsiani et al. (2017b) and Yang et al. (2018) cannot exploit

shading, as they are based on voxels. Coloured lighting helps

all classes even further, leading to a final performance higher

than than all other methods on car and sofa, and comparable

to the best other method on chair and aeroplane (Kato et al.

2018). On average we reach 66.8% iou, compared to 62.5%

for Kato et al. (2018).

We also show results for Yan et al. (2016) using our

coloured lighting images as input, but their silhouette loss.2

This performs worse than our method on the same images,

again showing that incorporating shading in the loss is

useful—our colour images are not simply more informative

to the encoder network than those of Yan et al. (2016). Inter-

estingly, when trained with shading or colour, our method

outperforms Tulsiani et al. (2017b) even when the latter is

trained with depth information. When trained with colour,

our results (average 66.8% iou) are even close to those of Fan

et al. (2017) (67.0%) and Richter and Roth (2018) (68.2%),

which are state-of-the-art methods trained with full 3D super-

vision.

Table 7 compares our results with those of Tulsiani et al.

(2018). This is a concurrent work similar in spirit to our own,

that learns reconstruction and pose estimation without 3D

supervision nor pose annotations, but requires multiple views

of each instance to be presented together during training.

We match their experimental setting by training our mod-

els on three views per instance; however, they vary elevation

as well as azimuth during training, making their task a lit-

tle harder. We see that the ability of our model to exploit

shading cues enables it to significantly outperform Tulsiani

et al. (2018), which relies on silhouettes in its loss. This is

shown by iou and iou | θ being higher for our method with

2 We use their publicly-available implementation from https://github.

com/xcyan/nips16_PTN, unmodified apart from changing the camera

parameters to match our renderings.

white light and shading loss, than for theirs with white light

and silhouette. Indeed, our method outperforms theirs even

when they use depth information as supervision. When we

use colour lighting, our performance is even higher, due to

the stronger information about surface normals. Conversely,

when our method is restricted to silhouettes, it performs sig-

nificantly worse than theirs across all three object classes.

6 Conclusion

We have presented a framework for generation and recon-

struction of 3D meshes. Our approach is flexible and supports

many different supervision settings, including weaker super-

vision than any prior works (i.e. a single view per training

instance, and without pose annotations). When pose super-

vision is not provided, it automatically learns to disentangle

the effects of shape and pose on the final image. When the

lighting is unknown, it also learns to disentangle the effects

of lighting and surface orientation on the shaded pixels. We

have shown that exploiting shading cues leads to higher

performance than state-of-the-art methods based on silhou-

ettes (Kato et al. 2018). It also allows our model to learn

concave classes, unlike these prior works. Moreover, our

performance is higher than that of methods with depth super-

vision (Tulsiani et al. 2017b, 2018), and even close to the

state-of-the-art results using full 3D supervision (Fan et al.

2017; Richter and Roth 2018). Finally, ours is the first method

that can learn a generative model of 3D meshes, trained with

only 2D images. We have shown that use of meshes leads to

more visually-pleasing results than prior voxel-based works

(Gadelha et al. 2017).

Limitations Our method is trained to ensure that the ren-

dered reconstructions match the original images. Such an

approach is inherently limited by the requirement that images

from the generative model must resemble the input images

for reconstruction, in terms of the L2 distance on pixels. Thus,

in order to operate successfully on natural images, the model

would need to be extended to incorporate more realistic mate-

rials and lighting.

Our use of different mesh parameterisations gives flexibil-

ity to model different classes faithfully. We have shown that

the subdivision parameterisation gives reasonable results for

all classes; however, other parameterisations work better for

particular classes. Hence, for best results on a given class, a

suitable parameterisation must be selected by the user.

Finally, we note that when multiple views but only

silhouettes are available as input, discriminative methods

specialised for this task (Kato et al. 2018; Tulsiani et al. 2018)

outperform our approach.
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Appendix A: Network Architectures

In this appendix we briefly describe the architectures of the

decoder and encoder neural networks.

