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Accurate estimation of microbial concentrations is necessary to inform many

important environmental science and public health decisions and regulations. Critically,

widespread misconceptions about laboratory-reported microbial non-detects have led

to their erroneous description and handling as “censored” values. This ultimately

compromises their interpretation and undermines efforts to describe andmodel microbial

concentrations accurately. Herein, these misconceptions are dispelled by (1) discussing

the critical differences between discrete microbial observations and continuous data

acquired using analytical chemistry methodologies and (2) demonstrating the bias

introduced by statistical approaches tailored for chemistry data and misapplied to

discrete microbial data. Notably, these approaches especially preclude the accurate

representation of low concentrations and those estimated using microbial methods with

low or variable analytical recovery, which can be expected to result in non-detects.

Techniques that account for the probabilistic relationship between observed data and

underlying microbial concentrations have been widely demonstrated, and their necessity

for handling non-detects (in a way which is consistent with the handling of positive

observations) is underscored herein. Habitual reporting of raw microbial observations

and sample sizes is proposed to facilitate accurate estimation and analysis of microbial

concentrations.

Keywords: QMRA,microbial risk assessment, zeros, detection limit, censored data, presence-absence, pathogens

1. INTRODUCTION

Whether describing pathogens in water or the density of red blood cells, the concentration
of discrete objects cannot be measured directly. In these cases, concentration is estimated by
enumerating or detecting the objects in finite sample portions (e.g., volumes); such approaches
are used extensively in health, food, and water applications. These estimates are required for
decision making, during which they are typically evaluated against concentration-based criteria
or targets (Dickey et al., 1999; Lund et al., 2000; Havelaar et al., 2001; Gerba and Rose, 2003;
Gracias and McKillip, 2004; Koepke et al., 2007; Schijven and de Roda Husman, 2011; Davis, 2014;
World Health Organization, 2017). This underscores the importance of accurate representation
and analysis of detection- and enumeration-based data, especially where the protection of public
health is at stake.

Regardless of application area, concentration estimates derived from non-detects (NDs) or low
counts are widely perceived to be more uncertain and less reliable than those based on higher
counts. This has often led to a desire to quantify enough of these objects by modifying the
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enumerated sample portion so that the count falls in a range
that is deemed acceptable (Emelko et al., 2008; American Public
Health Agency et al., 2017; United States Food and Drug
Administration, 2017). When this is not possible, resulting NDs
are widely reported as being less than a detection limit (e.g.,
<1 per analytical sample size) and used as a statement about
true source concentration. This convention has been widely
implemented and deemed precautionary because it usually leads
to higher (i.e., conservative) mean concentration estimates.
Approaches for handling this type of NDdata are often developed
out of computational convenience, though more elaborate
approaches also continue to be developed. One important
reason for the development of more complex approaches arises
from the recognition that true microbe concentrations are
imperfectly estimated by the analytical methodologies used to
obtain counts from samples (Nieminski et al., 1995; Allen et al.,
2000). For example, the impact of measurement error (e.g.,
random sampling error and imperfect and/or variable analytical
recovery) on microbial concentration estimates has been widely
demonstrated and thoroughly discussed (Nahrstedt and Gimbel,
1996; Gronewold et al., 2008; Gonzales-Barron and Butler, 2011;
Schmidt and Emelko, 2011; Commeau et al., 2012; Pouillot et al.,
2013; Duarte et al., 2015). Measurement error applies universally
to all microbial detection and enumeration methods and refers
to the random discrepancy between the actual concentration
in the presumably homogeneous source and the concentration
estimate obtained from a sample (Emelko et al., 2010). Failure to
account for measurement error properly has been shown to bias
concentration estimates and associated risk estimates, sometimes
by orders ofmagnitude (Pouillot et al., 2013; Schmidt et al., 2013).
In contrast, the implications of interpreting and handling NDs
using approaches that mishandle measurement error have not
been thoroughly discussed. Current reporting conventions for
NDs frequently obfuscate their interpretation, so data analysis
approaches have been tailored to how these data are reported
rather than what the NDs truly represent.

