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Abstract 

Deep neural network (DNN) obtains significant accuracy 

improvements on many speech recognition tasks and its power 

comes from the deep and wide network structure with a very 

large number of parameters. It becomes challenging when we 

deploy DNN on devices which have limited computational and 

storage resources. The common practice is to train a DNN 

with a small number of hidden nodes and a small senone set 

using the standard training process, leading to significant 

accuracy loss. In this study, we propose to better address these 

issues by utilizing the DNN output distribution. To learn a 

DNN with small number of hidden nodes, we minimize the 

Kullback–Leibler divergence between the output distributions 

of the small-size DNN and a standard large-size DNN by 

utilizing a large number of un-transcribed data. For better 

senone set generation, we cluster the senones in the large set 

into a small one by directly relating the clustering process to 

DNN parameters, as opposed to decoupling the senone 

generation and DNN training process in the standard training. 

Evaluated on a short message dictation task, the proposed two 

methods get 5.08% and 1.33% relative word error rate 

reduction from the standard training method, respectively.  

 

Index Terms: DNN, device, output distribution, model 

compression, learning 

1. Introduction 

Context-dependent deep neural network hidden Markov model 

(CD-DNN-HMM) has been shown, by many groups 

[1][2][3][4][5][6], to outperform the conventional Gaussian 

mixture model (GMM)-HMMs on many automatic speech 

recognition (ASR) tasks. The outstanding performance comes 

with much higher runtime cost because DNNs use much more 

parameters than the traditional GMM-HMM systems. Several 

technologies have been proposed to improve the runtime of 

CD-DNN-HMM so that it can be deployed on servers with 

high accuracy. Low rank matrices are used at the output layers 

[7] and all layers [8] to reduce the number of DNN parameters 

and CPU cost. In [9], several engineering methods such as 8-

bit quantization for SSE evaluation are employed, and the 

frame skipping or prediction technology is used in [10].  

Given widely used mobile devices such as smart phones 

and wearable devices, the industry has strong interests to have 

DNN systems on devices. However, even with the 

technologies mentioned above, the large computational cost is 

still very challenging to the deployment of CD-DNN-HMM on 

devices due to the limited processing power of devices. A 

common way to fit CD-DNN-HMM on devices is to reduce 

the DNN model size by reducing the number of nodes in 

hidden layers and the number of senone targets in the output 

layer [11]. Although the DNN model size is reduced, 

significant increase in word error rate is also observed [11].   

In this paper, we explore a better way to reduce the DNN 

model size with less accuracy loss than the straight-forward 

method in [11]. To that end, we utilize the property of DNN 

output distribution by minimizing the Kullback–Leibler (KL) 

divergence between the output distributions of the small-size 

DNN and the large-size DNN. We also use the equivalence 

between the log-linear model and the Gaussian model to 

cluster the large senone set into a small one. This paper is 

organized as follows. In Section 2, we review the basic DNN 

training procedures. We describe the proposed methods in 

Section 3 and evaluate them in Section 4. Finally, we 

summarize our study and conclude the paper in Section 5. 

2. CD-DNN-HMM  

A deep neural network (DNN) can be considered as a 

conventional multi-layer perceptron (MLP) with many hidden 

layers (thus deep). The three major components contributing to 

the excellent performance of CD-DNN-HMM are: modeling 

senones directly even though there might be thousands of 

senones; using DNNs instead of shallow MLPs; and using a 

long context window of frames as the input. 

Denote the input and output of the DNN as   and  , the 

input vector at layer l as    (     , the weight matrix as   , 

and bias vector as   . Then for a DNN with L hidden layers, 

the output of the l-th hidden layer is 

      ( (   )        (1) 

where  (            and  (    (     ⁄  is the 

sigmoid function applied element-wise. The posterior 

probability is  

 (              ( (        (2) 

where   belongs to the set of senones (tied triphone states).  

We compute the HMM’s state emission probability density 

function  (       by converting the state posterior 

probability  (       to 

 (       
 (      

 (    
  (    (3) 

where  (     is the prior probability of state  , and  (   is 

independent of state and can be dropped during evaluation. 

