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Abstract

For scene classification, patch-level linear features do

not always work as well as handcrafted features. In this

paper, we present a new model to greatly improve the use-

fulness of linear features in classification by introducing co-

variance patterns. We analyze their properties, discuss the

fundamental importance, and present a generative model to

properly utilize them. With this set of covariance informa-

tion, in our framework, even the most naive linear features

that originally lack the vital ability in classification become

powerful. Experiments show that the performance of our

new covariance model based on linear features is compa-

rable with or even better than handcrafted features in scene

classification.

1. Introduction

Finding appropriate feature representation for visual

data, i.e., images and videos, is central to computer vision

tasks due to its high importance in solving many recognition

and classification problems. Existing visual features can

be approximately classified into two categories, i.e., hand-

crafted features and features learned automatically from im-

age data. Both of them have been extensively employed and

evaluated in different applications and have exhibited differ-

ent properties.

Specifically, handcrafted features, such as SIFT [17] and

HoG [4], are manually designed based on histograms of

dominant gradient orientation in local regions. CENTRIST

[33] summarizes local shape and texture information via

histogram of Census Transform. When fit into spatial pyra-

mid matching (SPM) [14], these features achieve state-of-

the-art results [34, 36].

In the meantime, learning based features [2, 23, 10, 38]

mainly follow the generative interpretation that is closely

related to human perceptual understanding of natural im-

ages. Sparse coding is a popular representative within this

class. Originating from the efficient coding theory that ex-

plains human early vision system [30], sparse representa-

tion is commonly modeled as a linear combination of ba-

sis vectors over a pre-learned over-complete dictionary and

has been widely used in low-level vision [35, 5]. However,

when applied to classification, it seems less powerful com-

pared with SIFT and HoG features [36] when used together

with SPM [36, 14]. Recent research [21, 3] even shows that

the patch-level sparse representation may not be necessary

for classification.

1.1. Analysis of Linear Features

The inherent difference of features was extensively stud-

ied in this community. But there are still many questions

that do not find clear answers. One issue that particularly

puzzles many researchers is as follows.

Is it possible to make sparse features learned from

images more applicable to scene classification?

We answer this question from the correlation perspec-

tive in this paper. We first analyze Independent Component

Analysis (ICA) and Sparse Coding (SC) [11], two represen-

tatives of linear-model-based feature learning methods, and

then present our new framework to improve the discrimina-

tion ability of features.

Referring to the illustration in Fig. 1, we select three

regions containing the castle tower, lakefront, and flower,

from which we extract patches, as shown in (a)-(b). Their

structures are completely different. Each patch is then de-

composed using the ICA and SC dictionaries shown in (c).

To visualize the statistical regularity of linear responses,

we select two pairs of basis vectors, and lay all responses on

them for the three visual classes. The distributions for ICA,

shown in (e), indicate high correlation among responses. In

contrast, sparse coding results that are shown in (f) have

their correlation generally degrading to variance due to the

employment of over-complete atoms. Both variance and

correlation are the second-order statistical regularity among

responses. The fact that their structures vary significantly

for different regions provides a notably useful clue for mag-

nifying the power of linear features in classification.

1.2. Our Method

With the important finding that statistical regularity

among linear features embodies rich local structure infor-

1



Figure 1. Linear features in scene classification. We select three regions containing the castle tower, lakefront, and flower in (a) and densely

extract patches of size 6 × 6 from them, as shown in (b). Each patch is decomposed using the ICA and sparse coding (SC) dictionaries

shown in (c) to acquire linear responses. We plot the distributions of ICA responses on two pairs of basis vectors for the three regions in

(e). Similarly, (f) shows the distributions of SC responses on two pairs of basis vectors for the three regions.

mation, instead of purposely reducing or avoiding correla-

tion in linear feature construction, we model correlation ex-

plicitly by combining sparse decomposition of covariance

with feature learning, in order to boost the discrimination

ability of linear features. Similar observation exists consid-

ering the nonlinearity in complex cells in the primary visual

cortex (V1) in computational neuroscience [13].

