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Abstract

Beam alignment – the process of finding an optimal directional beam pair – is a challenging proce-

dure crucial to millimeter wave (mmWave) communication systems. We propose a novel beam alignment

method that learns a site-specific probing codebook and uses the probing codebook measurements to

predict the optimal narrow beam. An end-to-end neural network (NN) architecture is designed to jointly

learn the probing codebook and the beam predictor. The learned codebook consists of site-specific

probing beams that can capture particular characteristics of the propagation environment. The proposed

method relies on beam sweeping of the learned probing codebook, does not require additional context

information, and is compatible with the beam sweeping-based beam alignment framework in 5G. Using

realistic ray-tracing datasets, we demonstrate that the proposed method can achieve high beam alignment

accuracy and signal-to-noise ratio (SNR) while significantly – by roughly a factor of 3 in our setting –

reducing the beam sweeping complexity and latency.

Index Terms

5G mobile communication, Beam steering, Beam management, Beam codebook, Machine learning,

Millimeter wave communication, Supervised learning.

I. INTRODUCTION

Cellular systems will increasingly tap into the millimeter wave (mmWave) spectrum to provide

higher data rates and to support a wide range of emerging use cases. For example, the current

release of 5G adopts several mmWave bands between 24.25 GHz and 52.6 GHz, while future

releases are expected to further expand the spectrum to 71 GHz and even the so-called “Terahertz”
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bands extending up to 300 GHz [2]. While these high carrier frequencies allow much larger

bandwidths, they also impose harsher propagation conditions and utilize large arrays of very

small antenna elements, and thus rely on highly directional beamforming (BF) to maintain viable

received signal strength. Meanwhile, these directional links are highly sensitive to blockage

and reflections, so beam alignment – finding and maintaining near-optimal analog BF weights,

including for non-line-of-sight (NLOS) paths – is essential. MmWave devices typically adopt

codebooks of indexed analog beams to allow good beams to be identified by the receiver

and fedback to the transmitter. These codebooks will contain much more numerous and much

narrower beams as higher carrier frequencies are adopted, making the latency and beam sweeping

overhead of traditional beam searches prohibitive. As a result, beam alignment will become an

increasingly critical bottleneck in the future.

A. Background and Related Work

The current release of 5G adopts a beam alignment framework based on beam sweeping,

measurements and reporting [3], [4], [5]. In the downlink (DL), the base station (BS) transmits

reference signals (RSs) such as Synchronization Signal Blocks (SSBs) and Channel State In-

formation Reference Signals (CSI-RSs) using different beams to sweep the angular space, as

illustrated in Fig. 1. The user equipment (UE) uses a quasi-omnidirectional beam or sweeps

its beam codebook using different receiving beams, measures the receive signal power, then

reports the RS measurements to the BS. With exhaustive beam sweeping, the BS and the UE

need to search all combinations of beam pairs, resulting in significant beam sweeping overhead

and latency. The SSBs are transmitted periodically and are “always-on”. They are also used in

cell discovery and initial access (IA) for new UEs. In order for an unconnected UE to achieve

synchronization before accessing the network, it needs to measure the SSBs transmitted by the

BS, find one associated with a good beam and derive the necessary information from that SSB.

Since beam sweeping is essential for both beam alignment and cell search, a beam sweeping-

based framework is likely going to stay in future releases of 5G.

Hierarchical beam searches have been proposed to reduce the beam sweeping complexity

[6], [7]. The BS and the UE, equipped with multiple-tier codebooks, sweep wider beams first

and iteratively thin the search space for the best narrow beam. Since mmWave systems often

employ analog or hybrid BF, the hardware constraints need to be considered when designing the

wide beams in these hierarchical codebooks. Different hierarchical codebook design techniques
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Fig. 1: Beam sweeping-based beam alignment framework in 5G. The BS transmits beamformed
SSBs and CSI-RSs. The UE measures and reports the quality of the RSs. The BS selects a beam
for future data or control transmission.

have been proposed in recent works such as [8] and [9]. While the hierarchical search reduces

the number of beams swept compared to an exhaustive one, the search procedure needs to be

repeated for each UE, marginalizing the gain for multiple UEs. They are also more susceptible

to search errors caused by noise in received signal and imperfect wide-beam patterns. The

hierarchical search method proposed in [9] uses wide beams with multiple mainlobes to reduce

the beam sweeping overhead for multiple UEs. However, the intermediate-layer beams need to be

dynamically generated based on measurements of upper-layer beams, which lacks standardization

support from 5G and also significantly increases the size of the effective hierarchical codebook.

In addition to the beam sweeping-based approaches, beam alignment methods that utilize

context information has been explored. In [10], [11] and [12], the location information of UEs

are used to reduce the beam search space. Beam alignment methods that utilizes sub-6 GHz

measurements are proposed in [13], [14] and [15]. In [16], omni-directionally received sounding

signals are used to predict the optimal beam. A beam alignment method assisted by radar

measurements is proposed in [17]. However, such context information can be hard to obtain

since mmWave devices need to be equipped with the required additional sensors. The feedback

of such context information also incurs additional overhead and sometimes requires a more

robust sub-6 GHz link between the BS and the UE.

Machine learning (ML) solutions have been explored for the beam alignment problem. The

pattern extraction and function approximation powers of ML models make them particularly

suitable for processing a wide range of context information, such as location [11], sub-6 GHz
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channels [14] and omni-directional sounding signals [16]. A joint BF, power control and inter-

ference coordination method using reinforcement learning (RL) is proposed in [18]. A beam

alignment method that uses compressive sensing (CS) to leverage channel sparsity is proposed

in [19]. In [20], a deep learning architecture is used to learn CS matrices and predict the best

beams.

Compared to the beam sweeping-based approaches, beam alignment solutions that rely on

context information often require an additional cell search procedure to discover unconnected new

UEs regardless of whether traditional ML or deep learning techniques are used. The feedback of

additional context information requires the UE to be connected to the network through mmWave

links or sub-6 GHz side links, which can be problematic during IA. Furthermore, solutions that

do not adopt beam sweeping are not compatible with the beam alignment framework in 5G.

Significant modifications to the 5G standard is required to accommodate these approaches.

The neural network (NN) architecture proposed in this work consists of a complex layer which

represents the analog beam codebook and an multilayer perceptron (MLP) which acts as the beam

selector. The complex-NN layer used in this work was first proposed in [21] for computer vision

and audio-related tasks. A similar complex fully-connected layer is used in [22], where the

authors optimize beam patterns for particular environments and hardware imperfections. This

work focuses on finding an optimal beam from a large predefined narrow-beam codebook and

differs from [22] which focuses on direct codebook learning.