In our implementation, the CD-DNN-HMM inherits the 

model structure, including the phone set, the HMM topology, 

and tying of context-dependent states, directly from the CD-

GMM-HMM system.  The senone labels used for training the 

DNNs are extracted from the forced alignment generated using 

the CD-GMM-HMM. The training criterion is to minimize 

cross entropy which is reduced to minimize the negative log 

likelihood because every frame has only one target label   : 

 ∑    ( (      )     (4) 

The DNN parameters are optimized with back propagation 

using stochastic gradient descent. In the following, we refer 

the DNN training process described in this section as the 

standard training process. 



3. Small-Size DNN Learning 

In this section, we study whether there is a better way to 

reduce the DNN model size with less accuracy loss than the 

straight-forward method in [11]. We will address this problem 

in two areas: 1) reducing the number of nodes in every hidden 

layer 2) reducing the number of senones in the output layer.  

3.1 Learning DNN with a small number of hidden 

nodes  

The accuracy gap is large between DNNs with large and small 

numbers of hidden nodes [11] if we train them with the 

standard training method in Section 2. To reduce the gap, our 

idea of learning DNN with small numbers of hidden nodes is 

motivated by the model compression concept [12] which trains 

a compact model to approximate the function learned by a 

large model. The concept was extended in [13] to learn a 

shallow neural network (SNN) with one single hidden layer to 

approximate the performance of a DNN by minimizing the 

difference of  (    values from a SNN and a DNN on the 

TIMIT database. To mimic a deep architecture, they train a 

SNN with greater or equal amounts of parameters. In [13], the 

number of parameters in the SNN ranges from 12 million to 

180 million, whereas the DNN only has 12 million parameters. 

Different from their work, our learning task is to boost the 

performance of a small-size DNN by learning from a DNN 

with larger capacity (numbers of hidden nodes). One important 

property of such function learning is that no label is required 

during training. This enables us to explore the use of 

additional un-transcribed data to learn a better approximation 

of complex functions from a large-size DNN. 

In this paper, we propose to directly minimize the KL 

divergence between the output distribution of the small-size 

DNN and the large-size DNN by leveraging large amounts of 

un-transcribed data to get a better small-size DNN than using 

the standard training method with only transcribed data.  

We denote the posterior distribution of the large-size and 

small-size DNNs as   (     and   (    , respectively. The 

KL divergence between these two distributions is 

∑∑  (         (
  (      

  (      
)

 

    

 

where N is the total number of senones. 

(5) 

To learn a small-size DNN that approximates the given 

large-size DNN, only the parameters of the small-size DNN 

needs to be optimized. Minimizing the above KL divergence is 

equivalent to minimizing the cross entropy 

 ∑∑  (           (      

 

    

 (6) 

because   (           (       has no impact on the small-

size DNN parameter optimization. The proposed small-size 

DNN training criterion in Eq. (6) is a general form of the 

standard DNN training criterion in Eq. (4) where for every 

frame only one dimension of    (       equals to 1 and the 

others equal to 0. In contrast, in Eq. (6) every dimension of 

  (       has its non-zero (although may be very small) value.  

The training steps of a small-size DNN guided by a large-

size DNN are summarized as 

1. Use the standard DNN training method to train a large-

size DNN. 

2. Use unsupervised pre-training to initialize a small-size 

DNN. 

3. Then use a much larger amount of un-transcribed data 

to train the small-size DNN with the following steps. 

a. For each mini-batch, do forward propagation of 

both large-size and small-size DNNs to 

calculate   (       and   (      . 
b. For that mini-batch, calculate the error signal of 

Eq. (6), and then do back propagation for the 

small-size DNN. 

c. Repeat Step 3.a & 3.b until convergence. 

With the same amount of transcribed data, we don’t expect 

the proposed method to outperform the standard training 

method. The advantage of the proposed method is that training 

of the small-size DNN (a student) doesn’t need any 

transcription because its supervised signal   (     is obtained 

simply by passing training data through the large-size DNN (a 

teacher). Without the need for transcriptions, the small-size 

DNN trained based on optimizing Eq. (6) can use much more 

training data than trained with Eq. (4) for standard DNN 

training. With more training data to cover the feature space, 

we hope to learn a better small-size DNN. This training 

criterion is particularly useful for the industry scenario, where 

the amount of un-transcribed data is much larger than the 

amount of transcribed data due to the deployment feed-back 

loop. In the meantime, the high-performance large-scale DNN 

can be trained regardless of the memory/computation 

limitation for deployment on devices.  