Our main contribution thus lies on a new model to in-

corporate covariance patterns into feature construction. We

introduce a generative model that captures the covariance

patterns from natural images directly. The core idea is to

model covariance as sparse linear combination of regular

patterns and combine it with learning of linear features in

a novel way. With this new representation, inference is ac-

complished by decomposing the MAP estimation into a few

convex optimization problems.

Our method is powerful since it captures the second-

order statistics of linear features in natural images. Even

working with the most naı̈ve linear features given by the

least square (LS) estimator, our method clearly outper-

forms that with patch-level sparse representation in the SPM

framework [21]. Our results are even surprisingly compara-

ble to those generated using the handcrafted SIFT for scene

classification [36, 22], as demonstrated in our experiment

section. Note that these simple features, when used alone,

can only yield rather poor performance.

We use a simple example to demonstrate the effective-

ness of our model. We select three categories, i.e., Forest,

Coast, and Mountain, from the scene classification dataset

15-scene [7, 18, 14]. A few examples are shown in Fig.

2. For each image, we collect patches. The linear sparse

coding response and our covariance response are shown on

bottom left after projecting respective features to two di-

mensions using the Linear Discriminant Analysis (LDA).

It is noticeable that the “LS+COV+SC” features are lin-

early more discriminative than those with patch-level sparse

representation. We note that “LS+COV+SC” is only a toy

model. It manifests that our framework can remarkably in-

crease the usefulness of weak linear features in scene clas-

sification.

1.3. Related Work

In [12], Karklin and Lewicki proposed learning a lin-

ear filter bank that resembles the simple receptive fields by

modeling the variance of filter responses. Yu et al. [37] pro-

posed a two-layer sparse coding framework for image clas-
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Figure 2. A toy example for scene classification. For each image, we follow the procedure described in Section 4 to collect local regions

and patches. A set of basis vectors is learned by running K-means clustering over all patches. Then, we linearly decompose the pathes over

the basis by least square (LS) estimation, and calculate the covariance (COV) of the coefficients for each region. By decomposing each

covariance into a set of atoms via sparse coding (SC), we get corresponding covariance features. This process is denoted as “LS+COV+SC”.

For comparison’s sake, sparse coding over image patches is also applied. Average pooling is employed on all regions to obtain the feature

representation. We project features to two dimensions using Linear Discriminant Analysis (LDA), as shown on bottom left. “LS+COV+SC”

is linearly more discriminative than sparse coding over the patches.

sification. These models capture spatial correlation via the

variance of sparse coding responses. Learning linear fea-

tures is still based on the sparsity or independence assump-

tion with only the variance information. In comparison, we

directly model covariance of linear features, which encodes

pair-wise correlation among feature responses and can work

with simpler linear features in scene classification.

Region covariance [27] considers the covariance descrip-

tor of handcrafted features. Sivalingam et al. [24, 25] pro-

posed tensor sparse coding by further decomposing region

covariance into a set of linear atoms. Although the term “co-

variance” is similarly adopted, our model is different by na-

ture given the new generative model that accounts for natu-

ral image statistics and simultaneously learns linear features

and their covariance patterns.

Hierarchical models capture the higher-order correlation

of linear feature by stacking several layers together, where

each layer outputs a (non-linear) mapping of its input. The

Deep Belief Network (DBN) [8, 1] is a representative in

this batch. Convolutional DBN [15] and hierarchial decon-

volutional network [38] are the variations.With hierarchies,

DBNs work generally better than the one-layer sparse cod-

ing along with the cost of the increased number of parame-

ters, higher inference complexity, and longer running time.

