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ABSTRACT

As sound event classification moves towards larger datasets, issues

of label noise become inevitable. Web sites can supply large vol-

umes of user-contributed audio and metadata, but inferring labels

from this metadata introduces errors due to unreliable inputs, and

limitations in the mapping. There is, however, little research into the

impact of these errors. To foster the investigation of label noise in

sound event classification we present FSDnoisy18k, a dataset con-

taining 42.5 hours of audio across 20 sound classes, including a

small amount of manually-labeled data and a larger quantity of real-

world noisy data. We characterize the label noise empirically, and

provide a CNN baseline system. Experiments suggest that train-

ing with large amounts of noisy data can outperform training with

smaller amounts of carefully-labeled data. We also show that noise-

robust loss functions can be effective in improving performance in

presence of corrupted labels.

Index Terms— Sound event classification, audio dataset, label

noise, loss function

1. INTRODUCTION

Data is essential to machine perception and, with the advent of deep

learning, there is increasing demand for large-scale datasets to ex-

ploit the capacity of deep architectures. In sound event classifica-

tion, creating datasets for supervised learning typically consists of

two stages: i) data acquisition (e.g., retrieving data from sites like

Freesound or Youtube, or doing recordings) and ii) data curation (or-

ganizing, cleaning and, most importantly, labeling the data). Man-

ual labeling is costly and is typically the limiting factor on audio

datasets. Creators are often forced to compromise between dataset

size and label quality. Although some sound event datasets are ex-

haustively labeled, e.g., [1, 2, 3] their size is limited (e.g., less than

9h of audio). More recent datasets feature larger sizes, but their la-

beling is not as precise. For instance, AudioSet consists of 5000h

labeled with 527 classes [4], but label error is estimated at above

50% for ≈18% of the classes.1 FSDKaggle2018 [5] is a dataset con-

sisting of 18h of audio labeled with 41 classes, but only partially

manually verified. Hence we are witnessing a transition away from

small and exhaustively labeled datasets in favour of larger datasets

that inevitably include some amount of label noise.

Efficient creation of large-scale datasets from web audio re-

quires minimizing curation effort. We denote web audio as user-

generated audio that is uploaded to online services such as Freesound

and Youtube. Labels can be inferred automatically from user-

provided metadata, e.g., tags. Such opportunistic labels support

∗This work is partially supported by the European Union’s Horizon 2020
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dioCommons and a Google Faculty Research Award 2017.

1See https://research.google.com/audioset/dataset/index.

html for details on how the quality is estimated, accessed 22nd October 2018.

rapid collection of large amounts of data, but at the likely cost of

a substantial level of label noise arising from errors in the user-

provided metadata or their transformation into labels.

In this context, label noise emerges as a pressing issue for the

future of sound event classification. The effects of label noise can

include performance decrease, increased complexity of learned mod-

els, or changes in learning requirements [6]. To our knowledge, no

previous audio dataset has specifically provided for the study of la-

bel noise. Our first contribution is FSDnoisy18k, an openly-available

audio dataset that supports the investigation of real label noise, in-

cluding an empirical characterization of the noise and a CNN base-

line system. The dataset is singly-labeled and it consists of a small

amount of clean data, and a much larger amount of noisy data con-

taining a substantial amount of real-world label noise.