The decoder network Fφ takes the latent embedding z as

input. This is passed through a fully-connected layer with

32 output channels using ReLU activation. The resulting

embedding is processed by a second fully-connected layer

that outputs the mesh parameters: vertex offsets for subdi-

vision parameterisation, and locations, scales and rotations

for the primitive-based parameterisations. For the primitive

scales, we use a softplus activation to ensure they are posi-

tive; for the other parameters, we do not use any activation

function.

The encoder network encω(x) is a CNN operating on RGB

images of size 128 × 96 pixels; its architecture is similar to

that of Wiles and Zisserman (2017). Specifically, it has the

following layers, each with batch normalisation and ReLU

activation:

– 3 × 3 convolution, 32 channels, stride = 2

– 3 × 3 convolution, 64 channels, stride = 1

– 2 × 2 max-pooling, stride = 2

– 3 × 3 convolution, 96 channels, stride = 1

– 2 × 2 max-pooling, stride = 2

– 3 × 3 convolution, 128 channels, stride = 1

– 2 × 2 max-pooling, stride = 2

– 4 × 4 convolution, 128 channels, stride = 1

– fully-connected, 128 channels

This yields a 128-dimensional feature vector for the image.

The parameters for each variational distribution are produced

by a further fully-connected layer, each taking this feature

vector as input. For the mean of z, we do not use any acti-

vation function; for the mean of θfine we use tanh activation,

scaled by π/Rθ to ensure θcoarse rather than θfine is used to

model large rotations. For the mean of λfine we analogously

use tanh activation scaled by π/Rλ. For the standard devia-

tions of z, θfine, and λfine, we use softplus activation, to ensure

they are positive. Finally, for θcoarse and λcoarse, we use soft-

max outputs giving the probabilities of the different coarse

rotations.

Appendix B: Hyperparameters

We now give the values for the hyperparameters defined in

Sects. 3 and 4, that we used when training our models.

– learning rate: 10−3 (constant throughout training), apart

from parameters specific to rotation decoder in full-block

parameterisation, for which we used 10−4.

– gradient clipping: global Euclidean norm at most 5.

– KL loss weight β = 103.

– discrete prior-matching loss weight α = 5 × 105.

– number of object azimuth bins Rθ = 12.

– number of lighting azimuth bins Rλ = 3, covering only

the interval [0, π) as the renderer uses double-sided light-

ing calculations.

– numbers of blocks in primitive-based parameterisations:

6 for ortho-block, 12 for full-block.

– number of subdivisions in subdivision parameterisation:

4 segments along each axis.

References

Achlioptas, P., Diamanti, O., Mitliagkas, I, & Guibas, L (2018). Learn-

ing representations and generative models for 3D point clouds. In

International conference on machine learning.

Balashova, E., Singh, V., Wang, J., Teixeira, B., Chen, T., & Funkhouser,

T. (2018). Structure-aware shape synthesis. In 3DV.

Barron, J. T., & Malik, J. (2015). Shape, illumination, and reflectance

from shading. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 37(8), 1670–1687.

Broadhurst, A., Drummond, T. W., & Cipolla, R. (2001) A probabilistic

framework for space carving. In Proceedings of the international

conference on computer vision.

Burt, P. J., & Adelson, E. H. (1983). The laplacian pyramid as a compact

image code. IEEE Trans on Communications, 31(4), 532–540.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q.,

Li, Z., et al. (2015). ShapeNet: An information-rich 3D model

repository. arXiv preprint, arXiv:1512.03012.

Choy, C. B., Xu, D., Gwak, J., Chen, K., & Savarese, S. (2016). 3D-

R2N2: A unified approach for single and multi-view 3D object

reconstruction. In Proceedings of the European conference on

computer vision.

De Bonet, J. S., & Viola, P. (1999). Roxels: Responsibility weighted 3D

volume reconstruction. In Proceedings of the international confer-

ence on computer vision.

Fan, H., Su, H., & Guibas, L. (2017). A point set generation network for

3D object reconstruction from a single image. In Proceedings of

the IEEE conference on computer vision and pattern recognition.

Furukawa, Y., & Hernández, C. (2015). Multi-view stereo: A tutorial.

