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Abstract. Humans navigate crowded spaces such as a university cam-
pus by following common sense rules based on social etiquette. In this
paper, we argue that in order to enable the design of new target track-
ing or trajectory forecasting methods that can take full advantage of
these rules, we need to have access to better data in the first place. To
that end, we contribute a new large-scale dataset that collects videos
of various types of targets (not just pedestrians, but also bikers, skate-
boarders, cars, buses, golf carts) that navigate in a real world outdoor
environment such as a university campus. Moreover, we introduce a new
characterization that describes the “social sensitivity” at which two tar-
gets interact. We use this characterization to define “navigation styles”
and improve both forecasting models and state-of-the-art multi-target
tracking–whereby the learnt forecasting models help the data associa-
tion step.

Keywords: Trajectory forecasting · Multi-target tracking · Social
Forces · UAV

1 Introduction

When pedestrians or bicyclists navigate their way through crowded spaces such
as a university campus, a shopping mall or the sidewalks of a busy street, they
follow common sense conventions based on social etiquette. For instance, they
would yield the right-of-way at an intersection as a bike approaches very quickly
from the side, avoid walking on flowers, and respect personal distance. By con-
stantly observing the environment and navigating through it, humans have learnt
the way other humans typically interact with the physical space as well as with
the targets that populate such spaces e.g., humans, bikes, skaters, electric carts,
cars, toddlers, etc. They use these learned principles to operate in very complex
scenes with extraordinary proficiency.

Researchers have demonstrated that it is indeed possible to model the inter-
action between humans and their surroundings to improve or solve numerous
computer vision tasks: for instance, to make pedestrian tracking more robust and
accurate [1–5], to enable the understanding of activities performed by groups of
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individuals [6–9], to enable accurate prediction of target trajectories in future
instants [10–13]. Most of the time, however, these approaches operate under
restrictive assumptions whereby the type and number of interactions are limited
or the testing environment is often contrived or artificial.

Fig. 1. We aim to understand human social navigation in a multi-class setting where
pedestrians, bicyclists, skateboarders and carts (to name a few) share the same space.
To that end, we have collected a new dataset with a quadcopter flying over more than
100 different crowded campus scenes.

In this paper, we argue that in order to learn and use models that allow
mimicking, for instance, the remarkable human capability to navigate in complex
and crowded scenes, the research community needs to have access to better data
in the first place. To that end, we contribute a new large scale dataset that
collects videos of various types of targets (not just pedestrians, but also bikes,
skateboarders, cars, buses, golf carts) that navigate in a real world outdoor
environment such as a university campus. Our dataset comprises of more than
100 different top-view scenes for a total of 20,000 targets engaged in various types
of interactions. Target trajectories along with their target IDs are annotated
which makes this an ideal testbed for learning and evaluating models for multi-
target tracking, activity understanding and trajectory prediction at scale (see
Figs. 1 and 2).

Among all the problems discussed above, in this paper we are interested in
evaluating techniques related to two classes of problems: (i) target trajectory
forecasting - whereby the ability to comply to social etiquettes and common
sense behavior is critical, (ii) Multi-Target Tracking (MTT) - whereby the learnt
forecasting model is used to enhance tracking results. In particular, we believe
that our new dataset creates the opportunity to generalize state-of-the-art meth-
ods for understanding human trajectory, and evaluate them on a more effective
playground. For instance, two leading families of methods for target trajectory
forecasting (Social Forces [1,2,14,15] and Gaussian Processes [12,16,17]) have
shown promising results on existing datasets [11,18]; however, they have never
been tested at scale and in real-world scenarios where multiple classes of tar-
gets are present (i.e., not just pedestrian but also cars, bikes, etc.) as part of a
complex ecosystem of interacting targets.
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In addition to evaluating state-of-the-art forecasting and tracking methods,
in this paper we also introduce a novel characterization that describes the “social
sensitivity” at which two targets interact. It captures both the preferred distance
a target wants to preserve with respect to its surrounding as well as when (s)he
decides to avoid other targets. Low values for the social sensitivity feature means
that a target motion is not affected by other targets that are potentially inter-
acting with it. High values for the social sensitivity feature means that the target
navigation is highly dependent on the position of other targets. This character-
ization allows to define the “navigation style” targets follow in interacting with
their surrounding. We obtain different classes of navigation styles by clustering
trajectory samples in the social sensitivity space (see Fig. 3 for examples). This
allows to increase the flexibility in characterizing various modalities of interac-
tions - for instance, some pedestrians may look more aggressive while walking
because they are in rush whereas others might show a milder behavior because
they are just enjoying their walk. Navigation style classes are used to select
the appropriate forecasting model to best predict targets’ trajectories as well as
improve multi-target tracking. We believe that the ability to model social sen-
sitivity is a key step toward learning common sense conventions based on social
etiquette for enhancing forecasting and tracking tasks.