In contrast to directly using the continuous outputs of the 

teacher DNN with Eq. (6), an alternative way is to use an 

approximation to 1-of-K representation for   (       by 

assigning 1 to the senone class with the largest posterior and 0 

to the others and then use Eq. (4) to train the small-size DNN. 

We believe this is not optimal because our goal is to let the 

student and teacher DNNs have as close as possible 

continuous outputs in Eq. (5).  

3.2 Learning DNN with a small senone set  

We also want to generate a small senone set with a better 

accuracy than using the standard senone generation method 

which splits the decision tree by maximizing the increase of 

likelihood evaluated on single Gaussians and forms the final 

senone set with the leaf nodes in the decision tree [14].  

The potential problem with using the standard likelihood-

based decision tree splitting process to obtain a senone set for 

DNN modeling is that the senone set is determined by single 

Gaussian distributions for MFCC or PLP feature, and hence 

the process to generate the senone set and the process to train a 

DNN are not consistent. Our proposed method partially 

addresses this concern by first generating a large senone set 

with the standard decision-tree splitting method and then 

merging similar senones using some criterion related to the 

DNN. In other words, we aim to perform clustering of a large 

set of senones based on DNN-related features. To this end, we 

show that the senone targets at the softmax layer of the DNN 

can be represented by Gaussian models and then convert the 

task of senone clustering into the task of Gaussian clustering.  

It was shown in [15] that a log-linear model is equivalent 

to a Gaussian model. The general form of log-linear model is  

 (     
 

 (  
   (∑     (  

 

) (7) 

where   (   is the i-th feature function for input x,     is the 

weight for the s-th class and i-th feature, and  (   is for the 



normalization. The mapping from a log-linear model to a 

Gaussian model  (         is [15] 

    
 

 
(        

                    (8) 

where     and     are the second- and first-order weights,     

is a constant to make the variance matrix    positive definite. 

The softmax function in Eq. (2) can be considered as a log-

linear model with  

  (   [   
  ]

 
         [     ]            (9) 

where       are the weights and bias for senone s. Hence the 

corresponding Gaussian model for senone s is  

                   [     ] (10) 

Here the Gaussian distributions of all senones have the same 

variance matrix  , and the input vector to these Gaussians is 

[   
  ]

 
. As every senone is represented by a Gaussian 

distribution, for any pair of senones    and   , we  use the 

symmetric KL divergence as their distance measure, which is 

the metric to cluster a large set of senones into a small set.   

The steps of learning a DNN with a small senone set are:  

1. Train a DNN with a large senone set using the standard 

training procedure. 

2. Convert the output layer of this large-senone-set DNN 

into Gaussian models according to Eq. (10). 

3. Cluster the large set of Gaussians into a small set 

according to the symmetric KL divergence, and assign 

senone IDs for each cluster in the small set. 

4. In the original senone alignment for training data, replace 

the large-set senone IDs with the small-set senone IDs 

obtained in Step 3, and then retrain the DNN. 

With Eq. (10), senones in the large set are related to the 

well-trained DNN. We hope that clustering using DNN-related 

Gaussian parameters can achieve a better accuracy than the 

standard clustering procedure that uses single Gaussians 

generated from the traditional MFCC or PLP feature.  

4. Experimental Evaluation 

The proposed methods are evaluated using a Microsoft 

internal Windows Phone short message dictation task. The 

transcribed training data has 375 hours of US-English audio. 

The test set is extracted from the live data of the Windows 

Phone task. The input feature to CD-DNN-HMM system is a 

29-dimension log-filter-bank feature with up to second-order 

derivatives. We augment the feature vectors with previous and 

next 5 frames (5-1-5). The system uses 6k senones, determined 

by the baseline CD-GMM-HMM system.  

4.1 Experiments on DNN with a small number of 

hidden nodes  

In this section, we report the results of learning a DNN with a 

small number of hidden nodes from a large-size DNN which 

cannot be deployed on devices. Because our proposed method 

in Section 3.1 is to train a small-size DNN by learning the 

output distribution of a large-size DNN, we sometimes call the 

large-size DNN as the teacher DNN, and the small-size DNN 

as the student DNN.  

Using 375 hours of transcribed US-English audio data, we 

first train 5-layer DNNs with 2048 nodes and 512 nodes in 

each hidden layer, respectively, with the standard cross-

entropy criterion in Eq. (4). The output layer is the same, with 

6k senones. These two DNNs are model A and B in Table 1, 

with 16.32% and 19.90% WER, respectively.  