In [23], a beam alignment method that trains a NN to predict optimal beams using uplink (UL)

measurements from a sparse probing codebook is proposed. However, the probing codebooks

used in [23] are predetermined undersampled discrete Fourier transform (DFT) codebooks with

evenly spaced narrow beams, whereas the probing codebook in our proposed method are site-

specific and learned using a complex-valued NN module. The NN in [23] requires knowledge

of the complex received signals, whereas our proposed method only need the received power.

We demonstrate in Section V-F that our learned probing codebooks are much more effective

at capturing characteristics of the environment and providing useful information to the beam

predictor.

B. Contributions

In this work, we propose a beam alignment method that uses the beam sweeping measurements

of a probing codebook to predict the optimal narrow beam. The proposed method is based on
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beam sweeping and does not require any additional context information, which is compatible with

the beam alignment framework in 5G. By jointly training the probing codebook and the beam

predictor using a NN in an end-to-end fashion, the probing codebook is able to learn particular

characteristics of the propagation environment and optimize its beam patterns accordingly. Some

key features of the proposed method are summarized as follows.

Trainable site-specific probing codebook: A complex-NN module is used to parameterize

the probing codebook during training so that the BF weights can be extracted and implemented

using actual radio frequency (RF) chains during deployment. The probing codebook is able to

learn particular characteristics of the propagation environment and optimize its beams to capture

the channel information effectively. The proposed architecture can be adopted by BSs in various

deployment scenarios with arbitrary array geometry.

Compatibility with 5G framework: The proposed method can be directly adopted without

modifications to the 5G standard. It does not require the collection and feedback of hard-to-obtain

context information such as UE location or out-of-band information, which needs additional

standardization support. Instead, the proposed method uses beam sweeping measurements of

a probing codebook, which is exactly compatible with the beam sweeping-based framework

currently adopted in 5G. The probing beams can be transmitted using SSBs, which can also be

used for cell discovery and IA.

High beam alignment accuracy and SNR: We demonstrate using multiple realistic ray-

tracing datasets that the proposed method can achieve high beam alignment accuracy and signal-

to-noise ratio (SNR), beating the hierarchical beam search baselines. For instance, the proposed

method can achieve a beam alignment accuracy of over 90% and can outperform even the

exhaustive search in terms of the average SNR.

Reduced beam sweeping overhead: The proposed method has lower beam sweeping overhead

compared to exhaustive and hierarchical beam searches, especially when considering beam

alignment for multiple UEs. For instance, when considering simultaneous beam alignment for

10 UEs, the proposed method is about 3× faster compared to exhaustive and hierarchical beam

searches.

Applicable to a wide range of propagation scenarios: Multiple accurate ray-tracing datasets

modelling a wide range of propagation environments are used to evaluate the performance of the

proposed method. The proposed beam alignment approach consistently achieves high accuracy

and SNR in indoor and outdoor environments, for line-of-sight (LOS) and NLOS UEs, and with
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28 GHz and 60 GHz carrier frequencies.

The rest of this article is organized as follows. The system model is described in Section II.

The proposed beam alignment approach, the appropriate metrics and the baselines of comparison

are explained in Section III. The datasets used are described in Section IV. The simulation results

are presented in Section V. Finally, the conclusion and final remarks are provided in Section VI.

II. SYSTEM MODEL

A DL multiple-input single-output (MISO) system is considered, where each BS has an antenna

array of 𝑁𝑡 elements and each UE has a single antenna. While UEs typically have antenna arrays

also, we consider a MISO scenario where beam alignment is only performed on the BS side for

simplicity. The MISO model is also applicable to the massive Machine Type Communications

(mMTC) use case of 5G, where the each sensor would likely use a single antenna and an isotropic

beam pattern. The extension to receive beam alignment on the UE side is left to future work. A

ray-based narrowband block-fading mmWave channel model with 𝑁𝑝 paths is considered [24]:

h =

𝑁𝑝∑︁
𝑙=1

𝛼𝑙a(𝜙𝐷𝑙 , \
𝐷
𝑙 ). (1)

For each path 𝑙, its complex gain is 𝛼𝑙 , the azimuth and elevation angles of departure are 𝜙𝐷
𝑙

and \𝐷
𝑙

, and the array steering vector at these angles is denoted by a(𝜙𝐷
𝑙
, \𝐷
𝑙
). For a uniform

linear array (ULA) with 𝑁𝑡 antenna elements on the 𝑦-axis, its beam steering is limited to the

azimuth domain and its steering vector can be written as

aULA(𝜙𝑙) =
1

√
𝑁𝑡

[
1 𝑒 𝑗

2𝜋
_
𝑑 sin 𝜙𝑙 · · · 𝑒 𝑗 (𝑁𝑡−1) 2𝜋

_
𝑑 sin 𝜙𝑙

]𝑇
, (2)

where _ is the carrier wavelength and d is the antenna spacing [25]. While a ULA is considered

instead of a planar array for simplicity, the proposed beam alignment approach is array-geometry

agnostic and can be applied to arrays of arbitrary geometry, as we will explain in Section III-A1.

Due to the cost and complexity of fully digital BF at mmWave frequencies, each BS is assumed

to perform analog-only or hybrid BF. For the purpose of beam alignment, only the RF domain

processing is considered. For a BS-UE pair, the BS is assumed to employ a single RF chain

to which all antenna elements are connected. Analog BF is assumed to be implemented using
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phase shifters connected to each antenna element. The BF vector can be written as

v =
1

√
𝑁𝑡

[
𝑒 𝑗\1 𝑒 𝑗\2 · · · 𝑒 𝑗\𝑁𝑡

]𝑇
, (3)

where v satisfies the power constraint and each element of v satisfies the constant modulus

constraint.

In the DL, the BS transmits a symbol 𝑠 ∈ C satisfying average power constraint E[|𝑠 |2] = 1

to the UE using a BF vector v. The received signal at the UE can be written as

𝑦 =
√︁
𝑃𝑇h𝐻v𝑠 + 𝑛, (4)

where 𝑃𝑇 is the transmit power, h ∈ C𝑁𝑡×1 is the channel vector and 𝑛 is the complex additive

noise with noise power 𝜎2
𝑛 .