We present an extensive experimental evaluation that compares various state-
of-the-art methods on the newly proposed dataset, and demonstrates that our
social sensitivity feature and the use of navigation style enable better prediction
and tracking results than previous methods that assume that all the targets
belong to the same class (i.e., follow the same navigation style).

2 Previous Work

A large variety of methods has been proposed in the literature to describe, model
and predict human behaviors in a crowded space. Here we summarize the most
relevant methods for human trajectory forecasting and multi-target tracking.

Human trajectory forecasting. An exhaustive study of crowd analysis is intro-
duced by Treuille et al. [19]. Antonini et al. use the Discrete Choice Model to syn-
thesize human trajectories in crowded scenes [20,21]. Other methods [12,17,22]
use Gaussian Processes to forecast human trajectories. They avoid the problems
associated with discretization and their generated motion paths are smooth.
Unfortunately, they often assume that the location of the destination is known.
More recently, a set of methods use Inverse Reinforcement Learning [10,23,24]
whereby a reward (or cost) function is learnt that best explains the final deci-
sions [25]. While these techniques have shown to work extremely well in several
applications [25–27], they assume that all feature values are known and static
during each demonstrated planning cycle. They have been used to mainly model
human and static space interaction as opposed to the dynamic content.

The most popular method for multi-target trajectory forecasting remains
the Social forces (SF) model by D. Hellbing and P. Molnar [15]. Targets react to
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energy potentials caused by the interactions with other targets and static obsta-
cles through forces (repulsion or attraction). The SF model has been extensively
used in robotics [28], and in the context of target tracking [1,2,29–33]. All these
previous work use a single set of parameters to model multiple targets. We argue
and show in the remainder of this paper that a single set of parameters is too lim-
ited to model all the navigation styles in complex crowded scenes when multiple
classes of targets are present (pedestrians, bikers, skateboarders,...).

Multi-Target Tracking. Over the past decade, Multi-Target Tracking (MTT)
algorithms have made great progress in solving the data association problem
as a graph theoretic problem [30,34–38]. Several methods have incorporated
the Social Forces (SF) model to improve the motion prior [1–5]. Recently,
Xiang et al. [39] demonstrate the power of a strong appearance model over all
these previous work. They reached state-of-the-art performance over the publicly
available MTT challenge [40]. In this work, we use their method and demon-
strates the impact of our “social sensitivity” feature in crowded multi-class com-
plex scenes.

Fig. 2. Some examples of the scenes captured in our dataset. We have annotated all
the targets (with bounding boxes) as well as the static scene semantics. The color codes
associated to target bounding boxes represents different track IDs.

In the next sections, we first present our collected dataset. Then, we introduce
our social sensitivity feature. In Sect. 5, we share details behind our forecasting
and tracking model. Finally, we conclude with a detailed evaluation of our fore-
casting task, and its impact on the Multi-Target Tracking task.