2. Model

We begin our description from the generalized form of

linear representation. Given a vectorized image patch xi ∈
Rn, xi can be represented as the linear combination of a set

of pre-learned atoms in dictionary D = [d1 · · · dj · · · dm] ∈

Rn×m along with white Gaussian noise ε:

xi =

m
∑

j=1

αj
idj + ε = Dαi + ε, (1)

where m is the number of atoms in the dictionary and

A = [α1, ..., αi, ..., αn] ∈ Rm×n is the corresponding co-

efficient set. Its j-th element is denoted as αj
i . Given an in-

put patch xi, the corresponding αi is also referred to as the

linear feature response. With Eq. (1), sparse coding [10]

imposes additional independence and sparsity assumption

over coefficients α, expressed as

p(α) =
∏

i

p(αi), (2)

where p(αi) ∝ exp (−λ|αi|).
Instead of relying on sparse coding to learn α, we pro-

pose learning statistical dependency among linear features

for classification. An intuitive way to capture correlation

among α is to model α as a zero mean multivariate Gaus-

sian controlled by its covariance Σ. Formally, the coeffi-

cient α, when conditioned on the covariance Σ, follows a

multivariate zero mean Gaussian [6] and is expressed as

p(α|Σ) =
1

(2π)m/2

1
√

|Σ|
exp{−

1

2
(α)T Σ−1(α)}. (3)

An inherent difficulty in (3) is that the covariance matrix lies

on the connected Riemann Manifold [28, 27, 24, 9] rather

than the Euclidean space. The distance between two covari-

ance matrices has to be defined geodesically, which makes



traditional sparse coding not applicable to covariance ma-

trix decomposition. To address it, we employ the Bregman

divergence [32, 24], which models Σ as an inverse-Wishart

distribution. The original model thus becomes

p(Σ|Θ, l) =
|Θ|l/2|Σ|−(m+l+1)/2exp{− 1

2
tr(ΘΣ−1)}

2ml/2Γm(l/2)
, (4)

where l is the degree of freedom, Γ is the multivariate

Gamma function and Θ ∈ Rm×m is the reference covari-

ance that can be linearly decomposed into a few simple pat-

terns Ck given by

Θ =

nc
∑

k=1

βkCk, (5)

where nc is the number of covariance patterns and Ck ∈
Rm×m is the positive definite covariance pattern. The co-

efficient βk satisfies βk ≥ 0 and follows a non-negative

Laplacian distribution:

p(β) =
λ

2
exp (−λβ). (6)

The decomposition procedure is simple and fully captures

the correlation of filter responses. It encodes the covariance

with basis Ck learned from images, making β a discrimina-

tive feature representation for local regions.

3. Learning and Inference

For inference of features, using MAP separately for A
and β could induce non-convex optimization. We instead

apply joint MAP estimation of A, β, and Σ given that

coordinate-wise convex update is possible.

Given a set of patches X = {xi} within a region, dictio-

nary D, and the covariance patterns C, we infer feature β
in the MAP framework:

max p(A,Σ, β|X, D, {Ck}) ∼
∏

i

(p(xi|αi, D)p(αi|Σ))p(Σ|β, {Ck})p(β). (7)

Taking the negative logarithm and based on the fact [32, 24]

that there is an equivalence between modeling the co-

variance matrix as an inverse wishart distribution and the

LogDet divergence, the objective function can be approxi-

mated as:

L̃(A, Σ, β) =
η

2
‖X − DA‖2

F +
1

2
tr(AT Σ−1A)

+
µ

2
log(det(Σ)) −

ν

2
log(det(

nc
∑

k=1

βkCk))

+
1

2
tr(

nc
∑

k=1

βkCkΣ−1) + λ‖β‖1,

(8)

where η is inversely proportional to the variance of Gaus-

sian noise ε in Eq. (1). µ and ν are the corresponding

coefficients. We perform the inference via Block Coordi-

nate Descent (BCD) [26]. The basic idea is to iteratively

optimize a group of variables while fixing the others.

