
 Open access Proceedings Article DOI:10.1109/HUMANOIDS.2016.7803261

Learning soft task priorities for safe control of humanoid robots with constrained
stochastic optimization — Source link

Valerio Modugno, Ugo Chervet, Giuseppe Oriolo, Serena Ivaldi

Institutions: Sapienza University of Rome, University of Lorraine

Published on: 01 Nov 2016 - IEEE-RAS International Conference on Humanoid Robots

Topics: Humanoid robot, iCub, Robot, Stochastic optimization and Task (project management)

Related papers:

 Learning soft task priorities for control of redundant robots

 Sample-efficient learning of soft priorities for safe control with constrained Bayesian optimization

 Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions

 Multi-Robot Task Allocation Method for Heterogeneous Tasks with Priorities

 Prioritized Optimal Control

Share this paper:

View more about this paper here: https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-
37k0n8jc5z

https://typeset.io/
https://www.doi.org/10.1109/HUMANOIDS.2016.7803261
https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z
https://typeset.io/authors/valerio-modugno-dunkkkrgpm
https://typeset.io/authors/ugo-chervet-1mat4iyio7
https://typeset.io/authors/giuseppe-oriolo-myg5hwanep
https://typeset.io/authors/serena-ivaldi-4iu36bf0ob
https://typeset.io/institutions/sapienza-university-of-rome-1cpc8o4e
https://typeset.io/institutions/university-of-lorraine-wzc63y7x
https://typeset.io/conferences/ieee-ras-international-conference-on-humanoid-robots-1m5gz3ku
https://typeset.io/topics/humanoid-robot-11f91l5h
https://typeset.io/topics/icub-5dq79jox
https://typeset.io/topics/robot-2gtn7p2t
https://typeset.io/topics/stochastic-optimization-wm1rc1or
https://typeset.io/topics/task-project-management-1d50xq84
https://typeset.io/papers/learning-soft-task-priorities-for-control-of-redundant-3hasbaj3fy
https://typeset.io/papers/sample-efficient-learning-of-soft-priorities-for-safe-zs22ciy4il
https://typeset.io/papers/synthesis-of-complex-humanoid-whole-body-behavior-a-focus-on-1zx069zcul
https://typeset.io/papers/multi-robot-task-allocation-method-for-heterogeneous-tasks-236pllyai4
https://typeset.io/papers/prioritized-optimal-control-3yispjn2va
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z
https://twitter.com/intent/tweet?text=Learning%20soft%20task%20priorities%20for%20safe%20control%20of%20humanoid%20robots%20with%20constrained%20stochastic%20optimization&url=https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z
https://typeset.io/papers/learning-soft-task-priorities-for-safe-control-of-humanoid-37k0n8jc5z

HAL Id: hal-01377690
https://hal.inria.fr/hal-01377690

Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning soft task priorities for safe control of humanoid
robots with constrained stochastic optimization
Valerio Modugno, Ugo Chervet, Giuseppe Oriolo, Serena Ivaldi

To cite this version:
Valerio Modugno, Ugo Chervet, Giuseppe Oriolo, Serena Ivaldi. Learning soft task priorities for
safe control of humanoid robots with constrained stochastic optimization. IEEE-RAS International
Conference on Humanoid Robots (HUMANOIDS), Nov 2016, Cancun, Mexico. ฀hal-01377690฀

https://hal.inria.fr/hal-01377690
https://hal.archives-ouvertes.fr

Learning soft task priorities for safe control of humanoid robots with

constrained stochastic optimization

Valerio Modugno1,2, Ugo Chervet2, Giuseppe Oriolo1, Serena Ivaldi2

Abstract— Multi-task prioritized controllers are able to gen-
erate complex robot behaviors that concurrently satisfy several
tasks and constraints. To perform, they often require a human
expert to define the evolution of the task priorities in time. In
a previous paper [1] we proposed a framework to automati-
cally learn the task priorities using a stochastic optimization
algorithm (CMA-ES), maximizing the robot performance for
a certain behavior. Here, we learn the task priorities that
maximize the robot performance, ensuring that the optimized
priorities lead to safe behaviors that never violate any of the
robot and problem constraints. We compare three constrained
variants of CMA-ES on several benchmarks, among which two
are new robotics benchmarks of our design using the KUKA
LWR. We retain (1+1)-CMA-ES with covariance constrained
adaptation [2] as the best candidate to solve our problems, and
we show its effectiveness on two whole-body experiments with
the iCub humanoid robot.

I. INTRODUCTION

Fulfilling multiple operational tasks to achieve a complex

behavior while satisfying constraints is one of the challenges

of whole-body control of redundant manipulators and hu-

manoid robots. For example, let us consider the humanoid

iCub (Fig.1) that must fulfil a “global task” by reaching

its hands towards two goal positions behind a wall while

avoiding collisions. The global task can be decomposed as

a combination of simpler elementary tasks (for example:

control the end-effector, control the pose of a particular link,

etc.) and constraints that guarantee a condition of feasibility

over the generated motions (for example: torque and joint

limits, collisions, external forces etc.).

More generally, elementary tasks can include tracking

desired trajectories, regulating contact forces, controlling

the center of mass for balancing etc. Constraints range

from mechanical limitations (e.g., joint and torque limits) to

safety specifications (e.g., collision avoidance, limiting the

exchange of mechanical forces with the environment) and

balance keeping for floating base platforms.

