
Learning Sparse Metrics via Linear Programming ∗

Romer Rosales
Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA, USA

romer.rosales@siemens.com

Glenn Fung
Siemens Medical Solutions
51 Valley Stream Parkway

Malvern, PA, USA

glenn.fung@siemens.com

ABSTRACT
Calculation of object similarity, for example through a dis-
tance function, is a common part of data mining and ma-
chine learning algorithms. This calculation is crucial for effi-
ciency since it is often repeated a large number of times, the
classical example being query-by-example (find objects that
are similar to a given query object). Moreover, the perfor-
mance of these algorithms depends critically on choosing a
good distance function. However, it is often the case that (1)
the correct distance is unknown or heuristically chosen, and
(2) its calculation is computationally expensive (e.g., such
as for large dimensional objects). In this paper, we propose
a method for constructing relative-distance preserving low-
dimensional mappings (sparse mappings) to allow learning
unknown distance functions or approximating known func-
tions, with the additional property of reducing distance com-
putation time. We present an algorithm that given examples
of proximity comparisons among triples of objects (e.g., ob-
ject a is closer to b than to c), learns a distance function, in
as few dimensions as possible, that preserves these distance
relationships. The formulation is based on solving a Linear
programming optimization problem that finds an optimal
mapping for the given dataset and distance relationships.
Unlike other popular embedding algorithms, the method can
easily generalize to new points, does not have local minima,
and explicitly models computational efficiency by finding a
mapping that is sparse, i.e. that depends on a small subset
of features or dimensions. Experimental evaluation shows
that the method compares favorably with an state-of-the
art method in several publicly available datasets.

Categories and Subject Descriptors
G.4 [Mathematical Software]; H.3 [Information Stor-

age and Retrieval]: Information Search and Retrieval; H.4
[Information Systems Applications]: Miscellaneous

∗(Produces the permission block, copyright information and
page numbering). For use with ACM PROC ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

General Terms
Algorithms, measurement, performance

Keywords
Metric learning, dimensionality reduction, linear program-
ming, linear projections, convex optimization

1. INTRODUCTION AND RELATED WORK
The notion of a distance is essential in many machine learn-
ing and data mining concepts. From a practical point of
view, the choice of a distance has a direct effect on the per-
formance of many algorithms, both in terms of accuracy and
efficiency. From an accuracy perspective, numerous algo-
rithms rely on the user being able to provide a good distance
function (e.g., nearest neighbor, clustering methods, SVM,
etc). Here, a good distance function is roughly one that is
low for similar objects and high for dissimilar ones. Clearly,
since objects can be similar or dissimilar in many respects,
similarity is not absolute and depends on the task of inter-
est; thus, different distance functions should in theory be
chosen for different tasks. How to best choose an appropri-
ate distance function remains an interesting problem. From
an efficiency perspective, many widely used approaches for
data mining, the classical example being query-by-example
(find objects that are similar to a given query object), re-
quire evaluating a distance function between a large number
of points 1. These calculations often take an important part
of the available CPU time and therefore, a relevant prob-
lem is how to automatically find accurate approximations
to these distance functions but that are efficient to evaluate.

In this paper we present an approach, based on formulating
and solving a simple linear programming problem, that al-
lows for automatically building distance functions from ex-
amples (1) that are tailored to the problem at hand and
(2) that have the additional property of being computa-
tionally efficient to evaluate. We are interested in solving
the following problem. Let us represent the objects of in-
terest 2 by points xk in a D-dimensional space ℜD, with
k = {1, 2, ..., N}. The problem is how to change this repre-
sentation to points x̂k such that distance relationships be-
tween points are appropriate for the task of interest accord-
ing to side information provided by a user in the form of dis-
tance relationships (see Sec. 1.1) and in addition, the points

1Other examples include K-means and kernel-based meth-
ods in general
2Examples of objects of interest are: database records, user
opinions, product characteristics, etc.

lie on lower dimensional space ℜd. In order to achieve this,
we are interested in finding a transformation A : ℜD → ℜd

that relates any point in the original space to its low dimen-
sional counterpart. When A is a linear transformation, this
can be thought of as learning a Mahalanobis distance (e.g.,
see [17, 12, 15]). Sec. 1.2 describes the connection and dif-
ferences between the formulation introduced in this paper,
the above, and other related methods.