Here, methods used to characterize microbial concentrations
from detection- and enumeration-based data are reviewed, and
common misconceptions associated with the reporting and
handling of NDs are discussed. Examples that draw upon
conventions and standards in the drinking water industry
are provided to demonstrate why common approaches that
treat NDs as censored data are incorrect and lead to
bias in interpretation. Finally, recommendations to facilitate
standardized reporting and analysis of such data are provided.

2. STATE OF SCIENTIFIC PRACTICE

Microbial concentrations in food and water are often estimated
using detection- and enumeration-based methods. A detection
test produces either an ND or positive (≥1 microorganism)
result. With a series of repeated presence/absence tests (e.g.,
Colilert Quanti-Tray R©) and assumed Poisson-distributed
numbers of microorganisms in each test (as a function of
aliquot size and shared source concentration), the most
probable number (MPN) approach yields a maximum likelihood

estimate (MLE) of concentration (Pouillot et al., 2013).
In these detection methods, reporting of raw aliquot sizes
and presence/absence results is necessary for concentration
estimation. Enumeration-based methods are distinguished from
detection-based methods because they yield a whole number
count of target microorganisms within an analytical sample
size. These include cultivation plate counts of colonies or virus
plaques and cell counts obtained using microscopy or flow-
/solid-phase cytometry. We suggest that the concepts addressed
in this paper also apply to increasingly common biochemical
molecular methods (e.g., qPCR, 16s rRNA gene sequencing);
however, such methods are excluded from the scope of this work
due to additional assumptions and complexities in the inference
of concentrations using these methods, which remain hotly
debated (Keer and Birch, 2003).

Although many of the aforementioned microbial
enumeration methods have been standardized, protocols
for the representation, reporting, and analysis of resulting
data remain largely inconsistent. Standard microbiological
methods, such as those stipulated within Standard Methods for
the Examination of Water and Wastewater, Part 9000 (American
Public Health Agency et al., 2017), ASTM D5465-16 (American
Society for Testing and Materials, 2016), ISO 8199:2005, and ISO
7218:2007/2013 (International Standards Organization, 2005,
2013), advise that observations should be reported as a count
per analytical sample size (e.g., volume). These data (count and
sample size) are raw in the sense that the original information
pertaining to the precision of the count has not been lost,
whereas neither the count nor sample size can be deduced when
only a concentration estimate is reported (e.g., 1 microorganism
in 64.4 L is more informative than just a reported concentration
estimate of 0.0155 microorganisms/L).

In many cases, counts beyond certain thresholds are
considered unreliable and avoided if possible. For example, when
counting colonies in plating protocols (American Society for
Testing and Materials, 2016; American Public Health Agency
et al., 2017), an upper bound is often reasonably suggested
because of overcrowding and difficulty in distinguishing between
individual colonies. In these cases, an upper threshold is often
applied beyond which a result of “too numerous to count”
(TNTC) is reported. Notably, many conventions related to lower
thresholds and NDs also exist. For example, some methods (e.g.,
in which counts are obtained from a dilution series) suggest
that NDs should be omitted in concentration estimation (United
States Pharmacopeial Convention, 2014). It has been a common
convention to report NDs as <1 microorganism per analytical
sample size (International Standards Organization, 2013; Forum
on Environmental Measurements (FEM) Microbiology Action
Team, 2016; United States Food andDrug Administration, 2017),
which is the purported method detection limit (MDL). This is
frequently interpreted at face value as the de facto concentration
for statistical analyses and regulatory compliance—despite
the recently stipulated caveat that MDLs are inapplicable to
“methods that do not produce results with a continuous
distribution such as [. . . ] presence/absence methods, and
microbiological methods that involve counting colonies” (United
States Environmental Protection Agency, 2016).
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2.1. NDs in Analytical Chemistry
To understand the widespread convention of reporting NDs
as values below MDLs in microbiology, it is important to
understand the origin and motivation behind the concept of
an MDL. The MDL (also known as the “limit of detection”)
was developed as a performance criterion for chemical
analyses (Glaser et al., 1981). This concept has remained
largely unchanged since its original conception (Currie, 1999).
Although slight variations of this concept exist, the MDL
can be operationally defined as the minimum measurement
of concentration of a substance that can be reported with a
high degree of confidence (commonly 95 or 99%) that the
concentration is actually greater than zero (Armbruster and Pry,
2008) (i.e., that the measurement is unlikely to be just random
noise despite actual absence of the substance). In stark contrast
to the field of microbiology where NDs reflect the inability to
collect and/or observe a single microorganism in a particular
analysis, analytical chemistry results are much less susceptible to
influence by small numbers of analyte particles—signals obtained
for quantification arise from the collective effect of very large
numbers of atoms/molecules/ions per mole (e.g., 6.022 × 1023).
In fact, merely 50 ng of lead in a liter of water (a detection limit
attainable by current lead analysis methods) is comprised ofmore
than 1.45 × 1014 lead atoms due to the magnitude of Avogadro’s
number. In chemistry, random sampling errors associated with
specific numbers of analyte particles in a well-mixed sample is
largely insignificant compared to errors introduced through the
application of the analytical method itself—the accuracy of the
measurement is limited by the precision of the measurement
instrument. The construct of the MDL is intended to reflect these
method-specific errors to facilitate comparisons of data generated
using different analytical methods for the same analyte at the
lower end of concentration ranges.

