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ABSTRACT

We propose a practical method for L0 norm regularization for neural networks:
pruning the network during training by encouraging weights to become exactly
zero. Such regularization is interesting since (1) it can greatly speed up training
and inference, and (2) it can improve generalization. AIC and BIC, well-known
model selection criteria, are special cases of L0 regularization. However, since
the L0 norm of weights is non-differentiable, we cannot incorporate it directly
as a regularization term in the objective function. We propose a solution through
the inclusion of a collection of non-negative stochastic gates, which collectively
determine which weights to set to zero. We show that, somewhat surprisingly,
for certain distributions over the gates, the expected L0 regularized objective is
differentiable with respect to the distribution parameters. We further propose the
hard concrete distribution for the gates, which is obtained by “stretching” a binary
concrete distribution and then transforming its samples with a hard-sigmoid. The
parameters of the distribution over the gates can then be jointly optimized with the
original network parameters. As a result our method allows for straightforward and
efficient learning of model structures with stochastic gradient descent and allows
for conditional computation in a principled way. We perform various experiments
to demonstrate the effectiveness of the resulting approach and regularizer.

1 INTRODUCTION

Deep neural networks are flexible function approximators that have been very successful in a
broad range of tasks. They can easily scale to millions of parameters while allowing for tractable
optimization with mini-batch stochastic gradient descent (SGD), graphical processing units (GPUs)
and parallel computation. Nevertheless they do have drawbacks. Firstly, it has been shown in
recent works (Han et al., 2015; Ullrich et al., 2017; Molchanov et al., 2017) that they are greatly
overparametrized as they can be pruned significantly without any loss in accuracy; this exhibits
unnecessary computation and resources. Secondly, they can easily overfit and even memorize random
patterns in the data (Zhang et al., 2016), if not properly regularized. This overfitting can lead to poor
generalization in practice.

A way to address both of these issues is by employing model compression and sparsification tech-
niques. By sparsifying the model, we can avoid unnecessary computation and resources, since
irrelevant degrees of freedom are pruned away and do not need to be computed. Furthermore, we
reduce its complexity, thus penalizing memorization and alleviating overfitting.

A conceptually attractive approach is the L0 norm regularization of (blocks of) parameters; this
explicitly penalizes parameters for being different than zero with no further restrictions. However,
the combinatorial nature of this problem makes for an intractable optimization for large models.

In this paper we propose a general framework for surrogate L0 regularized objectives. It is realized
by smoothing the expected L0 regularized objective with continuous distributions in a way that can
maintain the exact zeros in the parameters while still allowing for efficient gradient based optimization.
This is achieved by transforming continuous random variables (r.v.s) with a hard nonlinearity, the
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Figure 1: Lp norm penalties for a parameter θ according to different values of p. It is easily observed
that both weight decay and Lasso, p = 2 and p = 1 respectively, impose shrinkage for large values of
θ. By gradually allowing p < 1 we observe that the shrinkage is reduced and at the limit of p = 0 we
observe that the penalty is a constant for θ 6= 0.

hard-sigmoid. We further propose and employ a novel distribution obtained by this procedure; the
hard concrete. It is obtained by “stretching” a binary concrete random variable (Maddison et al.,
2016; Jang et al., 2016) and then passing its samples through a hard-sigmoid. We demonstrate the
effectiveness of this simple procedure in various experiments.

2 MINIMIZING THE L0 NORM OF PARAMETRIC MODELS

One way to sparsify parametric models, such as deep neural networks, with the least assumptions
about the parameters is the following; let D be a dataset consisting of N i.i.d. input output pairs
{(x1,y1), . . . , (xN ,yN )} and consider a regularized empirical risk minimization procedure with an
L0 regularization on the parameters θ of a hypothesis (e.g. a neural network) h(·;θ)1:

R(θ) =
1

N

( N
∑

i=1

L
(

h(xi;θ),yi

)

)

+ λ‖θ‖0, ‖θ‖0 =

|θ|
∑

j=1

I[θj 6= 0], (1)

θ∗ = argmin
θ

{R(θ)},

where |θ| is the dimensionality of the parameters, λ is a weighting factor for the regularization and
L(·) corresponds to a loss function, e.g. cross-entropy loss for classification or mean-squared error for
regression. The L0 norm penalizes the number of non-zero entries of the parameter vector and thus
encourages sparsity in the final estimates θ∗. The Akaike Information Criterion (AIC) (Akaike, 1998)
and the Bayesian Information Criterion (BIC) (Schwarz et al., 1978), well-known model selection
criteria, correspond to specific choices of λ. Notice that the L0 norm induces no shrinkage on the
actual values of the parameters θ; this is in contrast to e.g. L1 regularization and the Lasso (Tibshirani,
1996), where the sparsity is due to shrinking the actual values of θ. We provide a visualization of this
effect in Figure 1.