The SNR for a UE with channel h and using a BF vector v can be written as

SNR =
𝑃𝑇 |h𝐻v|2

𝜎2
𝑛

. (5)

The BS has a codebook V ∈ C𝑁𝑡×𝑁V of predefined narrow analog beams that are used for the

data or the control channel, where each column of V represents the BF weights of a beam. The

size of the narrow-beam codebook 𝑁V is assumed to be large since V needs to cover the entire

angular space. For a BS and a UE, the optimal narrow beam index is the one that achieves the

maximum SNR:

𝑖∗v = arg max
𝑖∈{1,2,··· ,𝑁V}

(
|h𝐻v𝑖 |2𝑃𝑇

𝜎2
𝑛

)
= arg max
𝑖∈{1,2,··· ,𝑁V}

( |h𝐻v𝑖 |2), (6)

where v𝑖 is the 𝑖th beam, i.e., the 𝑖th column of V.

III. THE PROPOSED METHOD, METRICS AND BASELINES

We propose a beam alignment method that is compatible with the beam sweeping-based

framework in 5G so that it can serve to achieve both beam alignment for connected UEs and

IA for unconnected UEs using only beam sweeping measurements. With the proposed method,

the BS first sweeps a small probing codebook to gather information about the channel then

selects candidate narrow beams based on the probing-codebook measurements. In addition to

the size-𝑁V narrow-beam codebook V ∈ C𝑁𝑡×𝑁V that is used for the data or the control channel,

the BS also has a probing codebook W ∈ C𝑁𝑡×𝑁W with 𝑁W beams. The size of the probing

codebook 𝑁W is much smaller than 𝑁V. The BS first sweeps its probing codebook W. All UEs
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connected to the BS measure and report the received power of the probing signals. The beam

sweeping, measurement and reporting is assumed to be completed within the coherence time

during which the channel remains the same. The reported beam sweeping results for each UE

𝑢 can be written as

x =

[
|𝑦1 |2 · · · |𝑦𝑁W |2

]𝑇
, (7)

where 𝑦𝑖 =
√
𝑃𝑇h𝐻w𝑖𝑠 + 𝑛𝑖 is the received signal using the 𝑖th probing beam (the 𝑖th column of

W). Given the reported power of received probing signals x of a UE, the BS then predicts the

narrow beam index 𝑖v ∈ {1, 2, · · · , 𝑁V} using a function 𝑓 : x → 𝑖v. Overall, this problem can

be formulated as

max
W, 𝑓

Eh∈H [|h𝐻v𝑖v |2]

s.t. 𝑖v = 𝑓 (x)
| [W]𝑖, 𝑗 | = 1√

𝑁𝑡
,∀𝑖 = 1, · · · , 𝑁𝑡 ,∀ 𝑗 = 1, · · · , 𝑁W.

(8)

The optimization problem in (8) is non-convex and difficult to solve due to the constant-

modulus constraint of the probing BF weights and the unknown function 𝑓 . The proposed method

is analogous to a hierarchical beam search with 2 tiers. The probing codebook is similar to the

wide-beam codebook in a hierarchical search in that they both provide rough information about

the channel. Unlike the hierarchical search, the probing codebook consists of beam patterns

adapted to the environment, which are not limited to wide beams. In a hierarchical method,

the narrow-beam selection function 𝑓 picks the best child beam of the best wide beam, which

incurs another round of beam measurement and report. In the proposed method, the narrow-beam

selection function 𝑓 predicts good narrow beams by intelligently utilizing measurements of all

probing beams instead of using a simple heuristic, e.g., picking the narrow beams pointing to

the directions of the probing beam with the best measurement.

A. The proposed NN architecture

The probing codebook W needs to be designed so that its beam sweeping measurements pro-

vide useful information regarding which narrow beam in V to select. A good probing codebook

is site-specific and should capture particular characteristics of the propagation environment. The

beam selection function 𝑓 is also optimized for that particular BS and needs to be designed so

that it picks narrow beams from V which tend to maximize the average SNR. Since the probing
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codebook W and the beam selection function 𝑓 are interdependent, they are parameterized with

different NN modules – a complex-NN module and a MLP classifier – and jointly trained in an

end-to-end fashion. The overall architecture is illustrated in Fig. 2.

1) The trainable probing codebook: Beam sweeping using the probing codebook is modeled

with a complex-NN module that computes the complex received BF signals and their power. The

input to this NN module is the channel vector h. The complex layer in the complex-NN module

implements the complex arithmetic of analog BF using real arithmetic. When parameterizing a

𝑁W-beam codebook, the trainable weights of the complex layer are elements of Θ ∈ R𝑁𝑡×𝑁W ,

which are the phase shift values applied to each antenna element. The complex BF weights

W ∈ C𝑁𝑡×𝑁W can then be computed as

W =
1

√
𝑁𝑡

(cosΘ + 𝑗 · sinΘ). (9)

The complex matrix multiplication

z = W𝐻h (10)

can be expressed as a real matrix multiplication
z𝑟𝑒𝑎𝑙

z𝑖𝑚𝑎𝑔

 =

W𝑟𝑒𝑎𝑙 −W𝑖𝑚𝑎𝑔

W𝑖𝑚𝑎𝑔 W𝑟𝑒𝑎𝑙


𝑇 

h𝑟𝑒𝑎𝑙

h𝑖𝑚𝑎𝑔

 , (11)

where h ∈ C𝑁𝑡×1 is the channel vector, z ∈ C𝑁W×1 is the BF output, and we express z,W and

h in terms of their real and imaginary parts. The BF signal power can then be computed as

|z|2 =

[
(z𝑟𝑒𝑎𝑙1 )2 + (z𝑖𝑚𝑎𝑔1 )2, · · · , (z𝑟𝑒𝑎𝑙𝑁W

)2 + (z𝑖𝑚𝑎𝑔
𝑁W

)2
]𝑇
. (12)

While |z|2 is not complex differentiable with respect to z, backpropagation can be enabled by

treating the real and imaginary parts of z independently and compute 𝜕 |z|2
𝜕z𝑟𝑒𝑎𝑙 and 𝜕 |z|2

𝜕z𝑖𝑚𝑎𝑔 . The

phase-shift values Θ can then be updated using the chain rule and backpropagation. Since only

the dimension of Θ needs to be specified when initializing the NN, the complex-NN module

only needs to know the number of antenna elements and not the exact array geometry. The

array-geometry information is embedded in the input channel vectors so that the complex-NN

module can automatically learn the optimal phase-shift values to apply at each antenna element.

This allows the architecture to be flexibly adopted by BSs with different antenna arrays.