Although the MDL construct can be useful, concentration
observations falling below these thresholds are not devoid
of meaning and it has been recommended that these data
should be reported as measured chemical detections. They
are still valid observations from which true concentrations
can be estimated (albeit with greater uncertainty) by applying
appropriate statistical approaches (e.g., that make relevant
assumptions concerning randomly distributed error, unbiased
analytical methodology, and interference effects) (Analytical
Methods Committee, 1987). However, some policies require
substances to be described as “absent, present in only a limited
number of samples, or present in less than a specified number
or amount of a given quantity” (National Research Council
(US NRC) Subcommittee on Microbiological Criteria, 1985) in
regulatory and contractual frameworks, leading to the adoption
of reporting limits (i.e., a value below which data are not
reported) by many laboratories.

While these reporting conventions are not themselves
problematic, they become problematic if these data are
incorrectly interpreted or statistically analyzed. The implications
of NDs in environmental chemistry have long been recognized
(Analytical Methods Committee, 1987; Lambert et al., 1991).
Unaltered zero concentrations preclude the calculation of
geometric means and cannot be fit by many continuous
distributions (without their explicit accommodation through

a zero-inflated model). Values reported as below detection
or reporting limits have commonly been either omitted or
substituted with a function of the limit (Helsel, 2006) to
facilitate computationally convenient analysis. These approaches
are deemed conservative, but sacrifice information about data
reliability and uncertainty thatmay be critical in decisionmaking.
Chemical concentration data reported as less than a detection
limit are an example of censored continuous measurements
(where the exact measured value within the specified interval is
unknown), for which appropriate statistical approaches do exist
(Helsel, 2005).

2.2. NDs in Enumeration-Based Microbial
Methods
The direct application of analytical chemistry MDL concepts
and associated censoring conventions to microbial enumeration
data has inflicted similar challenges for statistical analysis in
microbiology. Taking NDs as zeros and weighing them with
other non-zero counts based on their respective analytical
sample sizes is sufficient for the simple calculation of mean
concentrations provided the microorganisms are randomly
dispersed and a representative sample was obtained (i.e., from
a source where the spatial distribution of the analyte is not
heterogeneous); however, this approach is insufficient for fitting
concentration distributions and quantifying data reliability or
uncertainty in the calculated mean (Parkhurst and Stern, 1998).
Commonly used omission and substitution methods borrowed
from analytical chemistry for summarizing and reporting mean
microbial concentrations in water introduce bias; substitution
methods have been demonstrated to be increasingly biased with
greater proportions of NDs in both chemical and microbial data
(Parkhurst and Stern, 1998; Helsel, 2005; Roser and Ashbolt,
2005). While the bias introduced using substitution methods can
offer a substantial safety factor when harmful microorganisms are
rare (by considering them to be present when they are not or they
have not been detected), it is critical to note that this bias offers
no factor of safety when it is most needed (e.g., when pathogens
are routinely observed) (Parkhurst and Stern, 1998).