In the literature, this constrained control problem is usually

solved with prioritized controllers, where a set of operational

tasks are organized according to strict priorities in a hierarchy

or “stack” [3], [4], or combined with weighting functions,

also known as soft task priorities [5], [6]. Constraints are

either formulated as high-priority tasks or taken into account

*This paper was supported by the EU FP7 project CoDyCo (n.600716)
and by the EU H2020 project COMANOID (n.645097).

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale,
Sapienza Universita di Roma, via Ariosto 25, 00185 Roma, Italy.
modugno@diag.uniroma1.it

2 Inria, Villers-lès-Nancy, F-54600, France; CNRS, Loria, UMR n.7503
and Université de Lorraine. serena.ivaldi@inria.fr

The authors would like to thank the anonymous reviewers.

learn the task priorities

that optimize the robot

motion w.r.t. a fitness

to ensure that they never

violate constraintstasks

constraints
0

0

1

0

-1

Fig. 1. The humanoid robot iCub performing a bimanual task with
several tasks and constraints. In this paper we optimize the task priorities
guaranteeing that the global robot behavior is safe: it never violates any of
the constraints.

by quadratic programming solvers. The task priorities and

their evolution in time are usually defined a priori and

frequently manually tuned by experts.

A new line of research is now focused on the automatic

optimization of task priorities [1], [7], [8], [9]. Most of

these approaches are based on an iterative policy learning

technique that needs many repetitions (rollouts) of the same

experiment to find a viable solution. These frameworks

poorly address the problem of constraints satisfaction when

optimizing the task priorities. For example, in [7], torques

are saturated for safety, and joint and velocity limits are

introduced as tasks. However, satisfaction of constraints for-

mulated as tasks cannot be ensured, especially in the case of

soft tasks prioritization. In [8] the balance constraint is added

as an objective to the fitness function, but this is a relaxation

of the constraint that does not ensure its satisfaction either. In

[1] we used the Covariance Matrix Adaptation-Evolutionary

Strategy (CMA-ES) [10], a derivative-free stochastic opti-

mization method that solves non-linear, non-differentiable

optimization problems, with death penalties to enforce con-

straint satisfaction on the solutions. This choice was not

efficient in terms of searching for the optimum solution,

since the exploration could easily get stuck in a constrained

region where the fitness landscape was turned into a plateau.

Furthermore, many solutions had to be dropped because of

constraints violation.

Ensuring that the optimization process yields a safe solu-

tion — where safety means not violating any constraints —

becomes mandatory if we want to successfully apply these

solutions to a real robot [11].

To approach the safety issue, in this paper we investigate

constrained stochastic optimization algorithms, and we focus

on three variants of CMA-ES: one with vanilla constraints,

one with adaptive constraints [12] and the (1+1)-CMA-ES

with covariance constrained adaptation [2]. We compare

these methods with a baseline constrained optimization al-

gorithm, (the fmincon function in Matlab). To compare the

algorithms, we explicitly look for methods that can find good

solutions while ensuring zero constraint violations within a

reasonable computation time.

There exist standard benchmarks for constrained optimiza-

tion, consisting in analytic problems with several variables

and constraints and known optimal solutions. For example

Arnold & Hansen [2] tested (1+1)-CMA-ES on seven differ-

ent problems with a number of variables ranging from 2 to

10, and a number of constraints between 1 to 9. However,

in robotics the number of constraints usually grows with

the number of degrees of freedom (DOF) of the robot: for

example, with a 7-DOF robot, the joint position range (7×2)

and the torque limits (7×2) already introduce 28 constraints.

In humanoids and highly articulated systems, the number

of DOF is higher (e.g., 32 DOF for the iCub) and so is

the number of constraints. Furthermore, the number of tasks

increases with the complexity of the action, especially for

bimanual or whole-body movements. It is therefore necessary

to design new benchmarks tailored for robotics applications

to make a pondered decision about the algorithm that is

most suited to solve our problem while ensuring that the

constraints are never violated.

The contribution of this paper is twofold: first, we compare

the performance of three constrained variants of CMA-ES

with fmincon on analytic and robotic benchmarks, the latter

(RB1,RB2) being new and designed ad hoc; second, we

extend the framework for learning task priorities, which we

proposed in [1], to ensure that the optimized priorities lead to

safe behaviours that never violate the constraints. We show

the effectiveness of our approach by generating optimized

and safe (zero constraints violations) whole-body movements

on the humanoid robot iCub.

The paper is organized as follows: Section II outlines

the framework for learning task priorities for controlling

redundant robots; Section III describes the constrained opti-

mization algorithms retained for the study; Section IV and

V illustrate the benchmarks comparison and the experiments

with the iCub humanoid robot respectively.

II. MULTITASK CONTROLLER WITH LEARNT PRIORITIES

Our method aims at automatically learning the task pri-

orities (or task weight functions) to maximize the robot

performance ensuring that the optimized priorities lead to

behaviours that always satisfy the constraints. The global

robot movement is evaluated by a fitness function φ that

is used as a measure of the ability of the robot to fulfil

its mission without violating the constraints. Our proposed

method outlined in Fig. 2 extends the framework that was

introduced in [1]. In this section we recall the multi-tasks

controller and the structure of the parametrized task weight

functions αi, while the optimization procedure is described

in Section III, where we analyze some recent extensions of

the basic CMA-ES method that deal with constraints.

elementary

tasks

task weight functions

(soft priorities)

joints

torques

robot

joints positions

& velocities

updated parameters of the task weight functions

constrained

stochastic

optimization

"global" robot

mission

performance

fitnesstask

task

...