1.1 Specifying distance information as side in-
formation

In this paper, only distance relationships among a number of
points are needed to capture the structure of the space, no
absolute distances are necessary. These relationships may
be provided by a user; thus, it would be beneficial to make
the information required from the user (1) simple to obtain
and (2) easy to provide. We believe that relationships of the
form object i is closer to j than to k are both simple to spec-
ify and sufficiently informative to capture the properties of
the task of interest. In case that an appropriate metric or an
algorithm for determining relative similarity were available
(but cannot always be used because e.g., it is expensive to
evaluate), this information can be obtained more automati-
cally. In choosing this type of relative relationships, we were
inspired by the work in [1]; however, distance relationships
of this type were also employed in [12]. Note that we are
not interested in preserving absolute distances, which are in
general much more difficult to obtain3.

Another interesting property of this type of distance rela-
tionships is that they do not require the concept of class
labels (e.g., [15]) or the specification of examples of similar
objects vs. dissimilar ones (e.g., [17]). The concepts of sim-
ilar vs. dissimilar are limited by the fact that a user would
need knowledge of at least some (and preferably all) of the
rest of the objects in order to determine whether two objects
are similar or dissimilar (a reference frame is needed).

1.2 Metric learning with dimensionality re-
duction

The framework presented in this paper is related to different
sets of approaches. A first set can be represented by unsu-
pervised methods that have approached the problem of find-
ing low dimensional representations of the data. Some ap-
proaches attempt to capture the variance of the data such as
Principal Components Analysis [9], while others build low-
dimensional embeddings, that is, by transforming a set of
data points into a lower dimensional one such that (some or
all) distances are preserved. Examples of these approaches
include algorithms such as Multidimensional Scaling (MDS)
[5], Locally Linear Embeddings (LLE) [11], ISOMAP [13],
and low-dimensional embeddings via SDP [16]. These meth-
ods can implicitly reduce the amount of computation re-
garding distance calculations; however due to their purely
unsupervised nature, they rely on a distance function to be
given and cannot build a function such that the accuracy of
certain (e.g., classification) algorithms is improved. In other
words, they are not designed to capture the concept of an
appropriate distance.

3Absolute distances imply relative distances, but the con-
verse is not true.

Another set of approaches that are related to ours in a differ-
ent manner are those that attempt to learn an appropriate
distance function from examples. The most closely related
approaches are [17, 12, 1]. The first two require some form
of supervision and are designed just to learn good distance
functions, without explicitly attempting to improve the ef-
ficiency of distance calculations. BoostMap [1] is the most
related to our approach in terms of the goals targeted, that
is, finding a distance function that is both accurate for the
task and efficient to evaluate. Like our method, both [1]
and [12] attempt to preserve distance relationships. How-
ever, BoostMAP, based on using AdaBoost to combine mul-
tiple 1D embeddings to preserve the proximity structure of
the data, has the disadvantage that it leads to an itera-
tive, greedy algorithm to optimize the embedding and thus
does not have strong optimality guarantees. In contrast,
the method in [12] proposes a convex optimization prob-
lem based on SVMs. Its disadvantages include the facts
that the problem requires quadratic programming and is
only designed to find appropriate weights for the different
coordinates of the data; thus a very small subset of linear
transformations is explored to obtain a solution. Comparing
the properties of the solution space, [17] is the most related
approach. It is based on finding a square matrix that de-
fines a Mahalanobis distance. The distance is optimized to
respect distance constraints represented by two sets, one of
similar and one of dissimilar points. The formulation leads
to a convex optimization problem.

As we will show, while the general problem formulated in
this paper does not appear to accept efficient algorithms, a
proposed comparable problem can be solved using just linear
programming.

Table 1 shows a collection of approaches that share some of
the goals or motivations of the approach presented in this
paper. It also highlights several important distinguishing
attributes. In particular we have considered (1) computa-
tional efficiency: whether the method attempts to find low
dimensional representations for efficient distance evaluation,
(2) generalization to new points: whether the method can
easily generalized to new unseen points, (3) distance learn-
ing capability: whether it can learn a distance function from
user examples, and (4) power of learning algorithm: whether
the learning algorithm finds local-free optima (such as it is
the case for convex formulations).