3 Campus Dataset

We aim to learn the remarkable human capability to navigate in complex and
crowded scenes. Existing datasets mainly capture the behavior of humans in
spaces occupied by a single class of target, e.g., pedestrian-only scenes [11,18,31].
However, in practice, pedestrians share the spaces with other classes of targets
such as bicyclists, or skateboarders to name a few. For instance, on university
campuses, a large variety of these targets interacts at peak hours. We want to



Learning Social Etiquette 553

study social navigation in these complex and crowded scenes occupied by several
classes of targets. Datasets such as [41,42] do contain multiple classes of objects
but are either limited in the number of scenes (just one for [41]), or in the number
of classes of moving targets (just pedestrians in [42]).

To the best of our knowledge, we have collected the first large-scale dataset
that has images and videos of various classes of targets that are moving and
interacting in a real-world university campus. The dataset comprises more than
19K targets consisting of 11.2K pedestrians, 6.4K bicyclists, 1.3K cars, 0.3K
skateboarders, 0.2K golf carts, and 0.1K buses. Although only videos of campus
scenes are collected, the data is general enough to capture all type of interactions:

– target-target interactions, e.g., a bicyclist avoiding a pedestrian,
– target-space interactions, e.g., a skateboarder turning around a roundabout.

Target-target interactions We say that two targets interact when their colli-
sion energy (described by Eq. 1) is non-zero, e.g., a pedestrian avoiding a skate-
boarder. These interactions involve multiple physical classes of targets (pedes-
trians, bicyclists, or skateboarders to name a few), resulting into 185 K anno-
tated target-target interactions. We intentionally collected data at peak hours
(between class breaks in our case) to observe high density crowds. For instance,
during a period of 20 s, we observe in average from 20 to 60 targets in a scene
(of approximately 900 m2).

Target-space interactions. We say that a target interacts with the space when
its trajectory deviates from a linear one in the absence of other targets in its sur-
rounding, e.g., a skateboarder turning around a roundabout. To further analyze
these interactions, we also labeled the scene semantics of more than 100 static
scenes with the following labels: road, roundabout, sidewalk, grass, building, and
bike rack (see Fig. 2). We have approximately 40k “target-space” interactions.

In our model, the whole target space interaction is implicitly considered in
the Social Force model. We only take dynamic obstacles into account. However,
in most common scenes, people will also try to avoid static obstacles. Similar to
[18] we model such obstacles as agents with zero velocity.

Tables 1 presents more details on our collected dataset. The scenes are
grouped into 6 areas based on their physical proximity on campus. Each scene
is captured with a 4k camera mounted on a quadcopter platform (a 3DR solo)
hovering above various intersections on a University campus at an altitude of
approximately eighty meters. The videos have a resolution of 1400 × 1904 and
have been processed (i.e. undistorted and stabilized). Targets are annotated with
their class label and their trajectory in time and space is identified.

4 Modeling Social Sensitivity

We claim that modeling human trajectory with a single navigation style is not
suitable for capturing the variety of social behaviors that targets exhibit when
interacting in complex scenes. We believe that conditioning such models on nav-

igation style (i.e., the way targets avoid each other) is a better idea and propose
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Table 1. Our campus dataset characteristics. We group the scenes and refer to them
using fictional places from the “Lord of the Rings”. Bi = bicyclist, Ped = pedestrian,
Skate = skateboarders

Dataset Frames Targets Interactions Bi Ped Skate Carts Car Bus

Isengard 134079 2044 6472 1004 926 57 19 23 15

Hobbiton 138513 3821 14084 163 2493 24 18 1065 58

Edoras 47864 1186 4684 224 956 2 2 2 0

Mordor 139364 4542 68459 2594 1492 111 154 165 26

Fangorn 249967 3126 45520 1017 1991 50 30 27 11

Valley 219712 4845 46062 1362 3358 89 21 10 5

Total 929499 19564 185281 6364 11216 333 244 1292 115

a characterization (feature) which we call social sensitivity. Given this charac-
terization, we hence assign a navigation style to each target to better forecast
its trajectory and improve tracking.