. . .

controller

learning

constraints

Fig. 2. Overview of the proposed method. The controller consists of
a weighted combination of elementary tasks, where the weight functions
represent the soft task priorities. An outer learning loop enables the
optimization of the task weight parameters, taking into account the constraint
violations in an explicit way.

A. Controller for a single elementary task

Here, we briefly describe the torque controller for the i-th

elementary task, which is presented in more detail in [1]. Fol-

lowing our previous work, we use a regularized closed-form

solution of a controller derived from the Unified Framework

(UF) [13]. Let us consider the rigid-body dynamics of a robot

with n DOF, i.e.:

M(q)q̈+ f(q, q̇) = ui(q, q̇)

where q, q̇, q̈ ∈ R
n are, respectively, the joints positions,

velocities, and accelerations; M(q) ∈ R
n×n is the gener-

alized inertia matrix, f(q, q̇) ∈ R
n accounts for Coriolis,

centrifugal and gravitational forces; and ui(q, q̇) ∈ R
n is

the vector of the commanded torques of the i-th task.

Following the UF formulation, the general torque controller

is ui = N
− 1

2
i (AiM

−1N
− 1

2
i)†(bi +AiM

−1f), where the matrix

Ai(q, q̇, t) ∈ R
m×n and the vector bi(q, q̇, t) ∈ R

m×1 incorpo-

rate the information about the m-dimensional task; Ni is a

weighting matrix that can be changed to achieve different

control strategies; (·)† is the Moore-Penrose pseudoinverse;

and the upper script in N
−1/2
i denotes the inverse of the

matrix square root. Controllers derived from UF are sensi-

tive to kinematic singularities, due to the matrix inversion

[14]. To overcome this problem, we reformulate the UF

controller in a regularized fashion, as classically done at the

kinematic level, for instance in [15]. The resulting closed-

form solution of the controller for a single elementary task is

then: ui = N−1
i M̃i

⊤
(Iλ−1

i + M̃iN
−1
i M̃i

⊤
)−1(bi + M̃if) , with

M̃i = AiM
−1. λi is a regularizing factor (we refer to [1] for

a more accurate description of the regularization problem

leading to this closed-form solution).

B. Controller for multiple elementary tasks with soft task

priorities

Each elementary task is modulated by a task priority or

task weight function αi(t). To automatically find the optimal

nt task priorities {αi(t)}i=1,...,nt , we transform the functional

optimization problem into a numerical optimization problem

by representing the task priorities with parametrized func-

tional approximators αi(t) → α̂i(π̂ππ i, t), where π̂ππ i is the set

of parameters that shape the temporal profile of the i-th task

weight function. Following the scheme of Fig. 2, given nt

elementary tasks the final controller is given by:

u(q, q̇, t) =
nt

∑
i=1

α̂i(π̂ππ i, t)ui(q, q̇) . (1)

C. Learning the task priorities

We model the task priorities as a weighted sum of nor-

malized Radial Basis Functions (RBFs):

α̂i(π̂ππ i, t) = S

(

∑
nr

k=1 π̂ikψk(µk,σk, t)

∑
nr

k=1 ψk(µk,σk, t)

)

, (2)

where ψk(µk,σk, t) = exp
(

−1/2[(t −µk)/σk]
2
)

, with fixed

mean µk and variance σk of the basis functions, nr is the

number of RBFs and π̂ππ i = (π̂i1, . . . , π̂inr)⊆ R
nP is the set of

parameters for each task priority. S(·) is a sigmoid function

that squashes the output to the range [0,1]. The elementary

task is fully activated when the task priority is equal to 1,

otherwise the control action fades out until a full deactivation

occurs when the priority goes to 0. The free parameters π̂ππ i

of each task weight function (Eq. 2) constitute the current

parameters set to optimize: πππ = (π̂ππ1, . . . , π̂ππnt).
To optimize the free parameters πππ , we introduce two

elements, the fitness function φ and the set of inequality

and equality constraints g,h:

• the fitness function φ = φ(qt=1,...,T ,ut=1,...,T , t) com-

putes a performance measure of the global task exe-

cuted by the robot over T time steps with the current

parameters πππ . The fitness function can contain different

criteria ranging from energy consumption arguments to

specific properties of the desired trajectories (e.g. speed

and smoothness).

• the constraints g,h determine the admissible controls

to be applied to the robot. They can be dependent

on the robot structure (e.g. maximum joint torques

and joint ranges), on the environment (e.g. obstacles

and collisions), on the tasks (e.g. safety limits and

couplings), etc.

The objective of the next section is to formalize the

problem of optimizing the parameters πππ that maximize the

fitness φ , ensuring that the constraints g,h are satisfied.

III. CONSTRAINED BLACK-BOX OPTIMIZATION OF TASK

PARAMETERS

Learning the parameters πππ ∈ΠΠΠ⊆R
nP is a constrained opti-

mization problem, as we need to find the optimal parameters

πππ◦ that maximize the objective function J(πππ) : R
nP → R (by

default, equivalent to the fitness φ):

πππ◦ = argmaxπππ J(πππ)

under the inequality and equality constraints g,h:

gi(πππ)≤ 0, i = 1, . . . ,nIC; h j(πππ) = 0, j = 1, . . . ,nEC .

Following our approach in [1], we do not constrain the fitness

structure nor its differentiability properties, hence we keep

solving the problem with derivative-free methods. In [1] we

used CMA-ES [10] for the known advantage of having to

tune few parameters. To find feasible solutions that satisfy

the constraints, we adopted a death penalty approach. This

was clearly not efficient; the constant penalty applied to

the fitness has a pathological effect on the exploration of

the algorithm, possibly causing the search to get stuck in

infeasible regions.