Unfortunately, optimization under this penalty is computationally intractable due to the non-

differentiability and combinatorial nature of 2|θ| possible states of the parameter vector θ. How can
we relax the discrete nature of the L0 penalty such that we allow for efficient continuous optimization
of Eq. 1, while allowing for exact zeros in the parameters? This section will present the necessary
details of our approach.

1This assumption is just for ease of explanation; our proposed framework can be applied to any objective
function involving parameters.
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2.1 A GENERAL RECIPE FOR EFFICIENTLY MINIMIZING L0 NORMS

Consider the L0 norm under a simple re-parametrization of θ:

θj = θ̃jzj , zj ∈ {0, 1}, θ̃j 6= 0, ‖θ‖0 =

|θ|
∑

j=1

zj , (2)

where the zj correspond to binary “gates” that denote whether a parameter is present and the L0

norm corresponds to the amount of gates being “on”. By letting q(zj |πj) = Bern(πj) be a Bernoulli
distribution over each gate zj we can reformulate the minimization of Eq. 1 as penalizing the number
of parameters being used, on average, as follows:

R(θ̃,π) = Eq(z|π)

[

1

N

( N
∑

i=1

L
(

h(xi; θ̃ ⊙ z),yi

)

)]

+ λ

|θ|
∑

j=1

πj , (3)

θ̃
∗
,π∗ = argmin

θ̃,π

{R(θ̃,π)},

where ⊙ corresponds to the elementwise product. The objective described in Eq. 3 is in fact a special
case of a variational bound over the parameters involving spike and slab (Mitchell & Beauchamp,
1988) priors and approximate posteriors; we refer interested readers to appendix A.

Now the second term of the r.h.s. of Eq. 3 is straightforward to minimize however the first term
is problematic for π due to the discrete nature of z, which does not allow for efficient gradient
based optimization. While in principle a gradient estimator such as the REINFORCE (Williams,
1992) could be employed, it suffers from high variance and control variates (Mnih & Gregor, 2014;
Mnih & Rezende, 2016; Tucker et al., 2017), that require auxiliary models or multiple evaluations
of the network, have to be employed. Two simpler alternatives would be to use either the straight-
through (Bengio et al., 2013) estimator as done at Srinivas et al. (2017) or the concrete distribution
as e.g. at Gal et al. (2017). Unfortunately both of these approach have drawbacks; the first one
provides biased gradients due to ignoring the Heaviside function in the likelihood during the gradient
evaluation whereas the second one does not allow for the gates (and hence parameters) to be exactly
zero during optimization, thus precluding the benefits of conditional computation (Bengio et al.,
2013).

Fortunately, there is a simple alternative way to smooth the objective such that we allow for efficient
gradient based optimization of the expected L0 norm along with zeros in the parameters θ. Let s be a
continuous random variable with a distribution q(s) that has parameters φ. We can now let the gates
z be given by a hard-sigmoid rectification of s2, as follows:

s ∼ q(s|φ) (4)

z = min(1,max(0, s)). (5)

This would then allow the gate to be exactly zero and, due to the underlying continuous random
variable s, we can still compute the probability of the gate being non-zero (active). This is easily
obtained by the cumulative distribution function (CDF) Q(·) of s:

q(z 6= 0|φ) = 1−Q(s ≤ 0|φ), (6)

i.e. it is the probability of the s variable being positive. We can thus smooth the binary Bernoulli
gates z appearing in Eq. 3 by employing continuous distributions in the aforementioned way:

R(θ̃,φ) = Eq(s|φ)

[

1

N

( N
∑

i=1

L
(

h(xi; θ̃ ⊙ g(s)),yi

)

)]

+ λ

|θ|
∑

j=1

(

1−Q(sj ≤ 0|φj)
)

, (7)

θ̃
∗
,φ∗ = argmin

θ̃,φ

{R(θ̃,φ)}, g(·) = min(1,max(0, ·)).