Then, we use the steps described in Section 3.1 to learn 

small-size DNNs with 375 hours (hr), 750 hours, and 1500 

hours of un-transcribed data from the same Windows Phone 

short message dictation task. They are denoted as model C, D, 

and E in Table 1, respectively. All these DNNs are initiated 

from the same pre-trained model without using any transcribed 

data. It is interesting to see that model C trained with only un-

transcribed data gets slightly better WER than model B trained 

with the same data with transcription. It is possibly because 

the small-size DNN cannot have the capacity to learn well the 

hard labels generated from forced-alignment. Instead, the 

supervised signal from the large-size DNN seems to be an 

easier target for this small-size DNN to learn. We also observe 

that by adding 375, 750, and 1500 hours of un-transcribed 

data, the WERs of the small-size DNN keep dropping linearly. 

Therefore, we can infer that adding even more data will likely 

further reduce the accuracy gap between the small-size and 

large-size DNNs. However, the student DNN can never 

surpass the teacher DNN. It will get converged after seeing too 

much un-transcribed data. Currently, with 1500 hours of un-

transcribed data, the small-size DNN learned with our 

proposed method can get relative 5.08% WER reduction from 

its counterpart trained with the standard process in Section 2.  

 

In Table 1, the small-size DNN models (C, D, and E) are 

learned from model A, which is trained with the cross-entropy 

criterion. A natural question is that if the large-size teacher 

DNN in our proposed framework continues to improve its 

accuracy by some other techniques whether it could be 

translated to a better small-size student DNN using our KL-

based training criterion. To answer this question, we trained a 

large size (2kx5) DNN model using the sequential training 

criterion [16] with 375 hours of transcribed data. This model is 

denoted as model F in Table 2, with 13.93% WER. Then, we 

use the steps described in Section 3.1 to learn a small-size 

DNN with 750 hours of un-transcribed audio. The new small-

size DNN is denoted as model H in Table 2, with 16.66% 

WER which has relative 13.59% WER reduction from model 

D in Table 1. Therefore, even the teacher DNN is trained using 

a different criterion, the student DNN can learn very well from 

the teacher using the cross-entropy criterion in Eq. (6). This 

opens a door for further improvement by using an even more 

powerful teacher DNN which could be an ensemble of 

multiple DNNs or a giant-size DNN much wider and deeper 

than the standard DNN used on servers.  

Table 1: Comparison of large-size and small-size DNNs 

trained with Eq. (4) and small-size DNNs learned with Eq. 

(6). The training data is US-English Windows Phone data. 

 

Model 

Training WER 

A 2kx5 trained with 375hr transcribed 

data 
16.32 

B 512x5 trained with 375hr transcribed 

data  
19.90 

C 512x5 learned from model A with 

375hr un-transcribed data 
19.55 

D 512x5 learned from model A with 

750hr un-transcribed data 
19.28 

E 512x5 learned from model A with 

1500hr un-transcribed data 
18.89 

 

 



Model H gets 2.91% relative WER reduction from model 

G in Table 2 which is trained with sequential training criterion 

using 375 hours of transcribed data. The improvement is 

consistent with the gain obtained by model D from model B in 

Table 1, meaning that the cross-entropy learning with Eq. (6) 

using un-transcribed data can outperform the sequential 

learning with transcribed data for the small-size DNN.  

 
Next, we conducted an experiment by learning the student 

DNN using 600 hours of German audio. The teacher DNN is 

model A in Table 1. With Eq. (6) the German audio is forward 

propagated through model A to generate   (       as the 

supervised signal to learn the student DNN which gets 21.71% 

WER on the US-English test set. This is interesting because 

the data used to learn the student DNN is not English data. It 

suggests that for the teacher DNN, the output space with 600 

hours of German audio should be overlapped with the output 

space of English audio in some extent, and the distribution 

learning of Eq. (6) guides the student DNN well in those 

overlapped areas so that the student DNN can get reasonable 

WER on English task even trained with German audio. On the 

other hand, because the output space of German and English 

audio is not identical, we still see a clear gap between the 

student DNNs learned from German and English audio. 

Therefore, in order to build the best student DNN, the training 

data should be consistent with the target task.  