While the literature on label noise is extensive in computer vi-

sion, this topic has received little attention in sound event classifi-

cation. Some work focuses on self-training to learning from com-

binations of labeled and unlabeled data [7, 8, 9], but the issue of

label noise is not addressed per se. In [10], the effect of label noise

on weakly supervised learning was analyzed by introducing noise

to AudioSet. However, no measures to mitigate the effect of label

noise were proposed. In [11], classifiers are learnt from weakly la-

beled web data, and to improve performance an approach is proposed

using a small amount of strongly labeled audio along with the web

data. In a recent audio tagging Kaggle competition using FSDKag-

gle2018 [5], a number of approaches were proposed to deal with the

label noise present. Some attempted to distinguish between the noisy

and correct labels with the goal of selecting the latter, for instance,

with self-training methods [12, 13]. Others accepted the noisy labels

but tried to mitigate their effect in the learning process. Notably, one

submission included a noise-robust loss function [14], a technique

requiring minimal intervention in the learning pipeline. To motivate

the usage of FSDnoisy18k as a resource for label noise research, our

second contribution is an empirical evaluation of noise-robust loss

functions using the proposed baseline system. This is, to our knowl-

edge, the first time that some of these loss functions have been used

in sound classification. This paper is organized as follows. In Sec-

tion 2 we present FSDnoisy18k and characterize its label noise. Sec-

tion 3 describes a baseline system. Section 4 introduces the noise-

robust loss functions considered. In Section 5, we discuss the results

of a series of experiments. Final remarks are given in Section 6.

2. DATASET

The source of audio content is Freesound—a sound sharing site

hosting over 400,000 clips uploaded by its community of users,

who additionally provide some basic metadata (e.g., tags, and title).

More information about Freesound can be found in [15, 16]. The

20 classes of FSDnoisy18k are drawn from the AudioSet Ontology:

“Acoustic guitar”, “Bass guitar”, “Clapping”, “Coin (dropping)”,



“Crash cymbal”, “Dishes, pots, and pans”, “Engine”, “Fart”, “Fire”,

“Fireworks”, “Glass”, “Hi-hat”, “Piano”, “Rain”, “Slam”, “Squeak”,

“Tearing”, “Walk, footsteps”, “Wind”, and “Writing”. They are se-

lected based on data availability as well as on their suitability to

allow the study of label noise (see Section 2.1 for some specific

examples). As a first step, we did a mapping of Freesound clips

to the selected classes: We assigned a number of Freesound tags

to every class and, for each class, we selected the Freesound clips

tagged with at least one of the tags. This process led to a number

of automatically-generated candidate annotations indicating the

potential presence of a sound class in an audio clip. These anno-

tations are at the clip level and hence are considered weak labels

(although for some files the target signal fills the file entirely, which

would be considered strongly-labeled). Next, a small portion of the

candidate annotations was human-validated. We used a validation

task deployed in Freesound Annotator,2 an online platform for the

collaborative creation of open audio datasets [16]. In this task, users

verify the presence/absence of a candidate sound class in an audio

clip with a rating mechanism. For every class, users are presented

with a series of audio clips, and asked: Is <class> present in the fol-

lowing sounds? Users must select one of the responses: Present and

Predominant (PP), Present but not Predominant (PNP), Not Present

(NP) and Unsure (U). The validation task is available online.2

Audio clips that ended up with multiple labels had all but one la-

bel removed (in order to foster a type of label noise, see Section 2.1).

Next, we defined a clean portion of the dataset consisting of correct

and complete labels, obtained by a second verification of the clips

marked as PP. The remaining portion is referred to as the noisy por-

tion. The clean portion of the data consists of audio clips whose an-

notations are rated as PP (almost all with full inter-annotator agree-

ment), meaning that the label is correct and, in most cases, there is

no additional acoustic material other than the labeled class. A few

clips may contain some additional sound events, but they occur in

the background and do not belong to any of the 20 target classes.

This is more common for some classes that rarely occur alone, e.g.,

“Fire”, “Glass” or “Wind”. The noisy portion of the data consists

of audio clips whose candidate annotations received no human vali-

dation, i.e., the only supervision comes from the user-provided tags.

Hence, the noisy portion features a certain amount of label noise,

which is characterized next.