In this paper, we adopt a different strategy and look

explicitly for variants of CMA-ES that take into account

the constraints in the exploration procedure. Our goals are:

1) to improve the efficiency of the optimization procedure

exploiting the constraint information, and 2) to guarantee that

every solution found by the stochastic optimization process

lies in a region of the parameter space that satisfies all the

constraints. Interestingly, we are not interested in algorithms

that permit constraints relaxation (hence violation) to find

a solution: this is typically the case of real-time quadratic

solvers (e.g. quadprog and qpOASES).

Among the multitude of constrained black-box optimiza-

tion algorithms, we focused on three variants of CMA-ES: a

vanilla penalty CMA-ES, the CMA-ES with adaptive penalty

approach proposed in [12] and the (1+1)-CMA-ES with

covariance constrained adaptation proposed in [2]. The first

is a baseline CMA-ES that applies a penalty to the fitness

that is proportional to the constraint violation. The second

method is similar in principle, but the penalty weights are

changed following a heuristic that depends on the constraint

violation The third does not rely on penalties but updates

the covariance whenever a constraint is violated, to drive the

exploration away from infeasible regions.

In the rest of this section, we outline the three methods

explaining their differences with respect to CMA-ES. In the

presentation, we will use the following symbols:

• J(·): objective function

• nIC: number of inequality constraints gi(·)
• nEC: number of equality constraints hi(·)
• nC = nIC +nEC: total number of constraints

• ΠΠΠ ⊆ R
nP : parameter space

• πππk ∈ ΠΠΠ: k-th candidate at the current generation

• K: total number of candidates for each generation

• Ke: number of best candidates or elites

• πππ1:Ke : best candidates of the current generation

• N (π̄ππ,ΣΣΣ): Gaussian distribution with mean π̄ππ and co-

variance ΣΣΣ

• σ2: step size

• l(πππk): penalty factor

• Ĵ(πππk) = J(πππk)+ l(πππk): penalized objective function

A. Stochastic optimization with CMA-ES (no constraints)

A single iteration (called generation) of CMA-ES [10]

consists of several steps. A set of K samples πππk is drawn

from a multivariate Gaussian distribution N (π̄ππ,σ2ΣΣΣ) with a

σ2 step size; for each sample πππk we perform the evaluation

of the objective function J, called fitness. The samples are

sorted using a ranking procedure based on the fitness and an

update of the Gaussian distribution is performed according

to the best Ke candidates πππ1:Ke , called elites.

The update step affects the mean, covariance, and step size

of the search distribution N (π̄ππ,σ2ΣΣΣ). The evolution of the

mean is influenced by the probability weights Pk of each elite

CMA-ES without constraints

function CMA-ES
for each gen = 1, . . . ,nGENERAT IONS do

for each k = 1, . . . ,K do

πππk ∼ N (π̄ππ,σ2ΣΣΣ) ⊲ samples

Jk = J(πππk) ⊲ evaluation

end for

πππ1:Ke = SORT(πππk=1:K ,Jk=1:K) ⊲ sorting

π̄ππnew = ∑
Ke
k=1 Pkπππk with ∑

Ke
k=1 Pk = 1

ΣΣΣnew = UPDCOV(π̄ππnew,Pk=1:Ke
)

σnew = UPDSIGMA(σ)
π̄ππ = π̄ππnew ΣΣΣ = ΣΣΣnew σ = σnew

end for

end function

Fig. 3. Pseudo-code for the basic CMA-ES without constraints.

candidate. A common choice is Pk = ln(0.5(Ke +1))− ln(k).
In CMA-ES, premature convergence is avoided by tuning the

step size σ2. Both σ2 and ΣΣΣ are updated by combining the

information from the last generation and all the previous

ones. For the update of the stepsize σ2 and more detail

about the algorithm, we refer the reader to [10]. To initialize

CMA-ES the user has to specify the exploration rate, a

scalar value between [0,1] that controls the starting value

of the covariance matrix. Fig. 3 shows the pseudo-code of

the algorithm.

B. CMA-ES with Vanilla Constraints

The vanilla penalty functions method relies on adding a

penalty term to the fitness of a candidate that depends on the

constraints violation of the candidate. The method employs a

penalized objective function Ĵ(πππk) = J(πππk)+ l(πππk) with the

penalty factor l(πππk) defined as:

l(πππk) = ∑
nIC
i=1 ri max(0,gi(πππk))

2 +∑
nEC
j=1 c j|h j(πππk)|

where ri and ci are positive constant values. In Fig. 4 we

present a pseudo-code for this variant where we refer to the

penalization routine with PENALTY(·).

C. CMA-ES with Adaptive Constraints

The previous method is by far the simplest and the most

intuitive, as it applies a penalty that depends on the candidate

πππk. However, one may want to make the penalty term

variable, for example depending on the exploration path.

Collange et al. [12] proposed a penalty function approach

where a set of adaptive weights are tuned to prevent the

search process from getting stuck in a local minima of

the penalized fitness function Ĵ(·). A penalized objective

function Ĵ(πππk) is therefore used. The key idea is that the

penalty factor l(πππk) is built to consider the number of feasi-

ble solutions per each generation and the activation of each

constraint, determined by a heuristic tuned by a user-defined

εi. In particular, one assigns l(πππk) =∑
nC
i=1 wi[γ

+
i (πππk)]

2, where

wi, i = 1, . . . ,nC is the set of adaptive weights, and γ+i (·)
is the positive part of the so-called ε-normalized constraint

values γi, which are used to identify the active constraints.