1.3 Notation and background
In the following, vectors will be assumed to be column vec-
tors unless transposed to a row vector by a superscript ⊤.
The scalar (inner) product of two vectors x and y in the
d-dimensional real space ℜd will be denoted by x⊤y. The 2-
norm and 1-norm of x will be denoted by ‖|x‖|2 and ‖|x‖|1
respectively. For a matrix A ∈ ℜm×n, Ai ∈ ℜn denotes a
row vector formed by the elements of the i-th row of A .
Similarly A·j ∈ ℜm denotes a column vector formed by the
elements of the j-th column of A. A column vector of ones
of arbitrary dimension will be denoted by ~e, and one of ze-
ros will be denoted by ~0. The identity matrix of arbitrary
dimension will be denoted by I .

2. LEARNING METRICS

Table 1: Summary of Approaches for Dimensional-

ity Reduction or Metric Learning

Approach

Low dim Generaliz. Learns Local-min.
effic. to new from free
eval. data examp. (convex)

Athitsos et al. [1] Y Y Y N
FastMap [6] Y Y N N
MDS [5] Y N N N
Schultz-Joachims[12] N Y Y Y (QP)
Wagstaff et al. [10] N Y Y N
Weinberger et al. [15] N Y Y Y (SDP)
Xing et al. [17] N Y Y Y (IterProj)
This paper Y Y Y Y (LP)

Table 2: QP=Quadratic Programming, SDP=

Semidefinite Programming, IterProj= Iterative

Projections + gradient descent, LP= Linear Pro-

gramming.

Let us say we are given a set of points xk ∈ ℜD with
k = {1, ..., N} for which an appropriate distance metric is
unknown or expensive to compute. In addition we are given
information about a few relative distance comparisons. For-
mally, we are given a set T = {(i, j, k)|f(xi,xj) < f(xi,xk)}
for some distance function f . As indicated above, f may
not be known explicitly, instead a user may only be able
to provide this distance relationships sparsely or by exam-
ple. We are interested in finding a linear transformation
A : ℜD → ℜd such that:

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 < ||x̂i − x̂k||

2
2 (1)

where x̂k = Axk. Additionally, since we would like to en-
force efficiency, we would prefer to find matrices A that pro-
duce a projection to a lower-dimensional space ℜd.

That is, we would like to find a new representation of the
original space in a lower dimension where the L2 norm re-
spects the desired distance relationships.

It is easy to show that if Ak = ~0 (the k-th column of A is
equal to the zero vector), then the k-th original dimension
(in ℜD) can be ignored to calculate the projection.

3. BASE FORMULATION
Putting the above ideas together, the projection matrix A
can be formally defined as the optimal solution to the fol-
lowing optimization problem:

max
A:ℜD→ℜd

D
X

m=1

1(Am = ~0)

s.t.

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 < ||x̂i − x̂k||

2
2, (2)

where t indexes the set T and 1(E) is the indicator function
which return the value 1 if the logical expression E evalu-
ates to true and zero otherwise. The above definition of A
is useful at formalizing the desired concept of an optimal
projection. However, as formulated, it is not amenable to
practical calculation since it is unclear whether there exist
an efficient algorithm for finding A given the set T . We

now concentrate on formulating similar problems that can
be more efficiently approached.

Note that the feasible set for the above problem could be
empty. In that case, there is no matrix A that can solve the
problem and A is undefined. Since in practice we may still
be interested in finding a good A even if it does not satisfy
all of the constraints, in the following we also address a
redefinition of A for the cases where not all constraints can
be satisfied.

4. CONVEX FORMULATIONS
Here we concentrate on convex approximations to the prob-
lem in Sec.3.

4.1 Optimizing for A
In order to address the discrete nature of the base cost func-
tion, we transform the problem into a continuous problem.
Additionally, to address the case where the feasible set is
empty, we relax the constraints by introducing slack vari-
ables ǫt. The problem is now as follows:

minA:ℜD→ℜd

P

t ǫt + α
PD

m=1 ||Am||1
s.t.

∀(i, j, k) ∈ T , ||x̂i − x̂j ||
2
2 < ||x̂i − x̂k||

2
2 + ǫt

∀t, ǫt > 0

(3)

where t indexes the set T , α ∈ ℜ is a scalar that balances
the trade off between the sparsity of A and compliance with
the inequalities generated by the triples in T , and ǫt ∈ ℜ
represents a slack variable. The 1-norm tends to suppress
terms and to produce sparse solutions, this fact has been
empirically validated in the SVM framework [4, 7]. Hence,

the expression
PD

m=1 ||Am||1 in equation (3) is a reasonably

good approximation to the ideal expression
PD

m=1 1(Am =
~0) that will lead to a 0-1 Mixed Integer Programming (MIP)
problem which is known to be NP-hard.