Foundations and Trends in Computer Graphics and Vision, 9(1–2),

1–148.

Gadelha, M., Maji, S., & Wang, R. (2017). 3D shape induction from

2D views of multiple objects. In 3DV.

Gadelha, M., Wang, R., & Maji, S. (2018). Multiresolution tree networks

for 3D point cloud processing. In Proceedings of the European

conference on computer vision.

Gargallo, P., Sturm, P., & Pujades, S. (1999). An occupancy-depth

generative model of multi-view images. In Proceedings of the

international conference on computer vision.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1512.03012


International Journal of Computer Vision (2020) 128:835–854 853

Girdhar, R., Fouhey, D., Rodriguez, M., & Gupta, A. (2016). Learning

a predictable and generative vector representation for objects. In

Proceedings of the European conference on computer vision.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., et al. (2014). Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, & K. Q. Weinberger

(Eds.), Advances in neural information processing systems 27 (pp.

2672–2680). Curran Associates, Inc. http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdf.

Gouraud, H. (1971). Continuous shading of curved surfaces. IEEE Trans

on Computers C, 20(6), 623–629.

Groueix, T., Fisher, M., Kim, V. G., Russell, B., & Aubry, M. (2018).

AtlasNet: A papier-mâché approach to learning 3D surface gener-

ation. In Proceedings of the IEEE conference on computer vision

and pattern recognition.

Gwak, J., Choy, C. B., Chandraker, M., Garg, A., & Savarese, S. (2017).

Weakly supervised 3D reconstruction with adversarial constraint.

In 3DV.

Henderson, P., & Ferrari, V. (2018). Learning to generate and reconstruct

3D meshes with only 2D supervision. In Proceedings of the British

machine vision conference.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick,

M., et al. (2017). β-VAE: Learning basic visual concepts with a

constrained variational framework. In International conference on

learning representations.

Horn, B. (1975). Obtaining shape from shading information. In P. H.

Winston (Ed.), The psychology of computer vision (pp. 115–155).

New York: McGraw-Hill.

Huang, H., Kalogerakis, E., & Marlin, B. (2015). Analysis and syn-

thesis of 3D shape families via deep-learned generative models of

surfaces. Computer Graphics Forum, 34(5), 25–38.

Insafutdinov, E., & Dosovitskiy, A. (2018). Unsupervised learn-

ing of shape and pose with differentiable point clouds. In S.

Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, & R. Garnett (Eds.), Advances in neural informa-

tion processing systems 31 (pp. 2802–2812). Curran Associates,

Inc. http://papers.nips.cc/paper/7545-unsupervised-learning-of-

shape-and-pose-with-differentiable-point-clouds.pdf.

Kanazawa, A., Tulsiani, S., Efros, A. A., & Malik, J. (2018). Learning

category-specific mesh reconstruction from image collections. In

Proceedings of the European conference on computer vision.

Kar, A., Tulsiani, S., Carreira, J., & Malik, J. (2015). Category-specific

object reconstruction from a single image. In Proceedings of the

IEEE conference on computer vision and pattern recognition.

Kato, H., Ushiku, Y., & Harada, T. (2018). Neural 3D mesh renderer.

In Proceedings of the IEEE conference on computer vision and

pattern recognition.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic

optimization. In: International conference on learning represen-

tations.

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes.

In: International conference on learning representations.

Lambert, J. H. (1760). Photometria. Augsburg: Eberhard Klett Verlag.

Laurentini, A. (1994). The visual hull concept for silhouette-based

image understanding. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 16(2), 150–162.

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017).

GRASS: Generative recursive autoencoders for shape structures.

ACM Transactions on Graphics, 36(4), 1–14.

Liu, S., & Cooper, D. B. (2010). Ray markov random fields for image-

based 3D modeling: Model and efficient inference. In Proceedings

of the IEEE conference on computer vision and pattern recogni-

tion.

Loper, M. M., & Black, M. J. (2014). OpenDR: An approximate differ-

entiable renderer. In Proceedings of the European conference on

computer vision (pp. 154–169).