The ε-normalized constraint values γi are defined as:

γi =

{

[gi(πππk)+ εi]/εi for inequality constraints

|hi(πππk)|/εi for equality constraints
. (3)

The user can tune the definition of the constraint violations

and the relaxation of the constraints through the parameters

εi > 0, i= 1, . . . ,nC. For equality constraints hi(·), a candidate

solution πk is labelled “feasible” if 0 ≤ γi ≤ 1 and “infeasi-

ble” otherwise. For inequality constraints gi(·), a candidate

solution πk is labelled “feasible” if γi ≤ 1 and “infeasible”

otherwise (Fig. 5).

The weights update is driven by the ratio of feasible

solutions for all the constraints:

r
f eas
i =

feasible solutions for the i-th constraint in the curr. generation

K

r
f eas
i = average of r

f eas
i over the last nP +2 generation

If all the samples πππk with k = 1, . . . ,K satisfy the i-th

constraint, then r
f eas
i = 1; otherwise r

f eas
i < 1. So r

f eas
i = 1

only when all the samples satisfy the i-th constraint for nP+2

generations. Once this condition is met, the weight wi related

to the i-th constraint is decreased almost surely (in a statis-

tical sense). The adaptation rule for the weight wi after each

generation is defined as: wi = wi exp(ptarget − r
f eas
i), where

ptarget is a value that changes at each iteration according

to ptarget = (1/KnP)
1/D

, where D represents the cardinality

of the elements’ set that satisfies i = 1, . . . ,nC : r
f eas
i < 1

and K is the number of samples. As a rule of thumb,

when r
f eas
i > ptarget the weight wi decreases, otherwise it

increases. In Fig. 4 we provide a pseudo-code for this

variant, where we refer to the weight computation routine

as UPDATEWEIGHT(·). For more detail on the method we

refer to [12].

This method is more interesting since the penalty fac-

tor applied to the objective function changes during the

optimization process depending on the number of feasible

solutions that do not violate the constraints, considering the

relaxation acting on the equality constraints. With respect to

the vanilla method, the penalty factor here is not constant

over the parameter space and depends on the exploration

path in the parameter space. This decreases the possibility

of getting stuck in local minima or flat areas of the fitness.

D. (1+1)-CMA-ES with Covariance Constrained Adapta-

tion

The third method, proposed by Arnold et al. [2], is an

extension of (1+1)-CMA-ES with active covariance adapta-

tion [16]. As opposed to the other two methods, here we

do not have a penalty factor, i.e., the objective function is

unchanged, but there is a different exploration strategy that

exploits the constraints information to change the covariance

and keep the optimization in a feasible region.

A notable difference with the classical CMA-ES is the fact

that there is only one sample per generation (πππ1, therefore

K = 1), that is generated according to the following rule:

πππ1 = πππ +σDz (4)

where D is the Cholesky factor of the covariance matrix

ΣΣΣ = DT D and z is a standard normal distributed vector

z ∼ N (000, III). The algorithm stores the information about

the successful steps in a search path s ∈ R
nP . Each time a

CMA-ES with vanilla constraints

function CMA-ES
for each gen = 1, . . . ,nGENERAT IONS do

for k = 1, . . . ,K do

πππk ∼ N (πππ,σ2ΣΣΣ)
end for

for k = 1, . . . ,K do

Jk = J(πππk)
if CONSTRVIOLATION(πππk) then

Ĵk = PENALTY(πππk,Jk)
end if

end for

πππ1:Ke = SORT(πππk=1:K , Ĵk=1:K)
πππnew = ∑

Ke
k=1 Pkπππk with ∑

Ke
k=1 Pk = 1

ΣΣΣnew = UPDCOV(πππnew,Pk=1:Ke
)

σnew = UPDSIGMA(σ)
π̄ππ = π̄ππnew ΣΣΣ = ΣΣΣnew σ = σnew

end for

end function

CMA-ES with adaptive constraints

function CMA-ES
for each gen = 1, . . . ,nGENERAT IONS do

for k = 1, . . . ,K do

πππk ∼ N (πππ,σ2ΣΣΣ)
end for

for k = 1, . . . ,K do

Jk = J(πππk)
end for

[l,r,r] = COLLECTVIOLATION(πππk,εεε)
wnew = UPDATEWEIGHT(w,r,r)
Ĵk = WEIGHTPENALTY(wnew, l)
πππ1:Ke = SORT(πππk=1:K , Ĵk=1:K)
πππnew = ∑

Ke
k=1 Pkπππk with ∑

Ke
k=1 Pk = 1

ΣΣΣnew = UPDCOV(πππnew,Pk=1:Ke
)

σnew = UPDSIGMA(σ)
π̄ππ = π̄ππnew ΣΣΣ = ΣΣΣnew σ = σnew

end for

end function

(1+1)-CMA-ES with Cov. Const. Adapt.

function (1+1)-CMA-ES
πππ = FINDFEASIBLESTARTINGPOINT()
for each gen = 1, . . . ,nGENERAT IONS do

πππ1 = πππ +σDz (Eq.4)
if CONSTRVIOLATION(πππ1) then

Dnew = UPCOVCONSTR(); D = Dnew

else

Jnew = J(πππ1)
if Jnew > J then

Dnew = UPCOVSUCC()
σnew = UPDSIGMA(σ)
πππ = πππ1; D = Dnew; σ = σnew

else if Jnew > Jold then

Dnew = UPCOVACTIVE(); D = Dnew

end if

end if

end for
end function

Fig. 4. Pseudocode for the three variants of constrained CMA-ES: the first is with vanilla penalty (Section III-B), the second is the adaptive penalties
method of [12] (Section III-C) and the third is a (1+1)-CMA-ES with covariance constrained adaptation as in [2] (Section III-D).

inequalities equalities

feasible infeasible

. .