Notice that this is a close surrogate to the original objective function in Eq. 3, as we similarly have a
cost that explicitly penalizes the probability of a gate being different from zero. Now for continuous

2We chose to employ a hard-sigmoid instead of a rectifier, g(·) = max(0, ·), so as to have the variable z
better mimic a binary gate (rather than a scale variable).
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distributions q(s) that allow for the reparameterization trick (Kingma & Welling, 2014; Rezende
et al., 2014) we can express the objective in Eq. 7 as an expectation over a parameter free noise
distribution p(ǫ) and a deterministic and differentiable transformation f(·) of the parameters φ and ǫ:

R(θ̃,φ) = Ep(ǫ)

[

1

N

( N
∑

i=1

L
(

h(xi; θ̃ ⊙ g(f(φ, ǫ))),yi

)

)]

+ λ

|θ|
∑

j=1

(

1−Q(sj ≤ 0|φj)
)

, (8)

which allows us to make the following Monte Carlo approximation to the (generally) intractable
expectation over the noise distribution p(ǫ):

R̂(θ̃,φ) =
1

L

L
∑

l=1

(

1

N

( N
∑

i=1

L
(

h(xi; θ̃ ⊙ z(l)),yi

)

))

+ λ

|θ|
∑

j=1

(

1−Q(sj ≤ 0|φj)
)

= LE(θ̃,φ) + λLC(φ), where z(l) = g(f(φ, ǫ(l))) and ǫ(l) ∼ p(ǫ). (9)

LE corresponds to the error loss that measures how well the model is fitting the current dataset
whereas LC refers to the complexity loss that measures the flexibility of the model. Crucially, the
total cost in Eq. 9 is now differentiable w.r.t. φ, thus enabling for efficient stochastic gradient based
optimization, while still allowing for exact zeros at the parameters. One price we pay is that now
the gradient of the log-likelihood w.r.t. the parameters φ of q(s) is sparse due to the rectifications;
nevertheless this should not pose an issue considering the prevalence of rectified linear units in neural
networks. Furthermore, due to the stochasticity at s the hard-sigmoid gate z is smoothed to a soft
version on average, thus allowing for gradient based optimization to succeed, even when the mean
of s is negative or larger than one. An example visualization can be seen in Figure 2b. It should be
noted that a similar argument was also shown at Bengio et al. (2013), where with logistic noise a
rectifier nonlinearity was smoothed to a softplus3 on average.

2.2 THE HARD CONCRETE DISTRIBUTION

The framework described in Section 2.1 gives us the freedom to choose an appropriate smoothing
distribution q(s). A choice that seems to work well in practice is the following; assume that we have
a binary concrete (Maddison et al., 2016; Jang et al., 2016) random variable s distributed in the (0, 1)
interval with probability density qs(s|φ) and cumulative density Qs(s|φ). The parameters of the
distribution are φ = (logα, β), where logα is the location and β is the temperature. We can “stretch”
this distribution to the (γ, ζ) interval, with γ < 0 and ζ > 1, and then apply a hard-sigmoid on its
random samples:

u ∼ U(0, 1), s = Sigmoid
(

(log u− log(1− u) + logα)/β
)

, s̄ = s(ζ − γ) + γ, (10)

z = min(1,max(0, s̄)). (11)

This would then induce a distribution where the probability mass of qs̄(s̄|φ) on the negative values,
Qs̄(0|φ), is “folded” to a delta peak at zero, the probability mass on values larger than one, 1 −
Qs̄(1|φ), is “folded” to a delta peak at one and the original distribution qs̄(s̄|φ) is truncated to the (0,
1) range. We provide more information and the density of the resulting distribution at the appendix.

Notice that a similar behavior would have been obtained even if we passed samples from any other
distribution over the real line through a hard-sigmoid. The only requirement of the approach is
that we can evaluate the CDF of s̄ at 0 and 1. The main reason for picking the binary concrete is
its close ties with Bernoulli r.v.s. It was originally proposed at Maddison et al. (2016); Jang et al.
(2016) as a smooth approximation to Bernoulli r.vs, a fact that allows for gradient based optimization
of its parameters through the reparametrization trick. The temperature β controls the degree of
approximation, as with β = 0 we can recover the original Bernoulli r.v. (but lose the differentiable
properties) whereas with 0 < β < 1 we obtain a probability density that concentrates its mass
near the endpoints (e.g. as shown in Figure 2a). As a result, the hard concrete also inherits the
same theoretical properties w.r.t. the Bernoulli distribution. Furthermore, it can serve as a better
approximation of the discrete nature, since it includes {0, 1} in its support, while still allowing for
(sub)gradient optimization of its parameters due to the continuous probability mass that connects
those two values. We can also view this distribution as a “rounded" version of the original binary

3f(x) = log(1 + exp(x)).
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(a) (b)

Figure 2: (a) The binary concrete distribution with location logα = 0 and temperature β = 0.5
and the hard concrete equivalent distribution obtained by stretching the concrete distribution to
(γ = −0.1, ζ = 1.1) and then applying a hard-sigmoid. Under this specification the hard concrete
distribution assigns, roughly, half of its mass to {0, 1} and the rest to (0, 1). (b) The expected value
of the afforementioned concrete and hard concrete gate as a function of the location logα, obtained
by averaging 10000 samples. We also added the value of the gates obtained by removing the noise
entirely. We can see that the noise smooths the hard-sigmoid to a sigmoid on average.

concrete, where values larger than 1−γ
ζ−γ

are rounded to one whereas values smaller than −γ
ζ−γ

are

rounded to zero. We provide an example visualization of the hard concrete distribution in Figure 2a.