2.1. Label Noise Characteristics

The label noise literature typically deals with synthetic noise im-

posed on the data [17, 18, 19]. Whereas synthetic label noise al-

lows precise control of noise conditions, it may result in unrealistic

conditions. FSDnoisy18k features real label noise that can be rep-

resentative of audio data retrieved from the web, particularly from

Freesound. In [6], a generic taxonomy of label noise from a statisti-

cal viewpoint is proposed, including models of label noise that differ

in the dependencies among the agents involved. In [10], two types

of label noise are proposed (a generic label corruption noise, and a

label density noise) for multilabel data based on AudioSet. We pro-

pose a taxonomy of label noise for singly-labeled data following an

empirical approach. The taxonomy is shown in Fig. 1 and includes

the noise types identified through manual inspection of a per-class,

random, 15% of the noisy data in FSDnoisy18k. Its concepts are ex-

plained next with the main use cases found in FSDnoisy18k. We dis-

tinguish between additional events that are already part of our target

class set (“in-vocabulary” or IV), or are not covered by those classes

(“out-of-vocabulary” or OOV). [19, 20] use the terms closed-set for

2https://annotator.freesound.org

label

correct incorrect

complete incomplete in-vocabulary out-of-vocabulary

in-vocabulary out-of-vocabulary

Fig. 1. Taxonomy of label noise based on the analysis of the noisy

data in FSDnoisy18k.

Table 1. Distribution of label noise types in a random 15% of the

noisy data of FSDnoisy18k.

Label noise type Amount Label noise type Amount

Overall 60% Incorrect/IV 6%

Incorrect/OOV 38% Incomplete/IV 5%

Incomplete/OOV 10% Ambiguous labels 1%

IV, and open-set for OOV. Given an observed label that is incorrect

or incomplete, the true or missing label can then be further classified

as IV or OOV.

Some classes are prone to include incorrect labels when the clips

are retrieved only on the basis of their existing user-provided tags,

e.g., “Bass guitar”, “Crash Cymbal”, or “Engine”; typically, the

true label does not belong to the list of considered classes (incor-

rect/OOV). Other classes are prone to have audio clips with acous-

tic material that is additional to the provided (and correct) label,

e.g., “Rain”, “Fireworks” or “Slam”, and, again, the missing la-

bel usually does not belong to the list of considered classes (in-

complete/OOV). Finally, a few classes are related to each other. It

can happen that one class contains clips that actually belong to an-

other class in the dataset, e.g. “Wind” and “Rain” (incorrect/IV).

Alternatively, two sound classes can co-occur in an audio clip, e.g.

“Slam” and “Squeak”, despite only a single label is available (in-

complete/IV). For completeness, correct and complete labels mean

no label noise, i.e., clean data.

In addition to the aforementioned noise types, two more types

arise in the context of web audio and Freesound in particular. First,

determining whether a sound class is present in an audio clip can be

subjective, even for an expert. This happens with human imitations

or heavily processed sounds (e.g., with sound effects). We refer to

these clips as ambiguous as it is unclear whether the label is correct

or not. The second noise type relates to i) the variable clip lengths

and ii) the weak nature of the clip-level labels. A naive but common

way of processing variable-length clips is to split them into several

fixed-length patches, each inheriting the clip-level label (called false

strong labeling in [21]). This can generate false positives if the label

is not active in a given patch. This type of label noise is conceptually

similar to the label density noise of [10].

The analysis of the noisy data revealed that roughly 40% of the

analyzed labels are correct and complete, whereas 60% of the la-

bels show some type of label noise, whose distribution is listed in

Table 1. The most frequent types of label noise correspond to out-

of-vocabulary (OOV) problems, either in the form of incorrect labels

(that generate false positives) or incomplete labels (which generate

false negatives). Furthermore, we have observed that a few clips

within the incorrect/OOV category are incorrectly labeled according

to the semantic meaning of the class, and yet they are relatively sim-

ilar (in terms of their acoustics) to the true label. For example, in

“Clapping” there is a certain amount of applause sounds and claps

generated by drum machines. We estimate that ≈10% of the clips



noisy small
noisy clean test set

15813 / 38.8 1772 / 2.4 947 / 1.4

train set

Fig. 2. Data split in FSDnoisy18k, including number of clips / dura-

tion in hours. Blue = noisy data. Yellow = clean data.

analyzed shows this phenomenon, although it is highly subjective.

This ≈10% is included in the 38% of incorrect/OOV labels. The la-

bel density noise is only relevant in few classes, especially “Slam”,

and to a lesser extent “Fireworks” and “Fire”. This type of noise was

quantified by counting the audio clips that present at least one seg-

ment of 2s (or more) where the observed label is not present (2s is

the patch length used in the baseline system, see Section 3). The de-

gree of total label noise per-class ranges from 20% to 80% roughly.