Fig. 5. This illustration shows the relation between εi and γi for inequality
and equality constraints as in Eq. 3. As described in Section III-C, the green
and red regions identify the constraint values that are respectively labeled
as “feasible” and “infeasible”. One may notice that εi induces a relaxation
for the equality constraint: therefore it could be possible to label as feasible
a solution that violates the constraint (how much depends on ε). On the
contrary, it is noticeable that γ+i in the inequality constraint also includes a
boundary region determined by εi where the constraint is satisfied.

candidate outperforms the current best, s and D are updated

(UPCOVSUCC in Fig. 4):

snew =(1− c)s
√

c(2− c)Dz

Dnew =
√

1− c+covD+

√

1− c+cov

||w||2





√

1+
c+cov||w||2

1− c+cov

−1



swT

where c+cov and c are both factors that control the update

rate of s and D respectively, while w = D−1s. Instead, if the

current candidate is feasible but its performance is lower than

the predecessors, the Cholesky factor D is actively updated

(UPCOVACTIVE in Fig. 4):

Dnew =
√

1+ c−covD+

√

1+ c−cov

||z||2





√

1−
c−cov||z||

2

1+ c−cov

−1



DzzT

where c−cov is again a constant that determines the update rate.

In this case s is not updated because the current candidate

is not better in terms of fitness.

To handle constraints, the key idea is to update the

covariance matrix, by reducing the components of Dz in

the direction that is orthogonal to the constraint whenever

a constraint is violated, as illustrated in Fig. 6. Each time

the j-th constraint is violated, we update the corresponding

constraint vector vj ∈R
nP and the matrix D (UPCOVCONSTR

in Fig. 4):

vnew
j = (1− cc)v j + ccDz

Dnew = D−
β

∑
nC
j=1 1g j(πππ1>0)

nC

∑
j=1

1g j(πππ1>0)
v jw

T

wT w

where cc and β are constants that tune the update step

respectively for v j and D, w j = D−1v j and 1g j(πππ1>0) is equal

to one when g j(πππ1)> 0 and zero otherwise.

In summary, the method searches for the optimal solution

by testing one sample at the time and accounting for the

constraints in the covariance adaptation to stay away from

infeasible regions. The algorithm is designed in such a

way that the mean of the search distribution is updated

only if the fitness improves and the candidate is a feasible

solution; these two elements ensure that the solution of

the optimization problem always satisfies the constraints.

However, unlike the other methods, this requires a feasible1

starting candidate to work, otherwise the exploration process

quickly gets stuck. Hence, this method cannot be started from

scratch or random values, but needs the pre-computation

of a feasible starting point. This is not an issue, since we

can always find a feasible starting point that satisfies all the

constraints, even if it does not enable the robot to achieve

the global task goal (a quick solution is to set the robot in a

feasible posture and keep this position by setting the posture

task priority to 1 and the others to 0).

IV. BENCHMARKING THE ALGORITHMS

In this section we test the algorithms described in Section

III to decide which one better suits our problem. We compare

their performances on five different benchmarks:

1A candidate solution is feasible if it satisfies all the constraints.

constraint

violation

constraint

D D
new

. .

Fig. 6. This illustration shows the effect of the covariance adaptation with
constraints, as described in Section III-D. A linear inequality constraint,
represented by the vertical thick line, divides the parameter space into a
region where the constraint is not violated (light grey) and a region where the
constraint is violated (dark grey). The covariance D of the search distribution
is updated in such a way that the successor samples will not fall into the
region where the constraint is active: the updated covariance Dnew is directed
orthogonally with respect to the constraint.

− g07: nP = 10,nIC = 8,nEC = 0

− g09: nP = 7,nIC = 4,nEC = 0

− HB: nP = 5,nIC = 6,nEC = 3

− RB1: nP = 15,nIC = 32,nEC = 0

− RB2: nP = 15,nIC = 50,nEC = 0

The first three are classical benchmarks for constrained op-

timization [2], that is analytic problems with known optimal

solutions; the last two are new benchmarks that we designed

ad hoc to evaluate the performance of the algorithms on

robotic problems with growing complexity. RB1 is a problem

inspired by our previous work [1] where a KUKA LWR

(7DOF) has to reach a goal position with its end-effector

behind an obstacle, while satisfying constraints of joint

position limits, joint torque limits and obstacle avoidance.

RB2 has a similar setting with the addition of a second

obstacle to avoid and another set of constraints coming from

joint velocity limits. To compare the performance of the

algorithms on these benchmarks, we define the following

metrics:

• m1: distance from the optimal solution, defined as m1 =
‖πππ◦− πππ∗‖, where πππ◦ is the optimal solution (known)

and πππ∗ the best solution found by the constrained

optimization algorithm;

• m2: constraint violations, defined as m2 =

∑
nC
i=1 |ê(i,πππ

∗)|, where ê(i,πππ) = 1gi(πππ)>0 gi(πππ) for

the inequality constraints and ê(i,πππ) = 1hi(πππ) 6=0 hi(πππ)
for the equality constraints — basically it sums all the

constraints that are violated;

• m3: number of steps to converge, or settling time,

defined as m3 = nsc(δ), the number of steps after which

the fitness function reaches a steady state condition, i.e.,

its value is bounded between ±δ% of the steady state

value — here, we set δ = 2.5;

• m4: best fitness, defined as m4 = J(π∗), i.e., the fitness of

the best solution found by the constrained optimization

algorithm.

