
Learning Small-Size DNN with Output-Distribution-Based Criteria

Jinyu Li
1
, Rui Zhao

2
, Jui-Ting Huang

1
, and Yifan Gong

1

1
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

2
Microsoft Search Technology Center Asia, Beijing, China

{jinyli; ruzhao; jthuang; ygong}@microsoft.com

Abstract

Deep neural network (DNN) obtains significant accuracy

improvements on many speech recognition tasks and its power

comes from the deep and wide network structure with a very

large number of parameters. It becomes challenging when we

deploy DNN on devices which have limited computational and

storage resources. The common practice is to train a DNN

with a small number of hidden nodes and a small senone set

using the standard training process, leading to significant

accuracy loss. In this study, we propose to better address these

issues by utilizing the DNN output distribution. To learn a

DNN with small number of hidden nodes, we minimize the

Kullback–Leibler divergence between the output distributions

of the small-size DNN and a standard large-size DNN by

utilizing a large number of un-transcribed data. For better

senone set generation, we cluster the senones in the large set

into a small one by directly relating the clustering process to

DNN parameters, as opposed to decoupling the senone

generation and DNN training process in the standard training.

Evaluated on a short message dictation task, the proposed two

methods get 5.08% and 1.33% relative word error rate

reduction from the standard training method, respectively.

Index Terms: DNN, device, output distribution, model

compression, learning

1. Introduction

Context-dependent deep neural network hidden Markov model

(CD-DNN-HMM) has been shown, by many groups

[1][2][3][4][5][6], to outperform the conventional Gaussian

mixture model (GMM)-HMMs on many automatic speech

recognition (ASR) tasks. The outstanding performance comes

with much higher runtime cost because DNNs use much more

parameters than the traditional GMM-HMM systems. Several

technologies have been proposed to improve the runtime of

CD-DNN-HMM so that it can be deployed on servers with

high accuracy. Low rank matrices are used at the output layers

[7] and all layers [8] to reduce the number of DNN parameters

and CPU cost. In [9], several engineering methods such as 8-

bit quantization for SSE evaluation are employed, and the

frame skipping or prediction technology is used in [10].

Given widely used mobile devices such as smart phones

and wearable devices, the industry has strong interests to have

DNN systems on devices. However, even with the

technologies mentioned above, the large computational cost is

still very challenging to the deployment of CD-DNN-HMM on

devices due to the limited processing power of devices. A

common way to fit CD-DNN-HMM on devices is to reduce

the DNN model size by reducing the number of nodes in

hidden layers and the number of senone targets in the output

layer [11]. Although the DNN model size is reduced,

significant increase in word error rate is also observed [11].

In this paper, we explore a better way to reduce the DNN

model size with less accuracy loss than the straight-forward

method in [11]. To that end, we utilize the property of DNN

output distribution by minimizing the Kullback–Leibler (KL)

divergence between the output distributions of the small-size

DNN and the large-size DNN. We also use the equivalence

between the log-linear model and the Gaussian model to

cluster the large senone set into a small one. This paper is

organized as follows. In Section 2, we review the basic DNN

training procedures. We describe the proposed methods in

Section 3 and evaluate them in Section 4. Finally, we

summarize our study and conclude the paper in Section 5.

2. CD-DNN-HMM

A deep neural network (DNN) can be considered as a

conventional multi-layer perceptron (MLP) with many hidden

layers (thus deep). The three major components contributing to

the excellent performance of CD-DNN-HMM are: modeling

senones directly even though there might be thousands of

senones; using DNNs instead of shallow MLPs; and using a

long context window of frames as the input.

Denote the input and output of the DNN as and , the

input vector at layer l as (, the weight matrix as ,

and bias vector as . Then for a DNN with L hidden layers,

the output of the l-th hidden layer is

 (() (1)

where (and ((⁄ is the

sigmoid function applied element-wise. The posterior

probability is

 ((((2)

where belongs to the set of senones (tied triphone states).