Note that, each distance constraint can be written as:

(Axi)
⊤(Axi) − 2(Axi)

⊤(Axj) + (Axj)
⊤(Axj)

−(Axi)
⊤(Axi) + 2(Axi)

⊤(Axk) − (Axk)⊤(Axk) < ǫt,(4)

and by defining B = A⊤A ∈ ℜD ×ℜD, Eq. 4 can be further
simplified to:

(x⊤
j Bxj) − (x⊤

k Bxk) + 2[(x⊤
i Bxk) − (x⊤

i Bxj)] < ǫt

B ≻ 0

B = B⊤(5)

The main advantage of the new equation is that it produces
linear constraints in the new variable B, instead of quadratic
constraints in A. However, in order for the equivalence to
hold, we must have B symmetric and positive semidefinite.
Assuming the cost function remains convex in B, this prob-
lem is still convex in B. However it becomes a semidefinite
programming problem (SDP). Next, we will show how the
much more efficient linear programming method (LP) can
be employed instead to solve different instances of this for-
mulation.

4.2 Optimizing for B = A⊤A

We first focus on finding a cost function equivalent to Eq. 3.
For this we note that for B = A⊤A:

Ak = ~0 ⇒ Bk = ~0, (B⊤)k = ~0, (6)

Also note that since:

||x̂i − x̂j ||
2
2 = ||A(xi − xj)||

2
2 = (xi − xj)

⊤B(xi − xj)

we have that:

Bk = ~0 ⇒ ||x̂i − x̂j ||
2
2 does not depend on dimension k.

Thus, we now focus on the following problem:

minǫ,B

P

t ǫt + λ
P

m=1...D ||Bm||1
s.t.

∀(i, j, k) ∈ T ,−2(x⊤
i Bxj) + (x⊤

j Bxj)
−2(x⊤

j Bxk) + (x⊤
k Bxk) < ǫt

∀t, ǫt > 0
B = B⊤

B ≻ 0

(7)

This is also a semi-definite programming (SDP) problem
which is convex and can be solved using specialized SDP
solvers like SeDuMi [14]. However, we will further simplify
the formulation presented above by restricting our solution
space to a subfamily of the SDP matrices: the diagonal dom-
inant matrices. In order to provide a better understanding
of the motivation for our next formulation we present the
following theorem as stated in [8]:

Theorem 4.1. Diagonal Dominance Theorem Sup-
pose that M is symmetric and that for each i = 1, . . . , n ,
we have:

Mii ≥
X

j 6=i

|Mij |

Then M is positive semi-definite (PSD). Furthermore, if the
inequalities above are all strict, then M is positive definite.

4.2.1 Imposing diagonal dominance on B
We can now propose the following formulation:

minǫ,B

P

t ǫt + λ
P

m=1...D |Bmm|1
s.t.

∀(i, j, k) ∈ T ,−2(x⊤
i Bxj) + (x⊤

j Bxj)
−2(x⊤

j Bxk) + (x⊤
k Bxk) < ǫt

∀t, ǫt > 0
B = B⊤

∀(m)Bmm ≥
P

n |Bmn|,
(8)

where the last constraint is equivalent to diagonal domi-
nance which implies positive semidefiniteness according to
theorem 4.1. As it was explained before, the sum of 1-norms
in the cost function cause preference for sparse solutions
(when combined with the last constraint). The projection
matrix A can be recovered by an inexpensive Cholesky fac-
torization of the symmetric matrix B [8] or by an eigenvalue
decomposition.

The constraint involving x and B can be rewritten as follows.
For any xi, xj ∈ ℜD, define X̃ij = vect(xix

⊤
j), where vect()

means (column-wise) alignment of all of the matrix elements
in a column vector. Define b = vect(B). The constraint can
now be written:

∀(i, j, k) ∈ T [X̃jj + X̃kk − 2(X̃ij + X̃jk)]b < ǫt

Finally, using equations (9) formulation (8) can be rewritten
as a Linear Program in the following way:

minǫ,B,S

P

t ǫt + λ
P

m=1...D Bmm

s.t.