To provide a baseline, we use the (deterministic) con-

strained optimization function fmincon in Matlab, using the

SQP method. This is a suitable choice because it does not

require the gradient of the objective function for non-linear

constrained optimization problem with nonlinear constraints.

Since (1+1)-CMA-ES with covariance constrained adap-

tation (Section III-D) needs a feasible candidate solution

as a starting point, in order to make a fair comparison

all the algorithms start from the same initial position. We

perform 40 repetitions of the optimization process per each

test problem for each algorithm with an exploration rate of

0.1 and a 5000 samples to assure the convergence of the

methods.

Fig. 7 shows the results of the numerical experiments with

the five benchmarks. The top row reports on the results for

g07, g09 and HB with metrics m1, m2, m3, while the bottom

row reports on the results for the robotics benchmarks RB1

and RB2, with metrics m2, m3, m4 (m1 cannot be used in this

case because the optimal solution πππ◦ is not known). We also

compared the four algorithms in terms of computational time,

and did not find significant differences (for example, the

optimal solution for RB2 is found on average in ≅1.7e+04

s for the CMA-ES variants and 1.9e+04 s for fmincon on a

i5 laptop with Matlab).

(1+1)-CMA-ES with covariance constrained adaptation of-

fers the best trade-off between performance and constraints’

satisfaction both on the analytic and the robotic benchmarks.

It always ensures full satisfaction of the constraints while the

other methods sometimes fail. Its settling time is comparable

to the other stochastic algorithms, while fmincon converges

faster. fmincon could seem more appealing, but on the robotic

benchmarks its best fitness is lower and actually quite close

to the fitness of the starting point (meaning that the algorithm

does not really “explore”). Therefore fmincon does not seem

a suitable candidate for solving robotic problems with a lot

of constraints.

The different performances of the algorithms in the ana-

lytic and robotic benchmarks confirm the benefit gained by

designing two new robotics benchmarks RB1,RB2. Overall,

considering the zero constraint violations and the capability

of finding a good solution, we choose to use (1+1)-CMA-ES

with covariance constrained adaptation for our experiments

with the iCub robot.

V. ROBOTIC EXPERIMENTS

In this section, we apply (1+1)-CMA-ES with covariance

constrained adaptation to our multi-task control framework

(Section II). We use it to optimize the task priorities and

to obtain a solution that never violates the constraints. In

the following, we report on the experiments performed to

optimize the whole-body movements of the iCub humanoid

robot.

We designed two experiments using the 17 DOF of the

upper-body of the robot (arms and torso). In the experimental

scenario, a rectangular obstacle similar to a wall, that is as

large as the robot’s chest and 2 cm thick, is placed about 20

cm in front of the robot.

The first experiment is aimed at reaching a goal Cartesian

position behind the wall with one hand. There are three ele-

mentary tasks. The first is about reaching the desired Carte-

sian position p∗
r = [0.35,−0.15,0.7] (m) with the right hand

frame of the robot. The second task is reaching a desired

Fig. 7. Performance comparison of the three constrained CMA-ES algorithms and the baseline fmincon algorithm from Matlab using the SQD method.
The top row reports on the results on three standard analytical constrained optimization benchmarks (g07, g09, HB - see [2]). The bottom row reports on
the results on two robotics benchmarks (RB1, RB2) that we designed ad hoc to evaluate the performance of the algorithms on robotics problems.

A B C D

A B C D

Fig. 8. Two experiments with the iCub, about reaching a goal behind the wall with one or two hands. A) The robot’s movement visualized by the
mex model. B) The median constraint violation and fitness optimized by (1+1)-CMA-ES with covariance constrained adaptation (over 25 experiments) the
constraints are never violated C-D. The task priorities and joint torques of the best solution. The experiments are also shown in the attached video.

Cartesian position p∗
elbr = [0.24,−0.23,0.7] (m) with the

elbow frame. The third task is keeping the initial joint config-

uration q∗ = [0,45,0,0,−20,30,0,0,45,0,0,0,30,0,0,0,0]
(deg). In sum, the goal is hidden behind the wall, and to

reach it with the hand the robot must bend its elbow around

the wall corner; the third task should prevent the robot from

moving the right arm and the torso. The task priorities are

approximated by RBFs with nr = 5, therefore nP = 5×3 =
15. There are nC = nIC = 73 inequality constraints: joint

position limits, joint torque limits and distance constraints to

avoid collisions between the robot and the obstacle. Precisely,

a minimal distance of 3 cm is required between the obstacle

and a set of pre-defined collision check points (located at

the origin of the frames of right shoulder, elbow, wrist, hand

and head). For this experiment we use the following fitness

function:

φ =−
1

2

[

∑
T
i ‖pr,i −p∗

r‖

εmax

+
∑

T
i u2

i

umax

]

(5)

where φ ∈ [−1,0], T is the number of control steps (the task

duration is 20 s, and we control at 1 ms), pr,i is the right

hand frame position at time i, p∗
r the goal position for the

hand frame and εmax = 120 and umax = 3.5 ∗ 105 are two

scaling factors. The first term of φ penalizes the cumulative

distance from the goal, while the second term penalizes the

global control effort.