The acknowledgement that “. . . [data reported as censored]
cannot be treated statistically without modification” (American
Public Health Agency et al., 2017) and the growing need to
quantify uncertainty in the concentration estimate have led to
the development of various statistical tools for analyzing these
data. Critically, NDs in microbial data are in fact observed
counts of zero commonly misrepresented as censored data.
Their misrepresentation has led to the adoption of censored
data approaches for handling microbial NDs (Lorimer and
Kiermeier, 2007; Busschaert et al., 2010; Williams and Ebel,
2012). While many statistical analyses have assumed that
microbial concentrations are measured directly and precisely,
markedly different statistical methods have been developed
that acknowledge the probabilistic relationship between actual
observed data (including NDs) and the underlying microbial
concentrations by accounting for measurement error (Nahrstedt
and Gimbel, 1996; Gronewold et al., 2008; Gonzales-Barron
and Butler, 2011; Schmidt and Emelko, 2011; Commeau et al.,
2012; Pouillot et al., 2013; Duarte et al., 2015). As would
be expected, different approaches for handling microbial NDs
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can result in substantially different outcomes. Specifically, the
statistical analysis of inappropriately censored NDs may lead
to erroneous microbial concentration estimates and subsequent
interpretations—this is demonstrated by the examples below. It
is critical to recognize that data for which both raw counts and
sample sizes are known are not censored—these include NDs
that are based on counts of zero in known sample sizes. These
data are not censored and must not be statistically treated as
such.

3. RESULTS: EVIDENCE THAT MICROBIAL
NON-DETECTS ARE NOT CENSORED
DATA

3.1. Occurrences of Microbial NDs Are Not
Solely a Function of Analyte
Concentrations
All microbial concentration estimates are imprecise, not only
NDs. An ND can arise when either the concentration is truly
zero or when target microorganisms are present in the source
but not successfully detected. Because of the latter case, it is
commonly understood that an ND does not necessarily imply
that the concentration is truly zero. Indeed, consistent with the
aphorism “absence of evidence is not evidence of absence,” a
concentration of zero cannot actually be proven by an ND for
this reason.

Figure 1 examines factors leading to ND results at non-
zero concentrations (derivation in Supplementary Material S1).
Figure 1A depicts the probability of observing an ND as a
function of the true concentration and the sample volume
assuming Poisson-distributed organism counts and a method
with 100% analytical recovery. Probability of ND profiles are
presented for volumes of 0.010, 1.0, and 100 L to illustrate
the impact of 100-fold increases in the analytical sample size.
Common sample volumes for total coliform/Escherichia coli and
protozoan (oo)cyst analyses are 0.100 and 100 L, respectively.
Intuitively, the probability of an ND observation from a single
sample increases with decreasing concentration and analytical
sample size. In practice, the occurrence of random NDs can be
reduced by increasing sample size.

Building upon the previous example, Figure 1B addresses
the occurrence of NDs given a 1.0 L sample volume and
various analytical recovery profiles. The bold curve in
Figure 1B is identical to the one in Figure 1A, but plotted
on a linear concentration scale. It represents 100% analytical
recovery, whereas the second curve addresses the scenario
of a constant analytical recovery of 40% (i.e., the probability
of observation for each microorganism initially gathered
is 40% in any sample). Logically, the probability of NDs
increases as microorganisms are more likely to be lost during
sample processing. The remaining curve retains a mean
recovery of 40%; however, substantial variation in recovery
among samples is described by a beta distribution. This
further inflates the probability of an ND observation because
some samples would have relatively low recovery. Clearly,
the occurrence of NDs is sensitive not only to the source

concentration and the analytical sample size, but also the
analytical recovery profile of the method for the particular
sample matrix.