Social Sensitivity feature. Inspired by the Social Forces model (SF) [1], we
model targets’ interactions with an energy potential Ess. A high potential means
that the target is highly sensitive to others. We define Ess as follows:

At each time step t, the target i is defined by a state variable s
(t)
i =
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The energy Ess is modeled as a product of Gaussians where the variances
σw,d represent the distances at which other targets will influence each other. For
instance, if two targets i, j are close to each other (∆pij is small), Ess will be
large when σw,d are small.

We define the parameter Θss = {σd, σw, β} as the social sensitivity feature
and interpret its dimension as follows:

– σd is the preferred distance a target maintains to avoid collision,
– σw is the distance at which a target reacts to prevent a collision (distance at

which (s)he starts deviating from its linear trajectory),
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– and β controls the peakiness of the weighting function.

In other words, the parameters {σd, σw, β} aim at describing how targets
avoid each others - i.e., their social sensitivity. We now present how we infer the
parameters Θss at training and testing time.

Training . At training time, since we observe all targets’ velocities, V train, we
could learn a unique set of parameters, i.e., a single value for social sensitiv-
ity, that minimizes the energy potential as follows (similarly to what previous
methods do [1–5]):

{σd, σw, β} = argmin
{σd,σw,β}

(

∑T−1
i=1 Ess(v

train
i , si, s−i|σd, σw, β)

)

, (4)

where T is the number of targets in the training data. This minimization is
operated with an interior-point method and is set with the following constraint
on σd: σd > 0.1 (it specifies that every target can’t have a “vital space” smaller
than 10cm). As mentioned previously, however, we claim that learning a unique
set of parameters is not suitable when one needs to deal with complex multi-class
target scenarios whereby targets can have different social sensitivity. To validate
this claim, we plot in Fig. 3 each target into a social sensitivity space where the
x-axis is the σd values and the y-axis is the σw ones. These data are computed
using training images from our dataset (see Sect. 6 for more details). We did not
plot the third parameter β since it does not change much across targets. Even
if our approach can handle an arbitrary number of classes, we cluster the points
into four clusters for illustration purposes. Each cluster corresponds to what we
define as a “navigation style”. A navigation style describes the sensitivity of a
target to its surrounding. We illustrate on the sides of Fig. 3 how targets follow
different strategies in avoiding each other as different navigation styles are used.

Thanks to the above analysis of the social sensitivity space, at training, we
solve Eq. 4 for each target to get its social sensitivity feature. We then cluster
the points with K-mean clustering to have N number of clusters. Each cluster
represents a navigation style. In Sect. 6, we study the impact of the number of
clusters used by our method on the forecasting accuracy in Table 4.

Testing . At test time, we observe the targets until time t, and want to assign a
navigation style.

In the presence of other targets, we solve Eq. 5 for each specific target i at
time t:

{σd(i), σw(i), β(i)} = argmin
{σd(i),σw(i),β(i)}

(Ess(v
t
i , si, s−i|σd(i), σw(i), β(i))) . (5)

We obtain the social sensitivity feature Θss(i) = {σd(i), σw(i), β(i)} for each
target i. Given the clusters found at training, we assign each Θss(i) to its corre-
sponding cluster, i.e., navigation style.

In the absence of interactions, a target takes either a “neutral” navigation
style (when entering a scene) or inherit the last inferred class from the previous



556 A. Robicquet et al.

Fig. 3. Illustration of the social sensitivity space where we have illustrated how targets
avoid each other with four navigation styles (from a top view). Each point in the
middle plot is a target. The x-axis is the preferred distance σd a target keeps with
its surrounding targets, and y-axis is the distance σw at which a target reacts to
prevent a collision. Each color code represents a cluster (a navigation style). Even if
our approach can handle an arbitrary number of classes, we only use 4 clusters for
illustration purposes. In this plot, the green cluster represents targets with a mild
behavior, willing to avoid other targets as much as possible and considering them from
afar, whereas the red cluster describes targets with a more aggressive behavior and
with a very small safety distance, considering others at the last moment. We illustrate
on the sides of the plot examples of how targets follow different strategies in avoiding
each other as different navigation styles are used. (Color figure online)

interaction. The “neutral” navigation style is the most popular one (in green in
Fig. 3). In Fig. 4, we show that when the target is surrounded by other targets,
its class changes with respect to its social sensitivity.