A per-class description of the label noise similar to that of Table 1 is

available at the dataset companion site in order to facilitate per-class

analysis.3

2.2. Dataset Characteristics

FSDnoisy18k contains 18,532 mono audio clips (42.5h) unequally

distributed in the 20 aforementioned classes drawn from the Au-

dioSet Ontology. The audio clips are of variable length ranging from

300ms to 30s, and each clip has a single ground truth label (singly-

labeled data). The dataset is split into a test set and a train set as seen

in Fig. 2. The test set is drawn entirely from the clean portion, while

the remainder of data forms the train set. The train set is composed

of 17,585 clips (41.1h) unequally distributed among the 20 classes.

It features a clean subset and a noisy subset. In terms of number of

clips their proportion is ≈10%/90%, whereas in terms of duration

the proportion is slightly more extreme (≈6%/94%). The per-class

percentage of clean data within the train set is also imbalanced, rang-

ing from 6.1% to 22.4%. The number of audio clips per class ranges

from 51 to 170, and from 250 to 1000 in the clean and noisy sub-

sets, respectively. Further, a noisy small subset is defined (dark blue

box in Fig. 2), which includes an amount of (noisy) data compara-

ble (in terms of duration) to that of the clean subset. The test set

is composed of 947 clips (1.4h) that belong to the clean portion of

the data. Its class distribution is similar to that of the clean subset

of the train set. The number of per-class audio clips in the test set

ranges from 30 to 72. The test set enables a multi-class classification

problem. The dataset is openly available from its companion site,3

along with the proposed data splits for reproducibility and a more

detailed dataset description. FSDnoisy18k is an expandable dataset

that features a per-class varying degree of types and amount of label

noise. The dataset allows investigation of label noise as well as other

approaches, from semi-supervised learning, e.g., self-training [8] to

learning with minimal supervision [22].

3. BASELINE SYSTEM

Incoming audio is transformed to 96-band, log-mel spectrogram

as input representation. To deal with the variable-length clips, we

use time-frequency patches of 2s; shorter clips are replicated while

longer clips are trimmed in several patches inheriting the clip-level

3http://www.eduardofonseca.net/FSDnoisy18k/

label. The model used is a CNN (3 conv + 1 dense) following

that of [23] with two main changes. First, we include Batch Nor-

malization (BN) [24] between each convolutional layer and ReLU

non-linearity. Second, we use pre-activation, a technique initially

devised in deep residual networks [25] which essentially consists of

applying BN and ReLU as pre-activation before each convolutional

layer. It was proved beneficial for acoustic scene classification in

[26], as well as in preliminary experiments with FSDnoisy18k. The

model has ≈0.5M weights. The loss function is categorical cross-

entropy (CCE), the batch size is 64, and we use Adam optimizer

[27] with initial learning rate of 0.001, which is halved whenever the

validation accuracy plateaus for 5 epochs. Earlystopping is adopted

with a patience of 15 epochs on the validation accuracy. To this end,

a 15% validation set is split randomly from the training data of every

class. The system is implemented in Keras and TensorFlow. The

prediction for every clip is obtained by computing predictions at the

patch level, and aggregating them with geometric mean to produce

a clip-level prediction. The goal of the baseline is to give a sense of

the classification accuracy that a well-known architecture can attain

and not to maximize the performance. Extensive hyper-parameter

tuning or additional model exploration was not conducted. The code

and a more detailed description of the baseline are available at 4.