It may be useful to consider the concentration beyond
which NDs become improbable (e.g., probability <1%) when
comparing alternative methods, choosing a target sample
volume, or determining the appropriateness of a method for
a particular application. We propose that this threshold may
be called a method sensitivity limit (MSL) because sensitivity
is the probability of detection when the target microorganisms
are actually present in the source. Considering the examples
in Figure 1B and allowing for 1% probability of observing a
non-detect, the scenario with 100% analytical recovery has an
MSL of 4.6 organisms per liter. With 40% analytical recovery,
the MSL increases to 11.5 organisms per liter. The MSL is
32.5 organisms per liter in the final scenario, illustrating the
pronounced effect of variability in analytical recovery upon
sensitivity of microbial analytical methods. While this calculated
value could be useful, it is important to note that it is sensitive to
uncertainty in the parameters and shape of the analytical recovery
distribution (where low recovery values are common), and
would not be practical to evaluate for every method and sample
matrix.

3.2. Uncertainty in Concentration
Estimates Precludes MDL-Based
Interpretation of Results
The statistical analysis of inappropriately censored microbial
data ultimately leads to erroneous concentration estimates
and subsequent interpretations. Bayesian techniques (Gelman
et al., 2014) provide a means of demonstrating the uncertainty
surrounding the concentration estimate obtained frommicrobial
enumeration data (Gronewold et al., 2008; Gonzales-Barron
and Butler, 2011; Schmidt and Emelko, 2011; Duarte et al.,
2015). Accounting for measurement error, these methods
describe the relative probability of alternative values of the true
microbial concentration given the count observation obtained
from the analytical sample and a prior representing beliefs
about the plausible values of concentration before data analysis.
Figure 2 illustrates what a single ND observation (Figure 2A)
and an observation of two microorganisms (Figure 2B)
within a 1.0 L sample volume imply about concentration
assuming perfect analytical recovery and using a relatively
uninformative semi-infinite uniform prior (derivation in
Supplementary Material S2).

When an ND is observed (Figure 2A), there is still a large
probability (≈ 37% in this example) that the actual concentration
exceeds the purported MDL, therefore invalidating the assertion
that an ND means that the actual concentration is <MDL.
Conversely, a count of two organisms (Figure 2B) leads to a
considerable probability (≈ 8% in this example) that the actual
concentration could still be less than the purported MDL. This
simple demonstration shows that the interpretation of NDs as
censored data below the purported MDL is inappropriate, and
further underscores that point estimates of concentration ought
not be treated as exact measurements.
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3.3. Censoring in Detection- and
Enumeration-Based Microbial Methods
Although NDs in microbial detection and enumeration methods
are not censored data, there are scenarios in which certain
microbial methods yield truly censored data. Censored data
occur when there is incomplete knowledge about an observed
measurement above, below, or between specified values (Millard
et al., 2012). Such censoring can be inherent to the method
or imposed deliberately by the analyst as exemplified below. In
either case, censoring applies to raw measurements (e.g., count
test results) rather than calculated values that are not measured
directly (e.g., concentration estimates).

An ND in presence-absence tests (e.g., Colilert R©, Rapid
HiColiformTM, AquaCHROMTM) implies a count of zero within
the associated analytical sample volume. A positive test result
can be construed as an inherently censored count of at least
one microorganism because the method cannot reveal the exact
number of microorganisms leading to detection. For a series
of presence-absence tests, MPN approaches implicitly reflect
censored data analysis by using the cumulative probability of all
non-zero counts (i.e., the complement of the probability of a ND)
to represent a positive test result in the likelihood function.

When using culture-based methods, counts beyond an upper
limit are conventionally reported as TNTC [e.g., 150 or 200
colony forming units (cfu) for spread plates, 80 cfu for membrane
filtration, and 300 cfu for pour plates, American Society for
Testing andMaterials 2016; American Public Health Agency et al.
2017]. If a specific observed count is replaced with TNTC, then

this is an example of imposed censoring. In contrast, censoring
is inherent if counting is terminated upon reaching the limit
or is not attempted because the count would clearly exceed
it. Such truly censored observations may be incorporated into
the Bayesian method described previously (or any likelihood-
based method) using cumulative density for the censored range
of counts rather than just probability density associated with
particular observed counts. Some standards (American Public
Health Agency et al., 2017) recommend completing a new
analysis with dilution to replace TNTC results. We suggest that
TNTC results should be retained in subsequent statistical analyses
by using likelihood-based methods that allow inference from
both the TNTC result and the count obtained through re-analysis
of the sample. This would enable more accurate description
of knowledge about the concentration by harnessing all of the
available information rather than omitting inconvenient data.