5 Forecasting and Tracking with Social Sensitivity

Our new collected dataset creates the opportunity to study methods for trajec-
tory forecasting and multi-target tracking, and evaluate them on a large-scale
broad setting, i.e. a space occupied by several classes of targets. Thanks to our
proposed social sensitivity feature, we have more flexibility in modeling target
interactions to forecast future trajectories. In the remaining of this section, we
present the details behind our forecasting model driven by social sensitivity.
Then, in Sect. 5.2, we show how to use our forcasting model on multi-target
tracking.

5.1 Forecasting Multiple Classes of Targets

Problem formulation. Given the observed trajectories of several targets at time
t, we aim to forecast their future positions over the next N time frames (where
N is in seconds).

We adapt the Social Forces model [1] from single class to multiple classes.

Each target makes a decision on its velocity v
(t+1)
i . The energy function, EΘ,
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Fig. 4. Illustration of the class assignment for each target. The same color represents
the same navigation style (cluster) described in Fig. 3. Note that for a given target its
class changes across time regardless of its physical class (i.e., whether it is a pedestrian,
bike, etc.). When the target is surrounded by other targets, its class changes with
respect to its social sensitivity. In this scene, first we can observe a cyclist (shown
as label 1 in the images) belonging to a black cluster, i.e., being aggressive in his
moves, then belonging to some milder clusters (purple and green). We also can see the
evolution of a group of pedestrians (shown as labels 2,3) in the images), initially “mild”
(green at T = 1), who become red at time T = 3 at which they decide to overtake
another group and accelerate. (Color figure online)

associated to every single target is defined as:

EΘ(vt+1; si, s−i) = λ0(c)Edamp(v
t+1; si) + λ1(c)Espeed(v

t+1; si)

+λ2(c)Edir(v
t+1; si) + λ3(c)Eatt(v

t+1; si) + λ4(c)Egroup(v
t+1; si, sAi

)

+Ess(v
t+1; si, s−i|σd(v

t), σw(vt), β) (6)

where Θ = {λ0(c), λ1(c), λ2(c), λ3(c), λ4(c), σd(v
t), σw(vt), β} and c is the navi-

gation class. More details on the definition of each of the energy terms can be
found in [1].

In our work, we propose to compute σd, and σw directly from the observed
velocity vt using Eq. 5. Both distances σd, and σw will then be used to identify
the navigation class c. For each class c, the parameter Θ can be learned from
training data by minimizing the energy in Eq. 6.

Time Complexity. At test time, we only need to infer 3 parameters instead of few
dozen at training time. Once these 3 parameters are inferred, we use the result
from our k-means clustering to get the remaining parameters. Consequently, the
computation cost went from 1 min (to infer all parameters) to 0.1 sec (to infer
three parameters) (per frame and agent with a matlab implementation).

There is an additional computational complexity of O(nkdi) for k-means
which comes at negligible computational cost (less than 1 ms), where n is the
number of d-dimensional vectors (in this application 2), k the number of clus-
ters (number of behavioral classes) and i the number of iterations needed until
convergence which is not more than 10 iterations.

5.2 Multi-target Tracking

Problem formulation. Given the detected targets at each time frame (using for
instance a target detector [43], or a background subtraction method [44]), we
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want to link the detection results across time to form trajectories, commonly
referred to as tracking-by-detection.

As mentioned in Sect. 2, we modify the Multi-target Tracking (MTT) algo-
rithm from Xiang et al. [39] to utilize our multi-class forecasting model based
on social sensitivity. They formulate the MTT problem as a Markov Decision
Process (MDP), which seeks to model the trajectory of targets according to a
set of valid states (e.g., stracked, slost) and transitions. They construct an app-
roach to data association by computing a feature vector φt

i that describes the
appearance of the targets in each of these possible states. They furthermore use
a linear motion prior to reason on the navigation of targets, to thus determine
a heuristic as to where a target should generally lie in future frames.