The complex-NN module computes the received signal power in (7). Since updates are made
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to the phase-shift values Θ during training, this architecture enforces the constant-modulus

constraint of phase-shifter-only analog BF. Note that Θ can be extracted from the NN module at

any time and be implemented as an analog codebook. After training, the complex-NN module

can be discarded so that (7) can be computed using an actual RF chain and with an analog BF

codebook derived from Θ.

2) The MLP beam selection function: The beam selection function 𝑓 is modeled using an

MLP classifier, which is a feedforward fully connected NN with non-linear activation functions.

The input to the MLP is the power of the complex received signals of all beams in W, which

is calculated using the complex-NN module during training or through beam sweeping during

deployment. The MLP consists of several hidden layers before the output layer to increase its

approximation power. The output of an MLP with 1 hidden layer can be written as

𝑔(x) = 𝑏1 + 𝐴1𝜎(𝑏0 + 𝐴0x), (13)

where the input feature vector is x, the output vector is 𝑔(x), the biases and weights of the

hidden layer are 𝑏0 and 𝐴0, the biases and weights of the output layer are 𝑏1 and 𝐴1, and the

non-linear activation function of the hidden layer is 𝜎. The biases and weights models a trainable

affine transformation, while the non-linear activation function allows the MLP to approximate a

wide range of non-linear functions. The biases and weights of the NN can be updated through

backpropagation to optimize some given objective function. One obvious way to optimize 𝑓 is to

design it to predict the optimal narrow beam v∗ which achieves the highest SNR with the current

channel. Hence, the final softmax layer of the MLP outputs the predicted posterior probability

distribution of each narrow beam in V being the optimal beam. The MLP is a powerful function

approximator and can produce good estimates of posterior class probabilities. The BS can select

the narrow beam with the highest predicted posterior probability. To increase the beam alignment

robustness, the BS can also use the output of the MLP to reduce the search space and sweep

the top-𝑘 narrow beams with the highest predicted posterior probabilities.

The complex-NN architecture can be used to optimize a wide range of objective functions

since it essentially implements analog BF while allowing gradient descent updates that respect

the phase-shifter-only constraints. For instance, it is used to directly minimize the the mean

squared error (MSE) between the gain of the strongest beam in the codebook and the equal

gain combining (EGC) gain in [22]. It is also shown to be robust against hardware impairment
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[22]. In order to select an optimal beam from a given narrow-beam codebook, the probing

codebook should provide useful information to the beam selection function based on the entire

environment. Hence the MLP beam selection function is stacked after the complex-NN module

and the entire NN is trained in an end-to-end fashion instead of directly optimizing the BF gain

of the probing beams. The cross-entropy between the predicted optimal-beam distribution and

the true optimal-beam distribution is used as the loss function. The partial derivative of the loss

function with respect to the MLP biases and weights as well as Θ in the complex-NN module

can be computed so that the MLP and the complex-NN module can be updated during training.

The probing codebook is optimized implicitly to assist the downstream beam selection function.

Interestingly, it still learns to capture particular characteristics of the propagation environment,

as will be discussed in Section V-C.

B. Practicality of the proposed method in 5G

The proposed beam alignment method requires an offline training phase and a deployment

phase. During the training phase, the BS optimizes the probing codebook and the beam selection

function by learning from training data and updating the NN. The training data consists of

the channel vectors for a BS and its potential UEs. Operators can obtain the channel vectors

through ray-tracing simulations of the site prior to deployment. Alternatively, or for further

refinement of the probing codebook, the BS can begin with a default codebook, and then gradually

develop a site-specific probing codebook through interaction with its UEs. In a typical time

division duplex (TDD) scenario, the BS can directly estimate the UL channel by receiving the

Sounding Reference Signals (SRSs) transmitted by UEs and assume the DL channel is same

as the estimated UL channel. If the DL and UL channel reciprocity does not exist, the UE can

estimate the DL channel by receiving the SSB and CSI-RS transmitted by the BS and then feed

back the estimated channel.

While the probing codebook is parameterized using a NN during training, the complex-NN

module can be discarded in the deployment phase. As illustrated in Fig. 3, the BF weights of

the probing codebook can be extracted from the complex-NN module and implemented as an

analog beam codebook at the BS after training. During the deployment phase, the BS periodically

sweeps the learned probing codebook by transmitting a sequence of SSBs using different probing

beams. Each UE measures all the SSBs and reports the received signal power to the BS. The

received signal power vector x is fed into the MLP beam predictor at the BS, which then
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selects the optimal narrow beam or a few candidate beams to try according to the predicted

posterior probability distribution. If the BS chooses to search the top-𝑘 predicted narrow beams

for additional robustness, it can do so by sweeping those beams using the aperiodic CSI-RSs,

which can be independently configured for each UE. The proposed beam alignment method is

adapted to characteristics of the propagation environment such as the distribution of UEs and

the location of the scatterers. If the environment changes, the probing codebook as well as the

MLP beam predictor need to retrained. The NN modules can be trained from scratch, or be

initialized with the existing probing codebook and MLP weights and be refined using data from

the new environment. The retraining can be triggered if the beam alignment performance is

below a threshold. Since such macroscopic characteristics of the environment are expected to

evolve slowly, the retraining should occur infrequently.

The proposed beam alignment method essentially consists of periodic beam sweeping by

the BS and beam measurement and reporting by the UE during the deployment phase. This

beam sweeping, measurement and reporting process precisely fits into the beam sweeping-based

framework currently adopted in 5G, as discussed in Section I-A. Instead of sweeping a general

codebook using SSBs to cover the entire angular space, the proposed method sweeps a site-

specific probing codebook that learns to strategically place beams in directions that can effectively

capture characteristics of the environment and provide useful information to the downstream

beam selector. Since the learned probing codebook replaces traditional full-coverage codebooks,

its beams can be transmitted using “always-on” SSBs and thus can also be used by unconnected

UEs for cell discovery and IA. Instead of selecting the narrow beam with the highest reported

power and ignoring the measurement of the rest of the codebook, the proposed method predicts

good candidate beams using a NN that intelligently utilizes the measurement of all probing

beams. This is also supported in 5G since the BS can request additional beam reports from

UEs to obtain measurements of all probing beams. Overall, the proposed method can be directly

adopted in 5G and does not require any modification to the existing 5G standard.

C. Baselines and Metrics

The proposed beam alignment method selects the optimal narrow beam based on measure-

ments of a probing codebook. It is analogous to a hierarchical beam search where the optimal

narrow child beam is determined based on measurements of wider parent beams. In a traditional

hierarchical beam search, the BS needs to sweep all child beams of the best parent beam at each
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Fig. 2: The architecture of the proposed NN, including the probing codebook W and the beam
selection function 𝑓 .