4. IMPLICATIONS FOR POLICY AND
PRACTICE

Many environmental science and public health decision-making
and regulatory frameworks rely upon the accurate evaluation of
microbial concentrations and comparison with concentration-
based criteria. For example, evaluation of source water pathogen
concentrations is used to determine minimum treatment
infrastructure requirements in the provision of safe drinking
water (United States Environmental Protection Agency, 2006;
Alberta Environment and Sustainable Resource Development,
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TABLE 1 | Summary of raw water samples analyzed for Giardia cysts from City of Calgary, AB, Canada—October, 2012.

Sample 1 2 3 4 5 6 7 8

Raw count 1 0 0 0 0 0 0 2

Volume processed (L) 64.4 50.2 50.0 53.2 50.2 50.4 50.4 50.7

Data reported (cysts/100 L) 1.6 <2.0 <2.0 <1.9 <2.0 <2.0 <2.0 3.9

2012). Here, concentration estimates that bias high may lead
to misallocation of resources including costly infrastructure
investments and operational adjustments.

Giardia has been the most commonly reported intestinal
protozoan in North America and worldwide; it is also likely
the most common cause of surface water-borne infectious
disease outbreaks (Adam et al., 2016; Efstratiou et al., 2017).
A set of eight source water Giardia cyst counts (Table 1) from
the larger City of Calgary database were used to illustrate
the potential impacts of various ND data analysis approaches.
The impact of inappropriate ND data analysis approaches
will vary in accordance to characteristics of each dataset;
greater bias can be expected when NDs constitute a larger
proportion of the dataset and perfect analytical recovery is
not attainable. However, more detailed analysis regarding
the scale of implications associated with such characteristics
(e.g., number of samples, proportion of zeros, distribution
of positive detections, etc.) was beyond the scope of the
present investigation. Consistent with current practice and
interpretation of the regulations, the raw data were not
adjusted for viability or infectivity, with 100% analytical recovery
assumed.

The data were used to obtain MLEs of the mean and
standard deviation of Giardia cyst concentrations (United States
Environmental Protection Agency, 2006; Alberta Environment
and Sustainable Resource Development, 2012) assuming log-
normally distributed concentrations and independence among
sampling events. NDs were omitted in Approach A and
substituted with the MDL and half the MDL in Approaches
B and C (approaches critiqued by Helsel, 2005), and were
handled as censored data in Approach D (Busschaert et al.,
2010; Williams and Ebel, 2012). The purported MDL of one
cyst per volume analyzed is critical for substitution and censored
data methods. For Approach D, the cumulative density between
zero and the purported MDL was used for NDs (Busschaert
et al., 2010). Maximum likelihood estimation was applied
for Approaches A–D using the fitdistrplus package (v. 1.0–9)
(Delignette-Muller et al., 2017) in R. In Approach E, a Poisson
distribution was used to account for random sampling error
with log-normally distributed concentrations, using the poilog
package (v. 0.4) (Grøtan and Engen, 2008) in R (details provided
in Supplementary Material S3). It is important to note that
Approaches A–D are based only on reported concentration
estimates whereas Approach E (like other approaches that
account for measurement error) necessitates the reporting of raw
data. Statistics from this analysis are summarized in Table 2.

As would be expected, Approaches A–D yielded substantially
higher mean Giardia cyst concentrations relative to Approach

TABLE 2 | Comparison of Giardia cyst concentration statistics obtained using

various approaches for handling microbial NDs.

Approach/Model Treatment of NDs µ̂ σ̂

(A) log-normal Omitted 0.0276 0.0136

(B) log-normal Substituted with MDL 0.0216 0.0055

(C) log-normal Substituted with 1
2 MDL 0.0139 0.0067

(D) log-normal Censored data (< MDL) 0.0149 0.0100

(E) Poisson log-normal Zeros with random sampling error 0.0071 0.0071

µ̂: MLE of the mean cyst concentration (cysts/L).