In order to evaluate the effectiveness of social sensitivity, we replace their
linear motion prior with our multi-class forecasting method. More specifically,
we modify φt

i, the feature vector for target i at time t as follows: Given the
coordinates xt

i, y
t
i of the target, we first apply our social force model to obtain a

prediction xt+1
i , yt+1

i of the target at the next timestep. Then, given a list of can-
didate detections Dt+1 for data association, we compute a normalized Euclidean
distances {d1, d2, . . .} between each detection and the predicted coordinates, and
append e−dj to φt

i, where dj is the distance to detection j. In Sect. 6, we show
the gain in performance from applying this method to our dataset.

6 Experiments

We run two sets of experiments: First, we study the performance of our method
on trajectory forecasting problem. Then, we demonstrate the effectiveness of
our proposed social sensitivity feature on state-of-the-art multi-target tracking
- whereby the learnt forecasting models help the data association step.

6.1 Forecasting Accuracy

Datasets and metrics. We evaluate our multi-class forecasting framework on our
new collected dataset as well as previous existing pedestrian-only ones [11,18].
Our dataset has two orders of magnitude more targets than the combined
pedestrian-only datasets. We evaluate the performance of forecasting methods
with the following measures: average prediction error over (i) the full estimated
trajectory, (ii) the final estimated point, and (iii) the average displacement dur-
ing collision avoidance’s. Similar to [11,18], we observe trajectories for 2.4 s and
predict for 4.8 s. We sub-sample a trajectory every 0.4 s. We also focus our eval-
uation when non-linear behaviors occur in the trajectories to not be affected by
statistically long linear behaviors.

Quantitative and qualitative results. We evaluate our proposed multi-class fore-
casting framework against the following baselines: (i) single class forecasting
methods such as SF [1] and IGP [45], (ii) physical class based forecasting (SF-
pc), i.e., using the ground truth physical class, and (iii) our proposed method
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Table 2. Pedestrian Only dataset - Our 3 main evaluation methods, ordered as: Mean
Average Displacement on all trajectories | Mean Average Displacement on collisions
avoidance | Average displacement of the predicted final position (after 4.8 s).

Methods Lin LTA SF [1] IGP [45] Our SF-mc

eth 0.80 0.95 1.31 0.54 0.70 0.77 0.41 0.49 0.59 0.20 0.39 0.43 0.41 0.46 0.59

Hotel 0.39 0.55 0.63 0.38 0.49 0.64 0.25 0.38 0.37 0.24 0.34 0.37 0.24 0.32 0.37

Zara 1 0.47 0.56 0.89 0.37 0.39 0.66 0.40 0.41 0.60 0.39 0.54 0.39 0.35 0.41 0.60

Zara 2 0.45 0.44 0.91 0.40 0.41 0.72 0.40 0.40 0.68 0.41 0.43 0.42 0.39 0.39 0.67

UCY 0.57 0.62 1.14 0.51 0.57 0.95 0.48 0.54 0.78 0.61 0.62 1.82 0.45 0.51 0.76

Average 0.54 0.62 0.97 0.44 0.51 0.75 0.39 0.44 0.60 0.37 0.46 0.69 0.37 0.42 0.60

Table 3. Campus Dataset - Our 3 main evaluation methods, ordered as: Mean Average
Displacement on all trajectories | Mean Average Displacement on collisions avoidance
| Average displacement of the predicted final position (after 4.8 s).