Solve for A Computing A needs to solve

min
A

η

2
‖X − DA‖2

F +
1

2
tr(AT Σ−1A). (9)

By setting the first-order derivative to zero and noting that

Σ is symmetric, the solution is in a closed form:

A∗ = η(ηDT D + Σ−1)−1DT X. (10)

Solve for Σ With other variables fixed, the optimization

simplifies to

min
Σ

1

2
tr(Σ−1(AAT +

nc
∑

k=1

βkCk)) +
µ

2
log(det(Σ)). (11)

The solution is obtained by setting the first-order derivative

to zero, which yields

Σ∗ =
1

µ
(AAT +

nc
∑

k=1

βkCk). (12)

Solve for β Given the function simplified to

min
β

1

2
tr(

nc
∑

k=1

βkCkΣ−1) −
ν

2
log(det(

nc
∑

k=1

βkCk)) + λ‖β‖1,

(13)

we note that the optimization is convex and can be con-

verted to determinant maximization [24], or MAXDET,

where interior point solvers exist [29].

For further acceleration, we select a few (5-10) nearest

neighbors of Σ in {Ck} according to the Euclidean dis-

tances, and then solve the simple MAXDET optimization

problem without the sparsity constraints on the covariance

patterns. This procedure yields

min
β

∑

Ck∈N(Σ)

βktr(CkΣ−1) + ν log(det(
∑

Ck∈N(Σ)

βkCk)−1)

s.t. β ≥ 0, Σ −
∑

Ck

βkCk ≻ 0

We use gradient descent to find the result. Similar to [31],

the approximation combines locality and sparsity in a

highly efficient manner.

3.1. Learning

With feature inference, given the set of regions {Xr}
that are independently drawn from the images, learning dic-

tionaries D and C can be achieved by solving

max p(D, Ck|{X
ri}) =

∏

ri

p(D, Ck|X
ri) ∼

∏

ri

(p(Xri |Ari , D)p(Ari |Σri))p(Σri |βri , {Ck})p(βri).
(14)



The negative log likelihood function is

L =
∑

ri

L(Ari , Σri , βri , D, {Ck}), (15)

where L(Ari , Σri , βri , D, {Ck}) has the same form as the

L(·) in Eq. (8).

Online Dictionary Learning The optimal D is given by

min
D

f(D) =
η

2

∑

ri

‖Xri − DAri‖2
F . (16)

The function can be solved by a simple least square method.

In practice, if there are millions of local regions Xri , it may

not be feasible to put all patches to the memory. We employ

an online dictionary learning process, which only updates a

small batch B for local regions. The process is expressed as

D ← D − α∇f(D),

∇f(D) = D(
∑

ri∈B

AriAri T ) −
∑

ri∈B

XriAri T , (17)

where α is selected by line search. Since the linear combi-

nation is only up to a scale, we normalize all atoms in the

dictionary by setting ‖d‖2

2
= 1.

Online Covariance Learning We update each pattern se-

quentially. For each Ck , the optimal solution is

min
Ck

f(Ck) =
∑

ri

(
1

2
tr(

nc
∑

k=1

βri

k Ck(Σri)−1)

−
ν

2
log(det(

nc
∑

k=1

βri

k Ck))),

s.t. Ck ≻ 0

(18)

We also adopt an online process to solve it. Each time, we

only read a small batch B of covariance and update patterns

incrementally. The process is expressed as

Ck ← Ck − α∇f(Ck),

∇f(Ck) =
∑

ri∈B,β
ri

k
>0

βri

k ((Σri)−1 − ν(
∑

k

βri

k Ck)−1).

(19)

Similarly, α is obtained by line search and we normalize the

covariance patterns by setting tr(Ck) = 1.

4. Experiments

We evaluate our new model, which couples linear fea-

tures and their covariance patterns in scene classification.

We follow the standard procedure to compute the feature

representation.