Mandikal, P., Murthy, N., Agarwal, M., & Babu, R. V. (2018). 3D-

LMNet: Latent embedding matching for accurate and diverse 3D

point cloud reconstruction from a single image. In Proceedings of

the British machine vision conference.

Mousavian, A., Anguelov, D., Flynn, J., & Kosecka, J. (2017). 3D

bounding box estimation using deep learning and geometry. In

Proceedings of the IEEE conference on computer vision and pat-

tern recognition.

Nash, C., & Williams, C. K. I. (2017). The shape variational autoen-

coder: A deep generative model of part-segmented 3D objects.

Computer Graphics Forum, 36(5), 1–12.

Niu, C., Li, J., & Xu, K. (2018). Im2Struct: Recovering 3D shape

structure from a single RGB image. In Proceedings of the IEEE

conference on computer vision and pattern recognition.

Novotny, D., Larlus, D., & Vedaldi, A. (2017). Learning 3D object cate-

gories by looking around them. In Proceedings of the international

conference on computer vision (pp. 5218–5227).

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic back-

propagation and approximate inference in deep generative models.

In International conference on machine learning.

Rezende, D. J., Ali Eslami, S. M., Mohamed, S., Battaglia, P.,

Jaderberg, M., & Heess, N. (2016). Unsupervised learning of

3D structure from images. In D. D. Lee, M. Sugiyama, U.

V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neu-

ral information processing systems 29 (pp. 4996–5004). Curran

Associates, Inc. http://papers.nips.cc/paper/6600-unsupervised-

learning-of-3d-structure-from-images.pdf.

Richter, S. R., & Roth, S. (2018). Matryoshka networks: Predicting

3D geometry via nested shape layers. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1936–

1944).

Seitz, S., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006).

A comparison and evaluation of multi-view stereo reconstruction

algorithms. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Shin, D., Fowlkes, C. C., & Hoiem, D. (2018). Pixels, voxels, and views:

A study of shape representations for single view 3D object shape

prediction. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Soltani, A. A., Huang, H., Wu, J., Kulkarni, T. D., & Tenenbaum,

J. B. (2017). Synthesizing 3D shapes via modeling multi-view

depth maps and silhouettes with deep generative networks. In Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition.

Tan, Q., Gao, L., & Yu-Kun Lai, S. X. (2018). Variational autoencoders

for deforming 3D mesh models. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition.

Tulsiani, S., Efros, A. A., & Malik, J. (2018). Multi-view consistency as

supervisory signal for learning shape and pose prediction. In Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition.

Tulsiani, S., Su, H., Guibas, L. J., Efros, A. A., & Malik, J. (2017a).

Learning shape abstractions by assembling volumetric primitives.

In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition.

Tulsiani, S., Zhou, T., Efros, A. A., & Malik, J. (2017b). Multi-view

supervision for single-view reconstruction via differentiable ray

consistency. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Vicente, S., Carreira, J., Agapito, L., & Batista, J. (2014). Reconstruct-

ing PASCAL VOC. In Proceedings of the IEEE conference on

computer vision and pattern recognition.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., & Jiang, Y. G. (2018).

Pixel2Mesh: Generating 3D mesh models from single RGB

images. In Proceedings of the European conference on computer

vision.

123

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/7545-unsupervised-learning-of-shape-and-pose-with-differentiable-point-clouds.pdf
http://papers.nips.cc/paper/7545-unsupervised-learning-of-shape-and-pose-with-differentiable-point-clouds.pdf
http://papers.nips.cc/paper/6600-unsupervised-learning-of-3d-structure-from-images.pdf
http://papers.nips.cc/paper/6600-unsupervised-learning-of-3d-structure-from-images.pdf


854 International Journal of Computer Vision (2020) 128:835–854

Wiles, O., & Zisserman, A. (2017). SilNet: Single- and multi-view

reconstruction by learning from silhouettes. In Proceedings of the

British machine vision conference.

Wu, J., Zhang, C., Xue, T., Freeman, B., & Tenenbaum, J. (2016).