4.2 Experiments on DNN with a small senone set 

In this section, we compare two small-senone-set generation 

methods. Note that the experiments conducted in this section 

are independent with the experiments in Section 4.1. We want 

to train a DNN with only 1k senone set. The DNN still has 5 

hidden layers, with 2048 nodes in each hidden layer. The first 

one uses the standard decision-tree-based process to generate a 

1k senone set [14]. The second one uses the steps in Section 

3.2 by clustering seones in the original 6k senone set into a 1k 

senone set. Table 3 lists the results, showing that our proposed 

method gives slight improvement from the standard method 

with 1.33% relative WER reduction. We believe this is 

because the clustering from 6k senone to 1k senone is closely 

related to DNN training. This should be better than the 

standard method which splits the decision tree by using the 

likelihood from single Gaussians. However, the slight 

improvement may indicate that the number of senones is more 

crucial to the final WER than how the senone set is obtained. 

 

5. Conclusions and Future Works 

In the industry, we have strong interests to put DNNs on 

devices due to the increasingly popular mobile scenarios. To 

address the computational and storage limitation on devices, 

we proposed two methods to effectively learn a DNN with a 

small number of hidden nodes and a small set of senones. To 

learn a DNN with a small number of hidden nodes, we first 

train a large-size DNN and use its output distribution to teach 

the small-size DNN by minimizing the KL divergence of the 

output distribution between them. Evaluated with a short 

message dictation task for Windows Phone, the small-size 

DNN achieved 5.08% relative WER reduction from the small-

size DNN trained with the standard process. As shown in 

Table 1, the WER of the learned DNN decreases linearly as a 

function of the amount of un-transcribed data in the early data-

adding stage. Distribution learning enables the use of 

unlimited un-transcribed data, which can be obtained with our 

industry feed-back loop after product deployment. Therefore, 

we predict that the small-size DNN can approach the 

performance of the large-size DNN (although cannot surpass) 

if enough data is available for learning. It is also shown in 

Table 2 that accuracy improvement for the teacher DNN due 

to sequential training can be effectively translated to the 

student DNN by cross-entropy-based distribution learning. For 

the small senone set learning, by relating the senone clustering 

process with a trained DNN, we only get around 1.33% 

relative WER reduction. This indicates that the number of 

senones is more important to the final WER than how the 

senone set is obtained. Given the large performance gap 

between 6k and 1k senones, we will still use a relative large 

number of senones in the output layer and only focus on the 

small-size DNN learning method proposed in Section 3.1. 

 

We are extending the proposed methods in several 

directions. First, although the proposed learning methods in 

this paper are for the purpose of training a small-size DNN 

that can be deployed on devices, these methods can also be 

used to improve large-size DNNs deployed on servers as long 

as the teacher DNN has a better accuracy. For example, we 

can have a teacher DNN which is an ensemble of multiple 

DNNs or a giant-size DNN which is much wider and deeper 

than the standard DNN used on servers. Either an ensemble 

DNN or a giant-size DNN is too complex to be used in 

deployment. However, they can be served as a good teacher 

DNN for a standard student DNN using distribution learning. 

Second, as shown in Section 4.1, the WERs of the small-size 

DNN keep dropping linearly when adding more un-transcribed 

data. With more training data, the performance of the small-

size DNN will approach the performance of the large-size one 

although it can never surpass it. Third, to further reduce the 

number of parameters, the proposed learning method can be 

combined with other methods by exploring low-rank 

properties [8] or explicit environment variable modeling [17]. 

Finally, together with the low-rank method [8] and 16-bit 

quantization, we can put a DNN with only 4M-bytes size on 

devices. While the teacher DNN has 18.11% relative WER 

reduction from the device DNN with standard training and 360 

hours of transcribed audio, we are able to improve the device 

DNN with 8.54% relative WER reduction by the distribution-

learning criterion with 2100 hours of un-transcribed audio. 
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Table 2: Small-size DNN learning from a sequentially-

trained large-size DNN. The training data is US-English 

Windows Phone data. 

 

Model 

Training WER 

F 2kx5 trained with 375hr transcribed 

data using sequential training criterion 
13.93 

G 512x5 trained with 375hr transcribed 

data using sequential training criterion 
17.16 

H 512x5 learned from model F with 

750hr un-transcribed data 
16.66 

 

Table 3: Comparison of two different small-senone set 

generation methods. 

 Training WER 

Standard generation of 1k senone set 18.78 

1k senone set merged from 6k senone set with 

steps in Section 3.2 
18.53 
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