Fig. 3: Proposed beam alignment architecture during the deployment phase.
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layer of the codebook. The parent beam needs to have a wider beam width and should contain

the coverage areas of its child narrower beams. Four baselines of comparison are considered,

including 2 hierarchical beam searches, an exhaustive beam search and a genie. In all baselines,

the BS has the same narrow-beam codebook V ∈ C𝑁𝑡×𝑁V with 𝑁V beams from which it needs

to select a beam for the data or control channel. When comparing the performance of different

beam alignment methods, the beam alignment accuracy and the SNR are two key metrics. The

beam alignment accuracy is the probability or relative frequency that the BS selects the optimal

narrow beam from the codebook V. The SNR is calculated as in (5).

2-Tier Hierarchical Beam Search The 2-tier hierarchical beam search uses a wide-beam

codebook with 𝑁W beams and a narrow-beam codebook with 𝑁V � 𝑁W beams, both covering

the same angular space. Each narrow beam is the child beam of one of the wide beams. The

coverage area of each wide beam contains the coverage areas of all of its children beams. The

BS first sweeps the 𝑁W wide beams then sweeps the children beams of the best wide beam. The

final selected beam is the best child beam of the best wide beam. The wide-beam codebook is

analogous to the proposed probing codebook in that they both provide rough information about

the channel for beam selection.

Binary Hierarchical Beam Search The binary hierarchical beam search is a generalized

version of the 2-tier beam search. It performs a binary tree search on the narrow beam codebook

V. Starting with a search space equal to the entire angular space, the BS repeatedly splits the

search space into two partitions and sweeps two wide beams each covering one of the partitions

until reaching one of the narrow beams in the final codebook V. With 𝑁V narrow beams, each

beam search consists of log2 𝑁V layers. With more hierarchical search layers, the binary beam

search is more susceptible to search errors compared to the 2-tier search. If a sub-optimal wide

beam is chosen in any of the upper layers due to noise or imperfect wide-beam patterns, the

error will propagate forward and affect the selected narrow beam in V.

Exhaustive Beam Search The BS exhaustively sweeps the narrow beam codebook V with

𝑁V beams and selects the beam with the highest received power. Compared to a hierarchical

beam search, the exhaustive search directly measures the narrow-beam codebook instead of

some wide-beam intermediate codebooks. The best beam in the narrow-beam codebook has

larger directionality gain compared to the wide beams used in the hierarchical methods. As a

result, the exhaustive search is less susceptible to noise in the beam measurements.

Genie (Upper Bound) The BS has knowledge of the true BF gain of each narrow beam in the
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codebook V and always selects the best beam. While the hierarchical searches and the exhaustive

search are all susceptible to search errors caused by noise in the received BF signal, the genie

method is not. If the receive noise power is zero, the genie is equivalent to the exhaustive beam

search; else it is strictly better than exhaustive search. Given a narrow-beam codebook V, the

genie method achieves a perfect beam alignment accuracy of 100% and provides a performance

upper bound.

The hierarchical beam search approaches require wide beams that contain the coverage area

of their children narrower beams. Multiple works have studied hierarchical codebook designs.

Synthesizing wide beams often requires multiple RF chains or antenna activation, such as in

[26], [27] and [8]. Since a single RF chain and analog BF only is assumed in this work, the

alternative minimization method with a closed-form expression (AMCF) algorithm proposed in

[9] is used to generate the wide beams in the hierarchical codebooks.

IV. DATASET

Realistic and accurate data is essential to learning good NN models. Ray tracing is able

to achieve high accuracy and maintain spatial consistency when modeling mmWave channels.

A state-of-the-art commercial-grade ray-tracing software called Wireless InSite [28] is used to

generate the channel data. The ray-tracing software simulates rays emitting from the transmitter at

all directions in the angular space and computes their interaction with the environment along their

paths before reaching the receiver, including scattering, reflection and blockage. An environment

needs to be constructed in the ray-tracing software, specifying the terrain, the scatterers and their

dielectric properties.

Four different ray-tracing scenarios are considered to capture a wide range of propagation

environments for mmWave: a dense urban outdoor area, an urban street, an indoor conference

room with hallways and an urban street with severe blockage and reflections. The ray-tracing

scenarios include both LOS and NLOS UEs and cover two different mmWave carrier frequencies:

28 GHz and 60 GHz. The ray-tracing simulation parameters are summarized in Table I.

Rosslyn Experiment The Rosslyn dataset captures an outdoor dense urban environment

located in downtown Rosslyn, Virginia, USA. It was created with our own experiments and

was published in [11]. A 3-D render of the environment is shown in Fig. 4. The Rosslyn

environment has multiple buildings surrounding an intersection. A BS is placed at the center of

the intersection, elevated by 10 meters above the ground. A total of 73,884 UE positions are
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placed uniformly 0.35 meter apart and 2 meters above the terrain surface. The entire simulated

area is around 90 meters × 90 meters. The Rosslyn environment consists of mostly LOS UEs

and uses a carrier frequency of 28 GHz.

DeepMIMO O1 28 Experiment The DeepMIMO O1 28 dataset captures an outdoor street

environment and is available in the public DeepMIMO dataset [29]. A portion of the original

dataset corresponding to BS #3 and UEs in row #800 to row #1200 is selected. The environment

consists of a street with buildings on both sides. The BS is placed on one side of the street with

an elevation of 6 meters. A total of 72,581 UE positions are placed uniformly on the street 20

centimeters apart. The environment consists of mostly LOS UEs and uses a carrier frequency of

28 GHz.

DeepMIMO I3 Experiment The DeepMIMO I3 dataset models an indoor conference room

and its hallways and is available in the public DeepMIMO dataset [29]. A 3-D view of the

environment is shown in Fig. 5. A BS is placed 2 meters high on the wall inside the conference

room. A total of 118,959 UE positions are placed inside two grids: one LOS grid inside the

conference room and one NLOS grid in the hallway. The carrier frequency is 60 GHz.

DeepMIMO O1 28B Experiment The DeepMIMO O1 28B outdoor street environment is

similar to the O1 28 scenario [29] but with severe blockage and reflections. A 2-D illustration

of the environment is shown in Fig. 6. A 24-meter-wide metal screen is placed in front of the

BS and two reflectors are placed on both sides. A total of 497,931 UE positions are placed

uniformly on the street 20 centimeters apart. This environment includes both LOS and NLOS

UE and uses a carrier frequency of 28 GHz.