We compute the HMM’s state emission probability density

function (by converting the state posterior

probability (to

 (
 (

 (
 ((3)

where (is the prior probability of state , and (is

independent of state and can be dropped during evaluation.

In our implementation, the CD-DNN-HMM inherits the

model structure, including the phone set, the HMM topology,

and tying of context-dependent states, directly from the CD-

GMM-HMM system. The senone labels used for training the

DNNs are extracted from the forced alignment generated using

the CD-GMM-HMM. The training criterion is to minimize

cross entropy which is reduced to minimize the negative log

likelihood because every frame has only one target label :

 ∑ (() (4)

The DNN parameters are optimized with back propagation

using stochastic gradient descent. In the following, we refer

the DNN training process described in this section as the

standard training process.

3. Small-Size DNN Learning

In this section, we study whether there is a better way to

reduce the DNN model size with less accuracy loss than the

straight-forward method in [11]. We will address this problem

in two areas: 1) reducing the number of nodes in every hidden

layer 2) reducing the number of senones in the output layer.

3.1 Learning DNN with a small number of hidden

nodes

The accuracy gap is large between DNNs with large and small

numbers of hidden nodes [11] if we train them with the

standard training method in Section 2. To reduce the gap, our

idea of learning DNN with small numbers of hidden nodes is

motivated by the model compression concept [12] which trains

a compact model to approximate the function learned by a

large model. The concept was extended in [13] to learn a

shallow neural network (SNN) with one single hidden layer to

approximate the performance of a DNN by minimizing the

difference of (values from a SNN and a DNN on the

TIMIT database. To mimic a deep architecture, they train a

SNN with greater or equal amounts of parameters. In [13], the

number of parameters in the SNN ranges from 12 million to

180 million, whereas the DNN only has 12 million parameters.

Different from their work, our learning task is to boost the

performance of a small-size DNN by learning from a DNN

with larger capacity (numbers of hidden nodes). One important

property of such function learning is that no label is required

during training. This enables us to explore the use of

additional un-transcribed data to learn a better approximation

of complex functions from a large-size DNN.

In this paper, we propose to directly minimize the KL

divergence between the output distribution of the small-size

DNN and the large-size DNN by leveraging large amounts of

un-transcribed data to get a better small-size DNN than using

the standard training method with only transcribed data.

We denote the posterior distribution of the large-size and

small-size DNNs as (and (, respectively. The

KL divergence between these two distributions is

∑∑ ((
 (

 (
)

where N is the total number of senones.

(5)

To learn a small-size DNN that approximates the given

large-size DNN, only the parameters of the small-size DNN

needs to be optimized. Minimizing the above KL divergence is

equivalent to minimizing the cross entropy

 ∑∑ ((

 (6)

because ((has no impact on the small-

size DNN parameter optimization. The proposed small-size

DNN training criterion in Eq. (6) is a general form of the

standard DNN training criterion in Eq. (4) where for every

frame only one dimension of (equals to 1 and the

others equal to 0. In contrast, in Eq. (6) every dimension of

 (has its non-zero (although may be very small) value.

The training steps of a small-size DNN guided by a large-

size DNN are summarized as

1. Use the standard DNN training method to train a large-

size DNN.

2. Use unsupervised pre-training to initialize a small-size

DNN.

3. Then use a much larger amount of un-transcribed data

to train the small-size DNN with the following steps.

a. For each mini-batch, do forward propagation of

both large-size and small-size DNNs to

calculate (and (.
b. For that mini-batch, calculate the error signal of

Eq. (6), and then do back propagation for the

small-size DNN.

c. Repeat Step 3.a & 3.b until convergence.