σ̂ : MLE of the standard deviation (cysts/L).

E because the NDs were omitted or represented as non-zero
values. Omission and substitution approaches are known to
lead to biased mean concentration estimates relative to methods
appropriate for censored data (Helsel, 2005). However, the types
of microbial ND data considered herein are fundamentally
not censored, as discussed above. There is a critical difference
between censored data approaches (Approach D) and those that
actually incorporate NDs as legitimate, discrete observations
by accounting for measurement error (e.g., Approach E). In
this example, the parasite concentrations were overestimated
relative to Approach E by a factor of 2.1–3.9 when NDs were
inappropriately handled (Approaches A–D).

Given sufficient and suitable information, the MLE approach
incorporating random sampling error (Approach E) can be
extended to account for analytical recovery. However, model
fitting by MLE becomes more difficult with increasing model
complexity—numerical integration required for evaluating the
resulting likelihood function becomes practically intractable
in many cases. Bayesian methods can be used to fit more
complex probabilistic models to data, but also suffer from
substantial parametric uncertainty where insufficient data
and/or data that are relatively uninformative about model
parameters are available (Gleit, 1985; Helsel and Cohn, 1988).
Indeed, small statistical sample sizes are often inevitable
when using time- and/or resource-intensive microbial
analytical methods [such as those for protozoan (oo)cyst
enumeration (United States Environmental Protection Agency
2005, 2012)]. For example, utilities undertaking minimum
source water monitoring requirements for the determination
of drinking water treatment targets (Alberta Environment
and Sustainable Resource Development, 2012) would be
determining running mean Giardia cyst concentrations
based on monthly samples collected over the course of 2
years (i.e., n = 24). The impact of small statistical sample
sizes on concentration distribution parameter estimates is
exacerbated when all of the data available are NDs, in which
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case statistical analysis is not possible without strongly subjective
priors.

Although treatment requirements are not typically
determined based on mean Giardia cyst concentrations
estimated from a handful of samples, these data may exemplify
monitoring results from utilities that draw upon high quality
source waters. Such systems, especially those that have limited
treatment, operational, and/or monitoring capacity, are
particularly vulnerable to the implications associated with
overestimated mean concentrations. As demonstrated in this
analysis, concentration estimates may be biased high by a factor
of two or more just by handling NDs as censored. This could lead
to operational and maintenance costs/adjustments (e.g., energy
for UV disinfection, alteration of design flow rates) (Cotton et al.,
2001) that are inordinate given the levels of pathogens actually
present in the source. Thus, such bias can also inappropriately
affect assessments of water treatment plant “firm capacity,” which
indicates pathogen treatment capacity in absence of one key
treatment barrier and therefore informs infrastructure needs.
While application of these approaches may result in bias that
invokes more conservative levels of treatment (Parkhurst and
Stern, 1998), it is better to analyze microbial concentrations
accurately and apply consistent safety factors—regardless of
the data—than to apply flawed data analysis approaches with
unspecified safety factors attributable to preventable bias. This
precludes the universal and equitable application of microbial
standards, and ultimately undermines the consistent level of
public health protection that the industry strives to maintain.

5. CONCLUSIONS

• Non-detect microbial detection and enumeration data are
fundamentally not censored data and should not be reported
or analyzed as such.

• Method detection limits are not intended to be used
for, and have therefore been misapplied in, detection-
and enumeration-based methods that count discrete
microorganisms.

• The convention of reporting non-detects as censored values
relative to a method detection limit is misleading when using

enumeration-based methods and has resulted in the misuse
of censored data statistical approaches for microbial data
analysis.

• It is inconsistent to consider the uncertainty in non-detects
by representing them as censored data while ignoring the
inherent uncertainty in all non-zero counts.

• Censored data approaches should be reserved for data
correctly interpreted as being censored, such as too numerous
to count plate counts where the actual count is known only to
exceed a specified threshold.

• This work re-emphasizes that raw microbial data must be
reported to facilitate proper statistical analysis approaches that
account for measurement error.
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