Methods Lin SF IGP [45] SF-Physical Our SF-mc

Isengard 1.69 1.00 2.84 1.60 0.99 2.32 1.57 1.14 2.64 1.56 0.86 1.83 1.53 0.84 1.81

Hobbiton 1.17 1.01 1.81 1.11 0.82 1.70 1.11 0.81 2.25 1.12 0.81 1.70 1.12 0.83 1.70

Edoras 0,91 0.83 1.03 0.80 0.81 0.89 1.33 0.85 2.61 0.79 0.81 0.89 0.78 0.82 0.89

Mordor 1.72 1.10 3.80 1.38 0.89 2.30 0.95 0.69 1.78 1.37 0.65 2.30 1.37 0.60 2.30

Fangorn 1.02 0.75 2.00 0.94 0.41 1.66 0.96 0.69 1.67 0.90 0.40 1.51 0.89 0.36 1.51

Valley 1.38 0.86 2.45 1.29 0.87 2.02 1.20 0.75 2.46 1.01 0.65 1.65 0.99 0.66 1.65

Average 1.32 0.93 2.32 1.29 0.79 1.82 1.19 0.82 2.24 1.14 0.70 1.65 1.11 0.69 1.64

inferring navigation style of the targets referred to as SF-mc. We present our
quantitative results in Tables 2 and 3:

On pedestrian-only dataset. (Table 2), our SF-mc performs the same as the
single class Social Forces model in ETH dataset, and outperforms other methods
in UCY datasets. This result can be justified by the fact that the UCY dataset
is considerably more crowded, with more collisions, and therefore presenting
different types of behaviors. Non-linear behaviors such as people stopping and
talking to each other, walking faster, or turning around each others are more
common in UCY than in ETH. Our forecasting model is able to infer these
navigation patterns hence better predict the trajectories of pedestrians. We also
report the performance of the IGP model on these pedestrian-only datasets for
completeness. While IGP performs better on the less crowded dataset, it does
not do well on the crowded ones. Notice that IGP uses the destination and time
of arrival as additional inputs (which our method don’t use).

On our multi-class dataset. (Table 3), we can see that our approach is more
accurate on every scenes when a large amount of different classes are present.
Our highest gain in performance is visible on the last three scenes, rich in classes
and collisions (see Table 1). In Hobbiton and Edoras scenes, our algorithm,
trained on a multi-class dataset, matches the single class Social Forces. This
happens because the social sensitivity feature stays the same across targets. In
a scene with less number of classes, this could become a drawback, but yet our
algorithm can perform with the same accuracy.
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Table 4. Forecasting error with respect to the number of clusters in our new campus
dataset.

1 [1] 2 4 7 12 18

Mean error 1.14 1.16 1.15 1.11 1.12 1.20

Collision error 0.72 0.68 0.69 0.69 0.73 0.75

Final position error 1.84 1.74 1.70 1.64 1.69 1.80

Table 5. MTT tracking results.

Rcll Prcn MT ML MOTA MOTP MOTAL

MDP [39] + Lin 74.1 80.1 44.18 % 20.9 % 51.5 74.2 55.4

MDP [39] + SF [1] 84.4 91.5 58.13 % 25.5 % 73.5 77.1 76.3

MDP [39] + our SF-mc 86.1 92.6 60 % 23.2 % 75.6 78.2 79.3

In Sect. 5.1, we present our method to forecast multiple classes of targets
where we use the learned navigation styles as classes. One can argue that instead
of using the navigation styles, we could use target’s class (e.g. pedestrian, bicy-
clist, etc.). Table 3 compares the performance of using navigation style against
targets’ class (e.g. one parameter per pedestrian, bicyclist, and so on...), referred
to as SF-Physical. We use the ground truth class label to associate each target to
their corresponding physical class - this gives an upper bound accuracy. Interest-
ingly, both multi-class strategies perform almost the same although our method
does not require ground truth physical class labels as it automatically assign the
navigation style class to each target as described in Sect. 5.1.

We further study the impact of the number of navigation styles (clusters) used
by our method on the forecasting accuracy in Table 4. The optimal performance
is obtained with 7 navigation styles which coincidentally, is very similar to the
number of target’s class (6 in our dataset). All experiments results in Table 3 are
given considering 7 clusters.