With the same amount of transcribed data, we don’t expect

the proposed method to outperform the standard training

method. The advantage of the proposed method is that training

of the small-size DNN (a student) doesn’t need any

transcription because its supervised signal (is obtained

simply by passing training data through the large-size DNN (a

teacher). Without the need for transcriptions, the small-size

DNN trained based on optimizing Eq. (6) can use much more

training data than trained with Eq. (4) for standard DNN

training. With more training data to cover the feature space,

we hope to learn a better small-size DNN. This training

criterion is particularly useful for the industry scenario, where

the amount of un-transcribed data is much larger than the

amount of transcribed data due to the deployment feed-back

loop. In the meantime, the high-performance large-scale DNN

can be trained regardless of the memory/computation

limitation for deployment on devices.

In contrast to directly using the continuous outputs of the

teacher DNN with Eq. (6), an alternative way is to use an

approximation to 1-of-K representation for (by

assigning 1 to the senone class with the largest posterior and 0

to the others and then use Eq. (4) to train the small-size DNN.

We believe this is not optimal because our goal is to let the

student and teacher DNNs have as close as possible

continuous outputs in Eq. (5).

3.2 Learning DNN with a small senone set

We also want to generate a small senone set with a better

accuracy than using the standard senone generation method

which splits the decision tree by maximizing the increase of

likelihood evaluated on single Gaussians and forms the final

senone set with the leaf nodes in the decision tree [14].

The potential problem with using the standard likelihood-

based decision tree splitting process to obtain a senone set for

DNN modeling is that the senone set is determined by single

Gaussian distributions for MFCC or PLP feature, and hence

the process to generate the senone set and the process to train a

DNN are not consistent. Our proposed method partially

addresses this concern by first generating a large senone set

with the standard decision-tree splitting method and then

merging similar senones using some criterion related to the

DNN. In other words, we aim to perform clustering of a large

set of senones based on DNN-related features. To this end, we

show that the senone targets at the softmax layer of the DNN

can be represented by Gaussian models and then convert the

task of senone clustering into the task of Gaussian clustering.

It was shown in [15] that a log-linear model is equivalent

to a Gaussian model. The general form of log-linear model is

 (

 (
 (∑ (

) (7)

where (is the i-th feature function for input x, is the

weight for the s-th class and i-th feature, and (is for the

normalization. The mapping from a log-linear model to a

Gaussian model (is [15]

(

 (8)

where and are the second- and first-order weights,

is a constant to make the variance matrix positive definite.

The softmax function in Eq. (2) can be considered as a log-

linear model with

 ([
]

 [] (9)

where are the weights and bias for senone s. Hence the

corresponding Gaussian model for senone s is

 [] (10)

Here the Gaussian distributions of all senones have the same

variance matrix , and the input vector to these Gaussians is

[
]

. As every senone is represented by a Gaussian

distribution, for any pair of senones and , we use the

symmetric KL divergence as their distance measure, which is

the metric to cluster a large set of senones into a small set.

The steps of learning a DNN with a small senone set are:

1. Train a DNN with a large senone set using the standard

training procedure.

2. Convert the output layer of this large-senone-set DNN

into Gaussian models according to Eq. (10).

3. Cluster the large set of Gaussians into a small set

according to the symmetric KL divergence, and assign

senone IDs for each cluster in the small set.

4. In the original senone alignment for training data, replace

the large-set senone IDs with the small-set senone IDs

obtained in Step 3, and then retrain the DNN.

With Eq. (10), senones in the large set are related to the

well-trained DNN. We hope that clustering using DNN-related

Gaussian parameters can achieve a better accuracy than the

standard clustering procedure that uses single Gaussians

generated from the traditional MFCC or PLP feature.

4. Experimental Evaluation

The proposed methods are evaluated using a Microsoft

internal Windows Phone short message dictation task. The

transcribed training data has 375 hours of US-English audio.

The test set is extracted from the live data of the Windows

Phone task. The input feature to CD-DNN-HMM system is a

29-dimension log-filter-bank feature with up to second-order

derivatives. We augment the feature vectors with previous and

next 5 frames (5-1-5). The system uses 6k senones, determined

by the baseline CD-GMM-HMM system.