V. EVALUATION

Accurate ray-tracing channel data is used in our experiments as described in Section IV. In

all experiments, 60% of the data is used for training, 20% of the data is used for validation

and the remaining 20% is used for testing. The training dataset is used to optimize the NN

weights. The hyperparameters of the NN are tuned by performing a grid search over a set of

predefined values and comparing their performance on the validation set. The test set is used

to evaluate the final performance of each beam alignment method. The MLP module in the

proposed NN architecture has 2 hidden layers with rectified linear unit (ReLU) activation. The

NN is trained for 200 epochs using the Adam optimizer [31]. The training and validation loss

after each training epoch is examined to ensure that the NN has converged. A complex additive
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Fig. 4: 3-D view of the Rosslyn environment. The green block represents the BS. Points on the
yellow grid represent the UEs.

Fig. 5: 3-D view of the DeepMIMO I3 environment. Adapted: [30]

white Gaussian noise (AWGN) is assumed. The noise power in the received BF signal in (4) is

-81 dBm unless otherwise specified. The simulation parameters are summarized in Table I. To

make training more stable and efficient, the channel vectors are normalized by the maximum

magnitude of the elements in the dataset: maxh∈H |h𝑖, 𝑗 |. Similar normalization techniques are

adopted in [16] and [22]. The noise is also scaled appropriately according to the normalization
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Fig. 6: 2-D illustration of the DeepMIMO O1 28B environment. Dimensions are not to scale.

TABLE I: Simulation Parameters

BS Antenna 64 × 1 ULA
UE Antenna Single

Narrow beam codebook size 𝑁V 128

Carrier Frequency
Rosslyn, DeepMIMO O1 28, O1 28B: 28 GHz

DeepMIMO I3: 60 GHz
Bandwidth (𝐵) 100 MHz

Transmit Power (𝑃𝑇 )
Rosslyn, DeepMIMO O1 28, I3: 10 dBm

DeepMIMO O1 28B: 20 dBm
Noise power spectral density (PSD) -161 dBm / Hz

Number of Rays 25

factor. Since the normalization factor is a predetermined constant that only depends on the

underlying environment, it should not affect the practicality of the proposed method. The final

narrow beam codebook V is a 128-beam DFT codebook.

A. Can the proposed beam alignment method achieve good accuracy?

The accuracy of the proposed method and the baselines with increasing probing codebook size

is shown in Fig. 7. The genie always has a perfect accuracy of 1 and is not shown in the figure.

The accuracy of the proposed method increases as the number of probing beams increases, which

is expected since a larger probing codebook allows the BS to obtain more information about the

channel for a UE. Among the traditional beam sweeping-based baselines, the exhaustive search

performs the best and the binary search performs the worst. This is expected since a method with

more layers in the hierarchical search structure is more vulnerable to noise in the received signal.

Instead of directly choosing the predicted optimal beam, the accuracy of the proposed method can

be improved significantly by searching a few additional candidate beams. In all 4 environments,
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the proposed method can achieve a beam alignment accuracy of at least 85% with just 14 probing

beams and searching an additional 𝑘 = 3 narrow beams, outperforming both the binary and the

2-tier hierarchical beam search baselines. In the 2 LOS environments (Rosslyn and DeepMIMO

O1 28), the proposed method can beat the binary beam search with 10 probing beams and 𝑘

= 3. With 16 probing beams, it can even outperform the exhaustive search by sweeping an

additional 𝑘 = 3 narrow beams. In the 2 environments with NLOS UEs (DeepMIMO I3 and

O1 28B), traditional beam sweeping-based baselines perform considerably worse compared to

in the LOS environments. The exhaustive search can only achieve an accuracy of around 80%

compared to around 90% in the LOS environments. The hierarchical beam searches suffer from

even worse accuracy degradation, with the 2-tier hierarchical beam search achieving accuracies

of around 65% compared to around 80% in the LOS environments. Clearly, beam alignment for

the NLOS UEs is more challenging for traditional beam sweeping-based baselines. On the other

hand, the proposed method shines in these environments with NLOS UEs. With just 8 probing

beams and 𝑘 = 3, it outperforms any beam sweeping-based baseline, including the exhaustive

search. With 12 probing beams and 𝑘 = 3, the proposed method can achieve an accuracy of over

84% in the I3 environment and over 88% in the O1 28B environment. Overall, the proposed

method can outperform the traditional beam sweeping-based baselines with a moderate probing

codebook size, particularly in environments with NLOS UEs which are usually challenging for

beam alignment.

B. Can the proposed beam alignment method achieve good SNR?

The beam alignment accuracy considers the probability of finding the optimal narrow beam.

With a large, oversampled codebook, adjacent narrow beams may have similar BF gains. As a

result, operators may be more interested in the SNR achieved after beam alignment. The average

SNR of the proposed method and the baselines with increasing probing codebook size is shown

in Fig. 8. In the LOS environments (Rosslyn and DeepMIMO O1 28), the proposed method

outperforms the binary beam search with just 10 probing beams and 𝑘 = 2 but is worse than

both the exhaustive and the 2-tier hierarchical methods. It is able to match the 2-tier hierarchical

baseline in terms of average SNR with 20 probing beams and 𝑘 = 3. The exhaustive search

achieves close-to-optimal average SNR while its accuracy is just around 90%. Similar to the

accuracy performance, the proposed method shines in the challenging NLOS environments in

terms of average SNR. With just 8 probing beams and without additional narrow-beam sweeping,
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Fig. 7: Beam alignment accuracy vs. probing codebook size.

it outperforms both hierarchical search methods. With 12 probing beams and 𝑘 = 3, the proposed

method can achieve similar if not better average SNR compared to the exhaustive search. Overall,

with 12 probing beams and 𝑘 = 3, the gap in the average SNR of the proposed method from the

genie upper bound is 3.73 dB in the Rosslyn environment, 2.86 dB in the DeepMIMO O1 28

environment, 1.36 dB in the I3 environment and 2.15 dB in the O1 28B environment.

C. Can the proposed NN learn meaningful probing codebooks?

The learned probing codebook should provide meaningful and helpful information to the

downstream MLP beam predictor. In the proposed end-to-end training procedure, the complex-

NN probing codebook and the MLP beam predictor are jointly trained. Intuitively, the complex-
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Fig. 8: Average SNR vs. probing codebook size.

NN module should learn beam patterns that can effectively capture the characteristics of the

underlying environment. The DeepMIMO O1 28 and O1 28B environments provide a good case

study. Both environments feature similar topologies where a roadside BS serves UEs located on

the street. While all UEs are LOS in the O1 28 environment, a significant portion of the UEs are

NLOS due to blockage by a metal screen placed in front of the BS in the O1 28B environment.