4. NOISE-ROBUST LOSS FUNCTIONS

The training of a deep network is based on updating the network

weights to minimize a loss function that expresses the divergence

between the network predictions and the ground truth labels. If the

ground truth labels are corrupted, the weights’ update can be subop-

timal thus hindering model convergence. In these cases, loss func-

tions that are robust against label noise can be helpful. Next, we

briefly describe the noise-robust loss functions evaluated and their

underlying principles. All of them are modifications of the CCE loss

commonly-used for multi-class classification. The reader is referred

to the original papers for further details. The CCE loss is given by

(1), where yk is the k’th element of the target label (a one-hot en-

coded vector), ŷk is the k’th element of the network predictions (the

predicted class probabilities), and K is the number of classes:

Lcce = −

K∑

k=1

yk log(ŷk). (1)

The Lsoft loss function dynamically updates the target labels

based on the current state of the model. More specifically, the up-

dated target label is a convex combination of the current model’s

prediction and the (potentially noisy) target label. The idea is to pay

less attention to the noisy labels, in favour of the model predictions,

which are more reliable as the learning progresses. This approach is

referred to as soft bootstrapping [17] and is expressed by (2):

Lsoft = −

K∑

k=1

[βyk + (1− β)ŷk] log(ŷk), β ∈ [0, 1]. (2)

The Lq loss is a generalization of CCE and mean absolute error

(MAE) proposed in [19]. In CCE, the predictions that differ more

from the target labels are also weighed more for the gradient update.

This is beneficial when dealing with clean data but it can be unde-

sirable in the case of noisy labels. On the contrary, MAE weighs

all the predictions equally (which, in theory, makes it robust against

corrupted labels [28]). However, in preliminary experiments we ob-

tained poor performance using MAE with FSDnoisy18k, in accor-

dance with findings reported in [19] with other datasets. The Lq loss

4https://github.com/edufonseca/icassp19



aims to take advantage of the benefits of both CCE and MAE, and is

given by (3):

Lq =
1− (

∑K

k=1
ykŷk)

q

q
, q ∈ [0, 1]. (3)

The last approach consists of first computing the CCE loss func-

tion, and then applying heuristics to discard loss values that may

come from data points with corrupted labels. Intuitively, when la-

bels are corrupted, model predictions are likely to be less congruent

with the noisy target labels, yielding artificially high losses. By dis-

carding the latter, we prevent the data points in the minibatch that

presumably feature corrupted labels from contributing to the total

loss. This can be understood as a loss masking approach. First,

we compute the CCE loss for every data point in the minibatch,

Lcce ∈ R
64×1. Then, we define a threshold t, such that elements

in Lcce greater than t are discarded for the computation of the total

loss. We experiment with two thresholds: tm = m · max(Lcce)
proposed in [14], and tl = median(Lcce) + l · σ(Lcce), where

m ∈ [0, 1], l ∈ [0,∞) and σ is standard deviation. These thresholds

correspond to the rows labeled Lm and Ll, respectively, in Table 2.

5. EXPERIMENTS AND DISCUSSION

We present the experiments carried out with the baseline system and

the proposed noise-robust loss functions, evaluated by replacing the

CCE loss by each one of them in the baseline system. To ensure a

fair comparison, the learning setup of Section 3 is always kept.

5.1. Baseline System

The results for different subsets of training are listed in the first row

of Table 2. From right to left, it can be seen that using the clean

subset leads to an accuracy increase5 of 15.8% with respect to us-

ing the noisy small subset (consisting of roughly the same amount

of data). However, curating the clean subset requires significant ef-

fort. Training with the noisy subset provides a boost of 6.3% over

the performance obtained with the clean subset (despite the consider-

able amount of label noise present). Nevertheless, this improvement

comes at the expense of using data that is an order of magnitude

greater (see Section 2.2). Finally, using the entire train set, that is,

adding a small amount of manually-curated data to the noisy sub-

set, increases the accuracy by 5.1%. The results suggest that large

amounts of Freesound audio with the level of supervision provided

by the user-generated tags can be a feasible option for training sound

event recognizers. This can be useful in case of no labeling budget,

as long as the computational resources can be accommodated. If

only limited budget is available, curating a small portion of data to be

combined with large amounts of noisy data yields top performance.