4.1 Experiments on DNN with a small number of

hidden nodes

In this section, we report the results of learning a DNN with a

small number of hidden nodes from a large-size DNN which

cannot be deployed on devices. Because our proposed method

in Section 3.1 is to train a small-size DNN by learning the

output distribution of a large-size DNN, we sometimes call the

large-size DNN as the teacher DNN, and the small-size DNN

as the student DNN.

Using 375 hours of transcribed US-English audio data, we

first train 5-layer DNNs with 2048 nodes and 512 nodes in

each hidden layer, respectively, with the standard cross-

entropy criterion in Eq. (4). The output layer is the same, with

6k senones. These two DNNs are model A and B in Table 1,

with 16.32% and 19.90% WER, respectively.

Then, we use the steps described in Section 3.1 to learn

small-size DNNs with 375 hours (hr), 750 hours, and 1500

hours of un-transcribed data from the same Windows Phone

short message dictation task. They are denoted as model C, D,

and E in Table 1, respectively. All these DNNs are initiated

from the same pre-trained model without using any transcribed

data. It is interesting to see that model C trained with only un-

transcribed data gets slightly better WER than model B trained

with the same data with transcription. It is possibly because

the small-size DNN cannot have the capacity to learn well the

hard labels generated from forced-alignment. Instead, the

supervised signal from the large-size DNN seems to be an

easier target for this small-size DNN to learn. We also observe

that by adding 375, 750, and 1500 hours of un-transcribed

data, the WERs of the small-size DNN keep dropping linearly.

Therefore, we can infer that adding even more data will likely

further reduce the accuracy gap between the small-size and

large-size DNNs. However, the student DNN can never

surpass the teacher DNN. It will get converged after seeing too

much un-transcribed data. Currently, with 1500 hours of un-

transcribed data, the small-size DNN learned with our

proposed method can get relative 5.08% WER reduction from

its counterpart trained with the standard process in Section 2.

In Table 1, the small-size DNN models (C, D, and E) are

learned from model A, which is trained with the cross-entropy

criterion. A natural question is that if the large-size teacher

DNN in our proposed framework continues to improve its

accuracy by some other techniques whether it could be

translated to a better small-size student DNN using our KL-

based training criterion. To answer this question, we trained a

large size (2kx5) DNN model using the sequential training

criterion [16] with 375 hours of transcribed data. This model is

denoted as model F in Table 2, with 13.93% WER. Then, we

use the steps described in Section 3.1 to learn a small-size

DNN with 750 hours of un-transcribed audio. The new small-

size DNN is denoted as model H in Table 2, with 16.66%

WER which has relative 13.59% WER reduction from model

D in Table 1. Therefore, even the teacher DNN is trained using

a different criterion, the student DNN can learn very well from

the teacher using the cross-entropy criterion in Eq. (6). This

opens a door for further improvement by using an even more

powerful teacher DNN which could be an ensemble of

multiple DNNs or a giant-size DNN much wider and deeper

than the standard DNN used on servers.

Table 1: Comparison of large-size and small-size DNNs

trained with Eq. (4) and small-size DNNs learned with Eq.

(6). The training data is US-English Windows Phone data.

Model

Training WER

A 2kx5 trained with 375hr transcribed

data
16.32

B 512x5 trained with 375hr transcribed

data
19.90

C 512x5 learned from model A with

375hr un-transcribed data
19.55

D 512x5 learned from model A with

750hr un-transcribed data
19.28

E 512x5 learned from model A with

1500hr un-transcribed data
18.89

Model H gets 2.91% relative WER reduction from model

G in Table 2 which is trained with sequential training criterion

using 375 hours of transcribed data. The improvement is

consistent with the gain obtained by model D from model B in

Table 1, meaning that the cross-entropy learning with Eq. (6)

using un-transcribed data can outperform the sequential

learning with transcribed data for the small-size DNN.