∀(i, j, k) ∈ T [X̃jj + X̃kk − 2(X̃ij + X̃jk)]b < ǫt − 1
∀t, ǫt > 0

B = B⊤

∀(m, n, m 6= n) − Smn ≤ Bmn ≤ Smn

Bmm >=
PD

n=1

m6=n
Smn

(9)

Since the matrix B is symmetric, the number of components
of B to be found can be reduced to D(D + 1)/2 instead of
D2, furthermore by doing this, the constraints B = B⊤

can be discarded. The right hand side of the first set of
inequalities has been changed from ǫt to ǫt − 1 in order
to enforce numerical stability and to avoid obtaining the
trivial solution B = ~0. In order to better understand the
motivation for formulation (9) it is important to note that:

(i) minimizing
P

m=1...D Bmm implies minimizing
PD

n=1

m6=n
Smn

since Bmm >=
PD

n=1

m6=n
Smn.

(ii) Since we are implicitly minimizing
PD

n=1

m6=n
Smn, at the

optimal solution {B∗, S∗, ǫ∗} to problem (9), we have
that:

0 ≥ S∗
mn = |B∗

mn| ,∀(m,n, m 6= n)

(iii) Combining (i) and (ii) we obtain:

∀(m)B∗
mm ≥

X

n

S∗
mn =

X

n

|B∗
mn|

which implies that B∗ is diagonal dominant and hence
positive semidefinite.

This last formulation works quite effectively as indicated by
the numerical examples presented in the next section.

5. EXPERIMENTAL EVALUATION
This section presents numerical results obtained by applying
the above formulation to the problem of learning metrics.

5.1 Experimental Setting
We tested our approach in a collection of nine publicly avail-
able datasets. These datasets are part of the UCI repository
4. The overall properties of the datasets are shown in Table
3. These datasets are commonly used in machine learning
tasks as benchmark for performance evaluation. In partic-
ular, a related, competing approach [17] (Xing et al.) was

4http://www.ics.uci.edu/∼mlearn/MLRepository.html

evaluated using these datasets. We have chosen to compare
our formulation against this method. In addition to being
a state-of-the art method, several other reasons motivated
this choice: the code has been made public 5 and, like our
approach, it attempts to find a linear transformation of the
original space and it is supervised (learns from user input).
In addition this method compared well against K-means by
finding a distance function that produced good clusterings.

The datasets employed in this comparison are generally used
for classification since class labels are available for every
point. Our method does not require class labels, but in-
stead only relative distance comparison among a subset of
points (clearly class labels provide more information). We
use the available class labels to generate a set of triples with
distance comparisons that respect the classes. More explic-
itly, given a randomly chosen set of three points (from the
training set), if two of these belong to the same class and a
third belongs to a different class, then we place this triple in
our set T (i.e., i and j are the points in the same class, k is
the remaining point). In other words, in order to make use
of the available class labels, we decided to make points in the
same class have smaller pairwise distance among themselves
than with points in any of the other classes (after projected
by A). In [17], the supervision is in the form of two sets, one
called a similar set and the other a dissimilar set. Again we
use the class labels, now to build a similar set of pairs (like-
wise for a dissimilar set of pairs). Given this supervision,
this method should also attempt to make points in the same
class closer after an optimal Malahanobis distance matrix is
found.

For every triple (i, j, k) ∈ T used in our approach for learn-
ing, we use (i, j) ∈ S and (i, k) ∈ D for learning in [17];
where S and D are the similar and dissimilar sets required.
We believe this provides a fair level of supervision for both
algorithms since roughly the same information is provided.
It is possible to obtain a superset of T from S and D, and
by construction S and D can be obtained from T .

In order to evaluate performance, we use a 0.85/0.15 split
of the data into training and testing. From the training
portion, we generate 5000 triples,as explained above, for ac-
tual training. This information is provided, in the appro-
priate representation, to both algorithms. For testing, we
randomly choose three points, and if their class labels imply
that any two points are closer to each other than to a third
(i.e., again if two points have the same class and a third
has a different class label), then we check that the correct
relationships are satisfied. That is, whether the two points
in the same class are closer to each other than any of these
points (chosen at random) to the third point. This same
measure is used for both algorithms. Thus, we define the
percentage correct simply as the proportion of points from
the test set (sampled at random) that respect the class-
implied distance relationship. Both methods compared are
attempting to improve this performance measure given the
training data and thus we believe this is a valid measure.