5.2. Noise-Robust Loss Functions

Classification accuracy results for different subsets of training data

and loss functions are listed in Table 2. We show results after fine-

tuning the hyper-parameter of every loss function. When training

with the entire train set or the noisy subset, the top-performing loss

function is consistently Lq , followed by Lsoft, and finally followed

by the heuristics-based approaches (where Lm shows a modest im-

provement over Ll). This means that Lsoft, and especially Lq , (orig-

inally proposed for image recognition) also work well for sound clas-

sification tasks. More specifically, Lq provides an accuracy increase

over the baseline of 2.7% and 1.9% for the entire train set and noisy

subset, respectively. The results confirm the insights in [19], where

5Performance differences are expressed in terms of absolute accuracy.

Table 2. Average classification accuracy (%) and 95% confidence

interval (7 runs) obtained by several approaches using different sub-

sets of FSDnoisy18k for training (see Fig. 2); all = entire train set.

Approach all noisy noisy small clean

baseline 71.6±0.4 66.5±0.6 44.4±1.1 60.2±0.5
Lsoft, β = 0.3 73.1±0.6 66.8±0.6 46.0±0.9 –

Lsoft, β = 0.7 72.6±0.6 67.6±0.7 44.6±1.0 –

Lq, q = 0.5 73.4±0.8 68.4±0.5 45.0±1.0 –

Lq, q = 0.7 74.3±0.7 66.7±1.2 43.2±1.2 –

Lm,m = 0.5 71.5±0.5 67.7±0.9 45.4±1.1 –

Lm,m = 0.6 72.2±0.7 66.9±0.8 45.7±1.2 –

Ll, l = 1.9 71.8±1.0 67.2±0.7 44.6±1.0 –

Ll, l = 2.0 71.5±0.7 67.6±0.8 44.5±1.0 –

it is shown that Lq works well with both OOV and IV noisy labels,

which is the case of FSDnoisy18k.

When training with the entire train set, the noise-robust ap-

proaches of Section 4 are applied selectively based on data origin,

i.e., they are applied only to the data coming from the noisy sub-

set, whereas for the clean subset the regular CCE loss is adopted.

Specifically, this means: i) in Lsoft the target labels are updated

only for data points coming from the noisy subset; ii) when testing

Lq , only data points from the noisy subset contribute with Lq to the

total loss; iii) in the heuristics-based approaches, the computation is

as described in Section 4 except that only data points from the noisy

subset are susceptible to be discarded. For Lsoft, and especially

Lq , this selective procedure leads to slightly better performance, in

contrast to the naive way of mixing all the data and applying the

noise-robust approaches indiscriminately. This suggests that Lq is

more effective when a greater amount of label noise is present.

It is interesting to compare i) the accuracy boost obtained from

adding manually-curated data to the noisy subset, versus ii) the boost

resulting from using the noisy subset with the top-performing loss

function. The baseline classification accuracy when training with the

noisy subset is 66.5%. If we add a small amount of curated data, we

obtain a 5.1% boost (see all column). Conversely, if we leverage the

top performing Lq we obtain an increase of 1.9% (i.e., ≈37% of the

boost by manual curation). Note that the manual curation requires

a significant effort, while the latter approach requires very little en-

gineering effort and adds minimal computational cost. Combining

both approaches yields top performance.

6. CONCLUSION

We have presented FSDnoisy18k, an openly-available dataset that

facilitates the investigation of label noise in sound event classifica-

tion. The dataset is singly-labeled and consists of a small amount of

manually-labelled data and a large amount of noisy data, featuring

a per-class varying degree of types and amount of real label noise.

An empirical characterization of the dataset reveals that the noisy

data presents ≈60% of label noise, most of which corresponds to

OOV noisy labels. Experiments with a CNN baseline system sug-

gest that large amounts of Freesound audio with the level of super-

vision provided by the user-generated tags can be a feasible option

for training sound event recognizers. In addition, the evaluation of

four noise-robust loss functions shows that some of them, originally

proposed for image recognition, are an efficient way to significantly

improve performance in presence of corrupted labels, while requir-

ing minimal engineering effort. FSDnoisy18k opens the door to the

evaluation of a variety of measures against label noise, as well as to

a number of semi-supervised learning approaches. It may also be

interesting to evaluate the proposed noise-robust loss functions on

larger amounts of noisy data and with models of larger capacity.
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