Patch-level representation Each patch contains 5×5 pix-

els sampled from a grid with step size 2 (pixels). Patch level

representation is obtained by computing coefficients corre-

sponding to our learned 16 linear filters, as shown in Fig.

3(a). They have edge-let shapes.

Region-level representation Each region contains 7 × 7
patches sampled from a grid with step size 2 (patches).

Patch level representation in each region is used to infer the

region-level covariance features β (Eq. (13)) based on the

4096 atoms illustrated in Fig. 3(b). We set µ = ν = 1 for

inference.

Image-level representation Given region representation

β, the spatial pyramid matching (SPM) with scales 1, 2, and

4 in three levels and max pooling are used to get the feature

for the whole image βspm. It is followed by linear SVM for

classification.

To get βspm, In each level i of the image pyramid, we

divide the region-level features β into i2 bins. In each bin

n, max pooling is performed to acquire max(β(n)), where

β(n) is the set of local-region features within the bin n.

Finally, the image level feature βspm is simply the concate-

nation of all bins at all scales.

A subset of 40 covariance atoms from our learned dictio-

nary C (total size 4096) is shown in Fig. 3(b). These atoms

exhibit a common pattern – that is, the diagonal elements

are bright – indicating that the variance is generally large.

The off-diagonal values reveal different levels of correlation

among linear filters.

4.1. Structure Mapping

Sparse covariance patterns encode local structure infor-

mation. Our model, therefore, can be considered as an

efficient mapping from the image domain to the structure

space. A conjecture is that similar scenes should be “neigh-

bors” to each other in the structure space. To verify it, we

conduct a simple experiment on scene retrieval based on the

15-scene dataset.

We define the Euclidean distance of the sparse covari-

ance patterns for two scene images S1 and S2 as the dis-

tance in the structure space, that is

d(S1, S2) � ||βspm1 − βspm2||
2

2
, (20)

where βspm1 and βspm2 are the image features based on our

local covariance patterns for S1 and S2 respectively. Their

construction is described above.

For each randomly picked query image, we compute dis-

tance d between it and all other scene images and show the

four images with shortest distances in Fig. 4. To visualize

local structures, we construct the latent covariance matrices

Θ via Eq. (5). Because they are symmetric, we take the up-

per triangulars and use PCA to obtain the three major prin-

cipal components for each matrix. These components are

mapped directly to three channels in a color space using the

method presented in [16]. Specifically, the first component

is mapped to channel R + G + B; the second is mapped to

R−G; and the third is mapped to channel R/2+G/2−B. It



Figure 3. Learned filters by our method on dataset 15-scene. (a) Atoms in dictionary D. (b) Covariance atoms in dictionary C.

Figure 4. Scene retrieval on the 15-scene dataset. For each query scene image S, we compute spatial pyramid representation β of local

sparse covariance patterns, and take the 4 Nearest Neighbors (NN) measured by Eq. (20) from other 4484 images in the dataset. The query

image is the left most one in each row. For each output image, its distance d to the query one is shown. The mismatched one is marked

with the red dotted rectangle.

is observable in Fig. 4 that similar local structures have sim-

ilar color, indicating that our covariance patterns are able to

distinguish among local details.

4.2. 15-Scene Classification

We apply our method to scene classification on the 15-

scene dataset [7, 18, 14]. With 200 − 400 images in each

category, the dataset contains 4485 images in total. The av-

erage image resolution is 300 × 250 (pixels). We use 100
images per category for training. All the rest are used for

testing. To accurately evaluate the effect of our covariance

representation, and to make our method scalable to large-

scale data, we only use the simple linear SVM [36] classi-

fier.

In experiments, we randomly collect 4 million patches

with size 5 × 5 from the whole dataset, and learn the dic-

tionary D and C online with the size of 16 and 4096 re-

spectively. Following the feature representation described

in Section 4, we decompose each patch linearly over the

pre-learned 16 basis vectors. Covariance for each region is

then computed based on these linear coefficients, followed

by either sparse coding [36] or joint optimization through

Eq. (9-13) over the pre-learned over-complete covariance

patterns C. We denote the process involving sparse cod-

ing as “LS+COV+SC” and our joint optimization as “Sparse

Covariance Patterns” (SCP).