5Data for all experiments and code for [17] was downloaded
from http://www.cs.cmu.edu/∼epxing/papers/. The class
for dataset 1 was obtained by thresholding the median value
attribute to 25K

5.2 Discussion
Since our method requires setting the balancing parameter
λ, we chose it using cross validation (on the training set) by
letting λ take values in {10−4, 10−3, 10−2, 10−1, 1, 10, 102}.
This indirectly influences d, the optimal number of dimen-
sions the data should be projected to, since a small λ fa-
vors low-dimensionality (i.e., a λ close to zero practically
ignores the number of non-zero dimensions and concentrate
on just fitting the data). However, note that λ does not
imply dimensionality since the dimensionality depends on
the dataset itself. This automatic choice of dimensionality
is a valuable property of the method presented, and to the
best of our knowledge is not present in the related methods
(with the exception, to some degree, of [1]). Fig. 1 shows the
average optimal number found by this process in a 10 fold
experiment and the corresponding one-standard-deviation
error bars. Note than in some cases the reduction is consid-
erable large and this reduction depends on the properties of
the dataset.

Fig. 1 shows the percentage correct averaged over 10 random
splits of the data along with one-standard-deviation bars.
For each of the 10 fold, 1000 triples from the test set are
randomly chosen. When comparing the performance of both
methods, we note that, except for dataset 5, our method
clearly outperforms the competing approach. Interestingly,
for this dataset, the optimal dimension was determined to
always (for all randomly chosen data splits) be equal to the
original dimensionality (four dimensions).

Since both methods can be seen as trying to learn a Maha-
lanobis distance so that distance constraints are satisfied, we
believe the main reason for a superior performance is related
to the possibility to identify a lower dimensional projection
spaces. The method presented in this paper always attempt
to reduce the dimensionality while the competing method
always use all the dimensions. Given the results obtained,
this reduction appears to provide an important advantage
at the time of generalization. It is generally accepted that a
simpler model (i.e., one with less parameters) is preferable
(e.g., [3]) and it can reduce overfitting.

From a computational efficiency perspective, being able to
represent the original data more succinctly is also advanta-
geous. In particular, when distances can be calculated di-
rectly using a low dimensional representation, computation
time savings are critical for on-line applications. The projec-
tion step in this approach can be precomputed off-line; for
example in retrieval applications (e.g., query-by-example),
the objects can be stored in their low dimensional represen-
tation. From a conceptual point of view, our approach also
has the advantage, over other methods, of providing a more
effective tool for understanding the data since it can identify
whether variables (dimensions) are of high or low relevance.

6. CONCLUSIONS
We have developed a new approach for learning distance
functions from a set of relative distance relationships. An
important property of this approach is that it targets lower
dimensional representations, and the dimensionality is de-
termined automatically depending on the characteristics of
dataset in question and a balancing parameter λ. A key
distinction is that, unlike a large number of dimensional-

Table 3: Benchmark Datasets
Name Points (N) Dimensions (D) Classes

1 Housing-Boston 506 13 2
2 Ionosphere 351 34 2
3 Iris 150 4 3
4 Wine 178 13 3
5 Balance Scale 625 4 3
6 Breast-Cancer Wisconsin 569 30 2
7 Soybean Small 47 35 4
8 Protein 116 20 6
9 Pima Diabetes 768 8 2

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset number

%
 c

or
re

ct
 d

is
ta

nc
e

re
la

tio
ns

hi
p

(×
 1

00
)

Figure 1: Performance comparison between competing

approach and our approach in nine UCI datasets. Bars

show performance results on 10 random splits of train-

ing/test points. Performance is measured in terms of the

percentage of randomly chosen points (1000) from test

set whose distance relationship respect the class labels.

The number of triples used for training for all runs was

5000. Error bars show one standard deviation.

ity reduction approaches, our approach does not attempt to
build an isometry or distance preserving mapping6, but to
respect the proximity relationships between pairs of points.
We believe this allows for more freedom at finding lower
dimensional representations.

We considered the general problem and then designed spe-
cific formulations that allow the use of efficient convex opti-
mization algorithms. In particular, we showed how the diag-
onal dominance constraint on B = A⊤A leads to a general
formulation that can be solved very efficiently using linear
programming methods.