Next, we conducted an experiment by learning the student

DNN using 600 hours of German audio. The teacher DNN is

model A in Table 1. With Eq. (6) the German audio is forward

propagated through model A to generate (as the

supervised signal to learn the student DNN which gets 21.71%

WER on the US-English test set. This is interesting because

the data used to learn the student DNN is not English data. It

suggests that for the teacher DNN, the output space with 600

hours of German audio should be overlapped with the output

space of English audio in some extent, and the distribution

learning of Eq. (6) guides the student DNN well in those

overlapped areas so that the student DNN can get reasonable

WER on English task even trained with German audio. On the

other hand, because the output space of German and English

audio is not identical, we still see a clear gap between the

student DNNs learned from German and English audio.

Therefore, in order to build the best student DNN, the training

data should be consistent with the target task.

4.2 Experiments on DNN with a small senone set

In this section, we compare two small-senone-set generation

methods. Note that the experiments conducted in this section

are independent with the experiments in Section 4.1. We want

to train a DNN with only 1k senone set. The DNN still has 5

hidden layers, with 2048 nodes in each hidden layer. The first

one uses the standard decision-tree-based process to generate a

1k senone set [14]. The second one uses the steps in Section

3.2 by clustering seones in the original 6k senone set into a 1k

senone set. Table 3 lists the results, showing that our proposed

method gives slight improvement from the standard method

with 1.33% relative WER reduction. We believe this is

because the clustering from 6k senone to 1k senone is closely

related to DNN training. This should be better than the

standard method which splits the decision tree by using the

likelihood from single Gaussians. However, the slight

improvement may indicate that the number of senones is more

crucial to the final WER than how the senone set is obtained.

5. Conclusions and Future Works

In the industry, we have strong interests to put DNNs on

devices due to the increasingly popular mobile scenarios. To

address the computational and storage limitation on devices,

we proposed two methods to effectively learn a DNN with a

small number of hidden nodes and a small set of senones. To

learn a DNN with a small number of hidden nodes, we first

train a large-size DNN and use its output distribution to teach

the small-size DNN by minimizing the KL divergence of the

output distribution between them. Evaluated with a short

message dictation task for Windows Phone, the small-size

DNN achieved 5.08% relative WER reduction from the small-

size DNN trained with the standard process. As shown in

Table 1, the WER of the learned DNN decreases linearly as a

function of the amount of un-transcribed data in the early data-

adding stage. Distribution learning enables the use of

unlimited un-transcribed data, which can be obtained with our

industry feed-back loop after product deployment. Therefore,

we predict that the small-size DNN can approach the

performance of the large-size DNN (although cannot surpass)

if enough data is available for learning. It is also shown in

Table 2 that accuracy improvement for the teacher DNN due

to sequential training can be effectively translated to the

student DNN by cross-entropy-based distribution learning. For

the small senone set learning, by relating the senone clustering

process with a trained DNN, we only get around 1.33%

relative WER reduction. This indicates that the number of

senones is more important to the final WER than how the

senone set is obtained. Given the large performance gap

between 6k and 1k senones, we will still use a relative large

number of senones in the output layer and only focus on the

small-size DNN learning method proposed in Section 3.1.

We are extending the proposed methods in several

directions. First, although the proposed learning methods in

this paper are for the purpose of training a small-size DNN

that can be deployed on devices, these methods can also be

used to improve large-size DNNs deployed on servers as long

as the teacher DNN has a better accuracy. For example, we

can have a teacher DNN which is an ensemble of multiple

DNNs or a giant-size DNN which is much wider and deeper

than the standard DNN used on servers. Either an ensemble

DNN or a giant-size DNN is too complex to be used in

deployment. However, they can be served as a good teacher

DNN for a standard student DNN using distribution learning.

Second, as shown in Section 4.1, the WERs of the small-size

DNN keep dropping linearly when adding more un-transcribed

data. With more training data, the performance of the small-

size DNN will approach the performance of the large-size one

although it can never surpass it. Third, to further reduce the

number of parameters, the proposed learning method can be

combined with other methods by exploring low-rank

properties [8] or explicit environment variable modeling [17].