We take 10 rounds to get the average classification re-

sults. In each round, we randomly select the set of train-

ing data and leave the rest for testing. Our results are

listed in Table 1 with the comparison with the state-of-

the-arts [34, 36]. It is noticeable that even the simplest

“LS+COV+SC” works reasonably well, compared with

powerful handcrafted features. Moreover, our SCP model

performs slightly better than sparse coding over SIFT (Sc-



HoG 2 ∗ 2 [34] 81.0

GIST [34] 74.7

SSIM [34] 77.2

ScSPM [36] (SIFT+SC+SPM) 80.28 ± 0.93
KSPM [22] 81.40 ± 0.50
“LS+COV+SC”+SPM 79.20 ± 0.32
“SCP”+SPM 80.43 ± 0.49

Table 1. Average classification rates (%) of different methods.

Each algorithm is tested for 10 rounds. Our method with the sim-

ple linear classifier is comparable with those using handcrafted

features and sophisticated nonlinear classifiers.

Figure 5. Confusion table for 15-Scene Classification. The diago-

nal values are the average classification rates for individual classes

while the percentage of images from class i that were misidentified

as class j is captured in the i-th row and j-th column of Confusion

Matrix.

SPM) [36] and is surprisingly comparable with the kernel

SPM [34], which uses non-linear classifiers. We also note

that HoG2 ∗ 2, GIST , and SSIM are all combined with

kernel SVM while our two methods and ScSPM only adopt

linear SVM.

We also present the confusion matrix in Fig. 5. The

proposed method performs quite well on a few scene cat-

egories, including suburb, forest, store, coast, and office.

Accuracy falls for bedroom and living room classes. We

explain that our method captures local structure informa-

tion similar to region covariance. Its discrimination power

decreases if scene structure variation is very large within

some classes.

HoG 22.8

GIST+grayscale 22.0

GIST+Color 29.7

KSPM 34.4

“LS+COV+SC”+SPM 30.1

“SCP”+SPM 33.7

Table 2. Average classification rates (%). The values for

HoG, GIST+grayscale, GIST+color, and SIFT+SPM are obtained

from [19]. All methods are tested with the same setting as de-

scribed in [20].

4.3. Indoor Scene Recognition

We also apply our method to the more challenging MIT

indoor scene dataset [20]. The difficulty lies in the large

variation in both global structures and local details. This

dataset contains 67 classes with more than 10K images. We

follow the training/testing split listed in [20] – that is, for

each class, around 80 images are used for training and 20
images are for testing. Again, we only consider the linear

classifier, and compare our features with others, including

HoG, SIFT, GIST, and color statistics, from the baseline re-

sults in [19].

We use the same parameter setting as that for 15-scene

classification. The dictionaries of D and Ck are also those

trained in Section 4.2, which indicates the insensitivity

of our method to dictionaries trained in different scene

datasets. Our results are reported in Table 2 and are com-

pared with several other methods. SVM with a Gaussian

kernel is used in the baseline of “HoG”, “GIST+grayscale”,

and “GIST+grayscale”. Our simple “LS+COV+SC” works

fairly well and our “SCP” further improves the results with

the performance comparable to “KSPM”.

5. Conclusion

We have presented a new feature learning framework for

scene classification. Based on the observation that statistical

regularity of linear representation embodies local structure

information, we proposed learning sparse covariance pat-

terns among linear basis vectors. In our model, the sparse

constraint is enforced on the second-order correlation for

more effective discrimination. Our method explores non-

linear operation on linear features, indicating an intriguing

way to boost the power of traditional linear filters for high-

level vision tasks.
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