In order to provide coverage to the NLOS UEs, the BS in the O1 28B environment needs to

steer beams towards the two reflectors on both sides of the street. The majority of the LOS UE

are also distributed on both sides of the BS.

The learned probing codebook patterns in both environments is shown in Fig. 9. Firstly,

the learned radiation patterns are similar with increasing probing codebook sizes 𝑁W in either
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environment. Regardless of the codebook size, the probing codebook consistently learns to focus

energy on specific areas. This indicates that the complex-NN module can consistently learn

probing codebook patterns in a given environment. Unlike conventional DFT beams which have

a single main lobe, the learned beams often have multiple main lobes. Such beam patterns can

likely capture more information about the propagation environment given the small number of

probing beams allowed. Furthermore, the learned probing codebooks are adapted to the particular

characteristics of different environments. The learned beam patterns in the O1 28 environment

are drastically different from those in O1 28B. In the O1 28B environment, the codebooks are

optimized to focus energy in the angular regions close to ±90◦, corresponding to the positions of

the LOS UEs and the reflectors. In comparison, the codebooks learned in the O1 28 environment

spread the energy much more evenly in the broadside direction, which is consistent with the even

distribution of LOS UEs in front of the BS in this environment. While the complex-NN module

is not explicitly optimized to leverage spatial patterns of the environment, it can nevertheless

consistently learn probing beams that captures particular characteristics of the environment.

D. Does the proposed method achieve lower beam sweeping complexity?

With the proposed beam alignment method, all UEs can measure the probing beams simultane-

ously when the BS sweeps the probing codebook. If the BS choose to sweep the top-𝑘 predicted

beams, those beams may be different for each UE. Hence the beam sweeping complexity is

𝑁W + 𝐾 · 𝑘1{𝑘>1} for 𝐾 UEs. Each UE needs to feedback the received signal power of the 𝑁W

probing beams. If the BS choose to sweep additional beams, each UE only needs to feedback

the index of the best beam. With the 2-tier hierarchical beam search, the 1st-tier wide beams can

be transmitted using SSBs and be measured by all UEs simultaneously, while different 2nd-tier

children beams need to be swept for each UE. On average, the beam sweeping complexity is

𝑁W +𝐾 𝑁V
𝑁W

for 𝐾 UEs. Each UE needs to feedback the index of the best beam in each tier. With

the binary hierarchical beam search, the two first layer beams can be measured simultaneously

by all UEs while the subsequent beam sweeping needs to be done for each different UE. Hence

the beam sweeping complexity is 2 + 2𝐾 log2
𝑁V
2 for 𝐾 UEs. Each UE needs to feedback the

index of the best beam in each level of the binary search. With the exhaustive beam search, the

𝑁V beams can be measured by all UEs simultaneously. The beam complexity is 𝑁V regardless

of the number of UEs. Each UE needs to feedback the index of the best beam. A summary of
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Fig. 9: Learned beam patterns with different probing codebook sizes in the DeepMIMO O1 28
and O1 28B environments.

TABLE II: Beam Sweeping Complexity for 𝐾 UEs

Beam alignment method Beam sweeping complexity Feedback complexity

Proposed method 𝑁W + 𝐾 · 𝑘1{𝑘>1}
𝐾𝑁W received signal power
+ 𝐾 · 1{𝑘>1} beam indices

2-tier hierarchical search 𝑁W + 𝐾 𝑁V
𝑁W

2𝐾 beam indices
Binary hierarchical search 2 + 2𝐾 log2

𝑁V
2 𝐾 log2 𝑁V beam indices

Exhaustive search 𝑁V 𝐾 beam indices

the beam sweeping and feedback complexity of the proposed method and the baselines is shown

in Table II.

A comparison of the beam sweeping complexity with 1,5,10 and 15 UEs is shown in Fig.10.

When considering a single UE, the proposed method has lower beam sweeping complexity

compared to the exhaustive search and the 2-tier hierarchical beam search. With fewer than 11
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probing beams, the proposed method also incurs lower beam sweeping complexity than the binary

beam search does even when sweeping 2 or 3 additional beams. When considering simultaneous

beam alignment for multiple UEs such as 5, 10 and 15 UEs, the beam sweeping complexity of the

proposed method is lower than that of any baseline. In the 2 NLOS environments (DeepMIMO

I3 and O1 28B), when considering simultaneous beam alignment for 10 UEs, the proposed

method with 12 probing beams and 𝑘 = 3 can achieve an average SNR similar to that of the

exhaustive beam search, at least 3.65 dB better than that of the 2-tier hierarchical beam search

and at least 7.71 dB better than that of the binary beam search, while incurring less than 35.4% of

the beam sweeping complexity of any baseline. With 12 probing beams but without additional

beam sweeping (𝑘 = 1), the proposed method can still beat the hierarchical search baselines

while reducing the beam sweeping complexity by 10×.

E. Is the proposed beam alignment method robust to noise?

The proposed beam alignment method, like any beam sweeping-based approach, relies on

measurements of the received power of the BF signals. As a result, noise in the received

BF signal may have significant impacts on the beam alignment performance. We compare the

beam alignment accuracy at various noise levels to that when there is no noise. The accuracy

degradation is defined as the absolute difference between the accuracy with no noise and the

accuracy at a certain SNR level. The accuracy degradation at various SNR levels is shown in Fig.

11. In the LOS environments (Rosslyn and DeepMIMO O1 28), the accuracy degradation of all

compared methods is minimal when the SNR is over 35 dB. When the SNR is between 5 dB

and 25 dB, the exhaustive search experiences the least amount of accuracy drop. The proposed

method with 𝑘 = 3 experiences similar levels of degradation compared to the hierarchical search

baselines. In the NLOS environments (DeepMIMO I3 and O1 28B), the accuracy degradation

is much more noticeable even at high SNR levels of over 35 dB. The proposed method also

performs more favorably in terms of accuracy drop. With 𝑘 = 3, it experiences the least amount

of accuracy degradation when the SNR is over 15 dB in the DeepMIMO I3 environment. In the

O1 28B environment, the proposed method experiences less degradation than any other baseline

at all SNR levels.
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Fig. 10: Beam sweeping complexity vs. probing codebook size.