Learning a probabilistic latent space of object shapes via 3D

generative-adversarial modeling. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in

neural information processing systems 29 (pp. 82–90). Curran

Associates, Inc. http://papers.nips.cc/paper/6096-learning-a-

probabilistic-latent-space-of-object-shapes-via-3d-generative-

adversarial-modeling.pdf.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J.

(2015). 3D ShapeNets: A deep representation for volumetric shape

modeling. In Proceedings of the IEEE conference on computer

vision and pattern recognition.

Xie, J., Zheng, Z., Gao, R., Wang, W., Zhu, S. C., & Wu, Y. N. (2018).

Learning descriptor networks for 3D shape synthesis and analysis.

In Proceedings of the IEEE conference on computer vision and

pattern recognition.

Yan, X., Yang, J., Yumer, E., Guo, Y., & Lee, H. (2016). Perspective

transformer nets: Learning single-view 3D object reconstruction

without 3D supervision. In D. D. Lee, M. Sugiyama, U. V. Luxburg,

I. Guyon, & R. Garnett (Eds.), Advances in neural information

processing systems 29 (pp. 1696–1704). Curran Associates,

Inc. http://papers.nips.cc/paper/6206-perspective-transformer-

nets-learning-single-view-3d-object-reconstruction-without-3d-

supervision.pdf.

Yang, G., Cui, Y., Belongie, S., & Hariharan, B. (2018). Learning

single-view 3D reconstruction with limited pose supervision. In

Proceedings of the European conference on computer vision.

Zhang, R., Tsai, P. S., Cryer, J. E., & Shah, M. (1999). Shape-from-

shading: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(8), 690–706.

Zhu, J. Y., Zhang, Z., Zhang, C., Wu, J., Torralba, A., Tenenbaum, J.,

& Freeman, B. (2018). Visual object networks: Image generation

with disentangled 3D representations. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.),

Advances in neural information processing systems 31 (pp. 118–

129). Curran Associates, Inc. http://papers.nips.cc/paper/7297-

visual-object-networks-image-generation-with-disentangled-

3d-representations.pdf.

Zhu, R., Kiani Galoogahi, H., Wang, C., & Lucey, S. (2017). Rethinking

reprojection: Closing the loop for pose-aware shape reconstruction

from a single image. In Proceedings of the international conference

on computer vision.

Zou, C., Yumer, E., Yang, J., Ceylan, D., & Hoiem, D. (2017).

3D-PRNN: Generating shape primitives with recurrent neural net-

works. In Proceedings of the international conference on computer

vision.

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
http://papers.nips.cc/paper/6096-learning-a-probabilistic-latent-space-of-object-shapes-via-3d-generative-adversarial-modeling.pdf
http://papers.nips.cc/paper/6206-perspective-transformer-nets-learning-single-view-3d-object-reconstruction-without-3d-supervision.pdf
http://papers.nips.cc/paper/6206-perspective-transformer-nets-learning-single-view-3d-object-reconstruction-without-3d-supervision.pdf
http://papers.nips.cc/paper/6206-perspective-transformer-nets-learning-single-view-3d-object-reconstruction-without-3d-supervision.pdf
http://papers.nips.cc/paper/7297-visual-object-networks-image-generation-with-disentangled-3d-representations.pdf
http://papers.nips.cc/paper/7297-visual-object-networks-image-generation-with-disentangled-3d-representations.pdf
http://papers.nips.cc/paper/7297-visual-object-networks-image-generation-with-disentangled-3d-representations.pdf

	Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading
	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning Single-Image 3D Reconstruction
	2.2 Generative Models of 3D Shape

	3 Generative Model
	4 Variational Training
	5 Experiments
	5.1 Generating and Reconstructing Diverse Object Classes
	5.2 Comparing Mesh Parameterisations
	5.3 Lighting
	5.4 Latent Space Structure
	5.5 Multi-view Training/Testing
	5.6 Comparison to Previous and Concurrent Works

	6 Conclusion
	Acknowledgements
	Appendix A: Network Architectures
	Appendix B: Hyperparameters
	References