Our approach can also be seen as a form of supervised di-
mensionality reduction, where the supervision comes in the

6For example by minimizing distortion

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

Dataset number

N
um

be
r

of
 d

im
en

si
on

s

Total #dims
Optimal #dims

Figure 2: Total number of dimensions and average num-

ber of dimensions (along with one-standard-deviation er-

ror bars) found by our algorithm for each dataset.

form of distance rankings.

The results from the experimental evaluation show that our
method can outperform in accuracy state-of-the-art approaches,
with the additional benefit of finding low dimensional rep-
resentations.

Being able to find a distance that depends on a relatively
small number of features allows to define kernels and/or
similarity matrices for classification (in kernel methods like
SVM, logistic regression, etc.) also depending in an small
number of features. For example, instead of using the stan-
dard Gaussian kernel (µ is the Gaussian kernel parameter):

(K(X, Y))ij = e−µ‖Xi
⊤−Y·j‖

2

, i = 1 . . . , m, j = 1 . . . , k,

that depends on all the features, including irrelevant features
for classification, we could use a modified Gaussian kernel
as follows:

(K̄(X, Y))ij = e−µ‖A(Xi
⊤−Y·j)‖2

, i = 1 . . . , m, j = 1 . . . , k,

that would only depends on relevant features. This simple

but powerful change may increase classification performance
considerably. This is part of our future work.

Another idea worth exploring is the application of LP-boost
algorithms [2] to allow our method the handling of datasets
in very high dimensional spaces.

To finalize, we would like to highlight the fact that the tech-
nique applied in this paper to approximate an SDP prob-
lem by a linear programming problem (which is much easier
to solve) has the potential to be applied to other recently
proposed machine learning related problems involving PSD
formulations.

7. REFERENCES
[1] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios.

Boostmap: A method for efficient approximate
similarity rankings. In Computer Vision and Pattern
Recognition, 2004.

[2] K. P. Bennett, A. Demiriz, and J. Shawe-Taylor. A
column generation algorithm for boosting. In Proc.
17th International Conf. on Machine Learning, pages
65–72. Morgan Kaufmann, San Francisco, CA, 2000.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Occam’s razor. Information Processing
Letters, 24:377–380, 1987.

[4] P. S. Bradley and O. L. Mangasarian. Feature
selection via concave minimization and support vector
machines. In J. Shavlik, editor, Machine Learning
Proceedings of the Fifteenth International
Conference(ICML ’98), pages 82–90, San Francisco,
California, 1998. Morgan Kaufmann.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-
03.ps.

[5] T. Cox and M. Cox. Multidimensional Scaling.
Chapman & Hall, London, 1994.

[6] C. Faloutsos and K. Lin. Fastmap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. ACM SIGMOD,
pages 163–174, 1995.

[7] G. Fung, O. L. Mangasarian, and A. Smola. Minimal
kernel classifiers. Journal of Machine Learning
Research, pages 303–321, 2002. University of
Wisconsin Data Mining Institute Technical Report
00-08, November 200,
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-08.ps.

[8] G. H. Golub and C. F. Van Loan. Matrix
Computations. The John Hopkins University Press,
Baltimore, Maryland, 3rd edition, 1996.

[9] I. Jolliffe. Principal Component Analysis.
Springer-Verlag, New York, 1989.

[10] K.Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In International Conference on Machine
Learning, 2001.

[11] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[12] M. Schultz and T. Joachims. Learning a distance
metric from relative comparisons. In Advances in
Neural Information Processing Systems, 2003.

[13] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2323,
2000.

[14] K. C. Toh, M. J. Todd, and R. Tutuncu. SDPT3 — a
Matlab software package for semidefinite
programming. Optimization Methods and Software,
11:545–581, 1999.

[15] K. Weinberger, J. Blitzer, and L. Saul. Distance
metric learning for large margin nearest neighbor
classification. In Advances in Neural Information
Processing Systems 18, 2006.

[16] K. Q. Weinberger, B. D. Packer, and L. K. Saul.
Unsupervised learning of image manifolds by
semidefinite programming. In Proceedings of the Tenth
International Workshop on Artificial Intelligence and
Statistics, Barbados, January 2005.

[17] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance
metric learning, with application to clustering with
side information. In Advances in Neural Information
Processing Systems, 2002.