Finally, together with the low-rank method [8] and 16-bit

quantization, we can put a DNN with only 4M-bytes size on

devices. While the teacher DNN has 18.11% relative WER

reduction from the device DNN with standard training and 360

hours of transcribed audio, we are able to improve the device

DNN with 8.54% relative WER reduction by the distribution-

learning criterion with 2100 hours of un-transcribed audio.

ACKNOWLEDGEMENT
We would like to thank Dr. Rich Caruana in Microsoft for

providing valuable discussions.

Table 2: Small-size DNN learning from a sequentially-

trained large-size DNN. The training data is US-English

Windows Phone data.

Model

Training WER

F 2kx5 trained with 375hr transcribed

data using sequential training criterion
13.93

G 512x5 trained with 375hr transcribed

data using sequential training criterion
17.16

H 512x5 learned from model F with

750hr un-transcribed data
16.66

Table 3: Comparison of two different small-senone set

generation methods.

 Training WER

Standard generation of 1k senone set 18.78

1k senone set merged from 6k senone set with

steps in Section 3.2
18.53

6. References

[1] D. Yu, L. Deng, and G. Dahl, “Roles of pretraining and fine-

tuning in context-dependent DBN-HMMs for real-world speech
recognition,” in Proc. NIPS Workshop on Deep Learning and

Unsupervised Feature Learning, 2010.

[2] T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P.
Novak, and A. Mohamed, “Making deep belief networks

effective for large vocabulary continuous speech recognition,” in

Proc. Workshop on Automatic Speech Recognition and
Understanding, pp. 30–35, 2011.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent

pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Trans. on Audio, Speech and Language

Processing, vol. 20, no. 1, pp. 30–42, 2012.

[4] N. Jaitly, P. Nguyen, and V. Vanhoucke, “Application of
pretrained deep neural networks to large vocabulary speech

recognition”, in Proc. Interspeech, 2012.

[5] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A.
Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,

“Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[6] L. Deng, J. Li, J. -T. Huang et al. “Recent advances in deep

learning for speech research at Microsoft,” in Proc. ICASSP,
2013.

[7] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B.
Ramabhadran, “Low-rank matrix factorization for deep neural

network training with high-dimensional output targets,” in Proc.

ICASSP, pp. 6655-6659, 2013.
[8] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural

network acoustic models with singular value decomposition,” in

Proc. Interspeech, pp. 2365-2369, 2013.
[9] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed

of neural networks on CPUs,” in Proc. NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2011.
[10] V. Vanhoucke, M. Devin, and G. Heigold. "Multiframe deep

neural networks for acoustic modeling." In Proc. IEEE

Acoustics, Speech and Signal Processing, 2013.
[11] X. Lei, A. Senior, A., A. Gruenstein, and J. Sorensen, “Accurate

and compact large vocabulary speech recognition on mobile

devices,” in Proc. Interspeech, 2013.
[12] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model

compression,” In Proc. of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 535–
541, 2006.

[13] L. Ba and R. Caurana, "Do deep nets really need to be deep?"

arXiv preprint arXiv:1312.6184, 2013.
[14] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state

tying for high accuracy acoustic modelling,” in HLT, pp. 307–

312, 1994.

[15] G. Heigold, H. Ney, P. Lehnen, T. Gass, and R. Schluter,

"Equivalence of generative and log-linear models," IEEE

Transactions on Audio, Speech, and Language Processing,
vol.19, no.5, pp.1138-1148, 2011.

[16] H. Su, G. Li, D. Yu, and F. Seide, "Error back propagation for

sequence training of context-dependent deep networks for
conversational speech transcription," In Proc. ICASSP, 2013.

[17] R. Zhao, J. Li, and Y. Gong, “Variable-component deep neural

network for robust speech recognition,” In Proc. Interspeech,
2014.