The second experiment complicates the first by adding 2

more tasks. The aim is to reach a Cartesian goal position

with both robot hands. Two Cartesian goal tasks for each

hand and elbow are set symmetrically with respect to iCub’s

sagittal plane. A fifth posture task is set as to keep the torso

as straight as possible during the movement.

• Task 1 : p∗
r = [0.35,−0.15,0.68] (m)

• Task 2 : p∗
elbr = [0.21,−0.25,0.68] (m)

• Task 3 : p∗
l = [0.3,0.0248,0.68] (m)

• Task 4 : p∗
elbl = [0.21,0.1138,0.68] (m)

• Task 5 : q∗ = [0,45,0,0,−20,30,0,0,45,0,0,0,30,0,
0,0,0] (deg)

The task priorities are approximated by RBFs with nr = 5,

therefore nP = 5× 5 = 25. The optimization is carried out

under the same constraints as in the first experiment with

the addition of the left arm collision checks. This means we

have nC = nIC = 77 inequality constraints. The fitness is:

φ =−
1

2

(

∑
T
i ‖pr,i −p∗

r‖

εmax

+
∑

T
i ‖pl,i −p∗

l ‖

εmax

+
∑

T
i u2

i

umax

)

(6)

where pl,i is the left hand frame position at time i, p∗
l the

goal position for the left hand frame.

In all the experiments, we seek the best solutions that do

not violate any of the constraints. We employ (1+1)-CMA-

ES as described in Section III-D with the exploration rate

set to 0.1 (this is the only parameter to tune and this is the

default value!).

Fig. 8 shows the median fitness and constraint violation

obtained by 25 experiments. The fitness grows nicely (φ = 0

would be the optimum). Most importantly, the constraints

are never violated, which is exactly what we wanted to

obtain. We also show the task priorities and the joint torques

from one of the best solutions; they are both smooth, and

it is clear that optimizing the task priorities manually would

be very difficult if these solutions were to be achieved. The

video attachment shows the robot movements in the two

experiments and the activation of the tasks priorities evolving

in time.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed to optimize the task priorities of

multi-task controllers by a stochastic constrained optimiza-

tion algorithm that ensures that the constraints are never

violated. We benchmarked four constrained optimization

algorithms in robotics applications and found that (1+1)-

CMA-ES with covariance constrained adaptation meets our

requirements in terms of fitness of the solution and con-

straint satisfaction. Our framework can be used to generate

optimized whole-body movements that always comply with

safety requirements, as shown in two bimanual experiments

with the iCub. Our current limit is the computation time,

therefore the method is suited at this time only for offline

synthesis of whole-body behaviors of humanoid robots.

Ongoing work is aimed at applying the method for safe

trajectory optimization (complementary to task priority opti-

mization) and speeding up the computation.

REFERENCES

[1] V. Modugno, G. Neumann, E. Rueckert, G. Oriolo, J. Peters, and
S. Ivaldi, “Learning soft task priorities for control of redundant robots,”
in ICRA, 2016.

[2] D. V. Arnold and N. Hansen, “A (1+1)-CMA-ES for constrained
optimisation,” in GECCO, 2012, pp. 297–304.

[3] L. Saab, O. Ramos, F. Keith, and N. Mansard et al, “Dynamic whole-
body motion generation under rigid contacts and other unilateral
constraints,” IEEE Trans. on Robotics, vol. 29, pp. 346–362, 2013.

[4] A. Del Prete, F. Nori, G. Metta, and L. Natale, “Prioritized motion-
force control of constrained fully-actuated robots: Task space inverse
dynamics,” Robotics and Auton. Systems, vol. 63, pp. 150–157, 2015.

[5] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: A focus on sequencing and tasks transitions,”
in ICRA, 2011, pp. 1283–1290.

[6] M. Liu, Y. Tan, and V. Padois, “Generalized hierarchical control,”
Autonomous Robots, vol. 40, pp. 17–31, 2016.

[7] N. Dehio, R. F. Reinhart, and J. J. Steil, “Multiple task optimization
with a mixture of controllers for motion generation,” in IROS, 2015.

[8] S. Ha and C. Liu, “Evolutionary optimization for parameterized whole-
body dynamic motor skills,” in ICRA, 2016.

[9] R. Lober, V. Padois, and O. Sigaud, “Variance modulated task priori-
tization in whole-body control,” in IROS, 2015.

[10] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies.” Evolutionary Computation, vol. 9,
pp. 159–195, Jan 2001.

[11] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with Gaussian processes,” in ICRA, 2016.

[12] G. Collange, N. Delattre, N. Hansen, I. Quinquis, and M. Schoe-
nauer, “Multidisciplinary optimization in the design of future space
launchers,” in Multidisciplinary Design Optimization in Computational

Mechanics. Wiley-Blackwell, 2013, pp. 459–468.
[13] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and S. Schaal, “A uni-

fying framework for robot control with redundant DOFs,” Autonomous

Robots, vol. 24, pp. 1–12, Jan 2008.
[14] S. Chiaverini, B. Siciliano, and O. Egeland, “Redundancy resolution

for the human-arm-like manipulator,” Robotics and Autonomous Sys-

tems, vol. 8(3), pp. 239–250, Jan 1991.
[15] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with

singularity robustness for robot manipulator control,” J. Dyn. Sys.,

Meas., Control, vol. 108 (3), pp. 163–171, 1986.
[16] C. Igel, T. Suttorp, and N. Hansen, “A computational efficient co-

variance matrix update and a (1+1)-CMA for evolution strategies,” in
GECCO, 2006.