Once a target is associated to one of the navigation styles, the corresponding
parameter θ from Eq. 6 is used to predict the trajectory of the target. We can
visualize the impact of the navigation style on the prediction. In Fig. 5, we show
the predicted trajectories when several navigation styles are used to perform the
forecasting. This shows the need to assign targets into specific classes.

Finally, in Fig. 6, we show more examples of our predicted trajectories and
compare them with previous works. Our proposed multi-class framework out-
performs previous methods in crowded scenes. However, in the absence of inter-
actions, all methods perform the same.

6.2 Multi-target Tracking Evaluation

Dataset and metrics. We evaluate the impact of our social sensitivity feature
on multi-target tracking using our newly collected dataset which contain images



Learning Social Etiquette 561

Fig. 5. We show the predicted trajectory of a given target (red circle) in which four
different navigation styles are used to perform the prediction. The corresponding pre-
dicted trajectories are overlaid on one other and shown with different color codes (the
same as those used for depicting the clusters in Fig. 3). The ground truth is repre-
sented in blue. Predicted trajectories are shown for 6 subsequent frames indicated by
T = 1, ..., 6 respectively. Interestingly, when the target is far away from other targets
(no interactions are taking place) the predicted trajectories are very similar to each
other (they almost overlap and show a linear trajectory). However, when the red target
gets closers to other targets (e.g. the ones indicated in yellow), the predicted trajecto-
ries start showing different behaviors depending on the navigation style: a conservative
navigation style activates trajectories’ prediction that keep large distances to the yel-
low targets in order to avoid them (green trajectory) whereas an aggressive navigation
style activates trajectories’ prediction that are not too distant from the yellow targets
(red trajectory). Notice that our approach is capable to automatically associate the
target to one of the 4 clusters based on the characteristics in the social sensitivity
space that have been observed until present. In this example, our approach selects the
red trajectory which is the closest to the ground truth’s predicted trajectory (in blue).
(Color figure online)

from crossing roads, sidewalks, and many other types of scene semantics with
roughly 30 people observed per frame. We use the same evaluation metric as
the MTT challenge [40], such as the multi object tracking accuracy (MOTA),
or mostly tracked (MT) objects. In details the multiple object tracking accu-
racy (MOTA) takes into account false positives, missed targets and identity
switches, multiple object tracking precision (MOTP) is simply the average dis-
tance between true and estimated targets. The other metrics such as mostly
tracked (MT) and mostly lost (ML) counts the number of mostly tracked tra-
jectories (more than 80 % of the frames) and mostly lost (was not able to track
more than 20 % of the frames). The full list of metrics can be found in [40].

Quantitative results. We evaluate our proposed MTT algorithm against the fol-
lowing baselines: (i) Xiang’s MDP algorithm [39] with a linear motion prior, (ii)
[39] with single class forecasting model [1], (iii) [39] with our proposed multi-class
forecasting model based on social sensitivity. We show that using our proposed
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Fig. 6. Illustration of the predicted trajectories by our SF-mc method (in red) across
time. Predicted trajectories are shown for 4 subsequent frames indicated by T = 1, ..., 4
respectively. We compare them with previous work [1]. The ground truth is represented
in blue. Our proposed multi-class framework outperforms previous methods when tar-
gets start interacting with other target (t = 2, 3, 4). However, in the absence of inter-
actions (t = 1), all methods perform the same. (Color figure online)

MTT with social sensitivity feature outperforms previous work. Our quantitative
results are shown in Table 5.

7 Conclusions

We have presented our efforts to study human navigation at a new scale. We have
contributed the first large-scale dataset of aerial videos from multiple classes of
targets interacting in complex outdoor spaces. We have presented our work on
predicting the trajectories of several classes of targets without explicitly solving
the target classification task. We further demonstrate the impact of our fore-
casting model on multi-target tracking. Future work will study other forecasting
methods such as Long Short-Term Memory (LSTM) to jointly solve the predic-
tion task. Finally, by sharing our dataset, we hope that researchers will push
the limits of existing methods in modeling human interactions, learning scene
specific human motion, or detecting and tracking tiny targets from UAV data.
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