F. How does the learned probing codebook help the beam predictor?

The trainable probing codebook is an important part of the proposed bean alignment method

and should be optimized to help the subsequent optimal-beam classification task. To verify

this, the performance of the MLP classifier is evaluated while the trainable probing codebook

is replaced with a predetermined probing codebook. Two predetermined probing codebooks are

considered: a DFT codebook with 𝑁W evenly-spaced narrow beams which is similar to the sparse

codebook used in [23], and a wide-beam codebook whose 𝑁W evenly-spaced wide beams are

generated using the AMCF algorithm. The MLP is trained from scratch using the received signal

power of each predetermined probing codebook. A beam alignment accuracy comparison of the

learned probing codebook and the predetermined ones in all 4 environments is shown in Fig. 12.
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Fig. 11: Beam alignment accuracy gap vs. SNR. The vertical axis represents the accuracy
degradation from when there is no noise in the received signal. The horizontal axis represents
the average SNR of the optimal narrow beams of all UEs.

In all 4 environments, the learned probing codebook achieves significantly better beam alignment

accuracy. By placing beams strategically according to the propagation environment instead of

evenly in the angular space regardless of the environment, the learned probing codebook is

much more effective at capturing channel characteristics, which greatly benefits the downstream

classification task.

The probing codebook can also be viewed through the lens of data clustering and representation

learning, which provides a further explanation of how the learned codebook help select the

optimal beam. By performing beam sweeping using the probing codebook, the high-dimensional

channel vector h ∈ C𝑁𝑡×1 is transformed into a feature vector of received signal power values
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Fig. 12: Accuracy vs. probing codebook size.

x ∈ R𝑁W×1 lying in a lower-dimensional subspace determined by the probing codebook. If the

transformed feature vectors with the same optimal narrow beam are assigned to the same cluster,

a good probing codebook should intuitively make clusters corresponding to different narrow

beams well separated so that the MLP can more easily predict the optimal beam. After beam

sweeping using the probing codebook, channel realizations with the same optimal narrow beam

should be close to each other in the transformed subspace, while those with different optimal

narrow beams should be farther apart. This is similar to the representation learning problem in

ML, which often seeks to learn low-dimensional representations of high-dimensional data that

exhibits natural clustering according to the data labels [32]. One measure of the clustering quality
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is the silhouette coefficient [33]. For a dataset D, its silhouette coefficient 𝑆(D) ∈ [−1, 1] is

𝑆(D) = E
𝑖∈D

[ 𝑏(𝑖) − 𝑎(𝑖)
max{𝑎(𝑖), 𝑏(𝑖)}

]
, (14)

where 𝑎(𝑖) is the mean intra-cluster distance of a data sample 𝑖 and 𝑏(𝑖) is its distance to

the nearest cluster of which it is not a part of. A higher silhouette coefficient indicates better

clustering and better separability of the data, which will likely make classifying the optimal beam

easier. The silhouette coefficients of the received signal power vector x in all 4 environments are

shown in Table III. Compared to the predefined AMCF and DFT probing codebooks, the learned

codebook consistently achieves better silhouette coefficients regardless of the environment and

the number of probing beams, thus explaining its superior beam alignment performance.

To further visualize the clustering effect of the probing codebooks, 2-D embeddings of the

probing codebook measurements x are learned using the t-distributed stochastic neighbor embed-

ding (t-SNE) algorithm. The t-SNE algorithm [34] is commonly used to learn low-dimensional

embeddings of high-dimensional data while preserving its distribution in the high-dimensional

space, so that similar data samples are more likely to be closer together and dissimilar ones

are more likely to be farther apart in the embedding space. Two environments – Rosslyn and

DeepMIMO O1 28 – are selected as case studies, and their t-SNE visualizations are shown

in Fig. 13. With the AMCF and the DFT probing codebooks, the clusters have elongated and

twisted shapes. With the learned codebook, the data samples within each cluster are more tightly

packed. The learned probing codebook allows the channel realizations to form better-shaped

clusters which will likely make the data easier to classify.

VI. CONCLUSION

We propose a mmWave beam alignment method that uses ML to predict the optimal narrow

beam using measurements of a learned probing codebook. We design a NN architecture that

optimizes the site-specific probing codebook so that it can capture particular characteristics of

the propagation environment. After an offline training phase, operators can implement the learned

probing codebook using an RF chain and use its beam sweeping results to select an optimal

narrow beam or a few candidate beams to try, which is compatible with the beam alignment

framework in 5G. The proposed method can outperform hierarchical beam search baselines and

even the exhaustive beam search, particularly in challenging environments with NLOS UEs,

while significantly reducing the beam sweeping overhead. We also provide an explanation of
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TABLE III: Silhouette Coefficients of Beam Sweeping Received Signal Power

Environment Probing
codebook

Probing codebook size
6 8 10 12 14 16 18 20

Rosslyn
learned -0.179 -0.144 -0.118 -0.099 -0.078 -0.071 -0.051 -0.035
AMCF -0.333 -0.266 -0.262 -0.242 -0.215 -0.196 -0.172 -0.160
DFT -0.376 -0.404 -0.320 -0.281 -0.231 -0.231 -0.189 -0.199

DeepMIMO
O1 28

learned -0.256 -0.231 -0.196 -0.173 -0.175 -0.151 -0.161 -0.119
AMCF -0.367 -0.337 -0.316 -0.290 -0.281 -0.283 -0.250 -0.238
DFT -0.426 -0.380 -0.353 -0.340 -0.329 -0.302 -0.272 -0.292

DeepMIMO
I3

learned -0.302 -0.255 -0.223 -0.218 -0.206 -0.191 -0.190 -0.177
AMCF -0.505 -0.477 -0.440 -0.406 -0.391 -0.390 -0.366 -0.349
DFT -0.503 -0.480 -0.416 -0.393 -0.385 -0.399 -0.361 -0.364

DeepMIMO
O1 28B

learned -0.597 -0.584 -0.588 -0.573 -0.573 -0.572 -0.571 -0.571
AMCF -0.623 -0.618 -0.616 -0.612 -0.608 -0.611 -0.604 -0.601
DFT -0.746 -0.742 -0.696 -0.683 -0.668 -0.662 -0.641 -0.634
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Fig. 13: t-SNE visualization of the received signal power of different probing codebooks with
𝑁W = 16 beams.
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why the learned probing codebook is beneficial to the beam alignment task through the lens

of data clustering and representation learning. The proposed method uses channel information

during its offline training phase. Future works may consider beam prediction without offline

training or explicit channel knowledge. The complex-NN architecture may also be extended

to consider hybrid BF. The extension to receive beam alignment on the UE side is another

promising direction.
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