The L0 complexity loss of the objective in Eq. 9 under the hard concrete r.v. is conveniently expressed
as follows:

LC =

|θ|
∑

j=1

(

1−Qs̄j (0|φ)
)

=

|θ|
∑

j=1

Sigmoid
(

logαj − β log
−γ

ζ

)

. (12)

At test time we use the following estimator for the final parameters θ∗ under a hard concrete gate:

ẑ = min(1,max(0, Sigmoid(logα)(ζ − γ) + γ)), θ∗ = θ̃
∗
⊙ ẑ. (13)

2.3 COMBINING THE L0 NORM WITH OTHER NORMS

While the L0 norm leads to sparse estimates without imposing any shrinkage on θ it might still
be desirable to impose some form of prior assumptions on the values of θ with alternative norms,
e.g. impose smoothness with the L2 norm (i.e. weight decay). In the following we will show how
this combination is feasible for the L2 norm. The expected L2 norm under the Bernoulli gating
mechanism can be conveniently expressed as:

Eq(z|π)

[

‖θ‖22
]

=

|θ|
∑

j=1

Eq(zj |πj)

[

z2j θ̃
2
j

]

=

|θ|
∑

j=1

πj θ̃
2
j , (14)

where πj corresponds to the success probability of the Bernoulli gate zj . To maintain a similar
expression with our smoothing mechanism, and avoid extra shrinkage for the gates zj , we can take
into account that the standard L2 norm penalty is proportional to the negative log density of a zero
mean Gaussian prior with a standard deviation of σ = 1. We will then assume that the σ for each θ is
governed by z in a way that when z = 0 we have that σ = 1 and when z > 0 we have that σ = z. As

a result, we can obtain the following expression for the L2 penalty (where θ̂ = θ
σ

):

Eq(z|φ)

[

‖θ̂‖22
]

=

|θ|
∑

j=1

(

Qs̄j (0|φj)
0

1
+
(

1−Qs̄j (0|φj)
)

Eq(zj |φj ,s̄j>0)

[

θ̃2j✓✓z
2
j

✓✓z
2
j

])

=

|θ|
∑

j=1

(

1−Qs̄j (0|φj)
)

θ̃2j . (15)
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2.4 GROUP SPARSITY UNDER AN L0 NORM

For reasons of computational efficiency it is usually desirable to perform group sparsity instead
of parameter sparsity, as this can allow for practical computation savings. For example, in neural
networks speedups can be obtained by employing a dropout (Srivastava et al., 2014) like procedure
with neuron sparsity in fully connected layers or feature map sparsity for convolutional layers (Wen
et al., 2016; Louizos et al., 2017; Neklyudov et al., 2017). This is straightforward to do with hard
concrete gates; simply share the gate between all of the members of the group. The expected L0 and,
according to section 2.3, L2 penalties in this scenario can be rewritten as:

Eq(z|φ)

[

‖θ‖0

]

=

|G|
∑

g=1

|g|

(

1−Q(sg ≤ 0|φg)

)

(16)

Eq(z|φ)

[

‖θ̂‖22

]

=

|G|
∑

g=1

(

(

1−Q(sg ≤ 0|φg)
)

|g|
∑

j=1

θ̃2j

)

. (17)

where |G| corresponds to the number of groups and |g| corresponds to the number of parameters of
group g. For all of our subsequent experiments we employed neuron sparsity, where we introduced a
gate per input neuron for fully connected layers and a gate per output feature map for convolutional
layers. Notice that in the interpretation we adopt the gate is shared across all locations of the feature
map for convolutional layers, akin to spatial dropout (Tompson et al., 2015). This can lead to
practical computation savings while training, a benefit which is not possible with the commonly used
independent dropout masks per spatial location (e.g. as at Zagoruyko & Komodakis (2016)).

3 RELATED WORK

Compression and sparsification of neural networks has recently gained much traction in the deep
learning community. The most common and straightforward technique is parameter / neuron prun-
ing (LeCun et al., 1990) according to some criterion. Whereas weight pruning (Han et al., 2015;
Ullrich et al., 2017; Molchanov et al., 2017) is in general inefficient for saving computation time,
neuron pruning (Wen et al., 2016; Louizos et al., 2017; Neklyudov et al., 2017) can lead to computa-
tion savings. Unfortunately, all of the aforementioned methods require training the original dense
network thus precluding the benefits we can obtain by having exact sparsity on the computation
during training. This is in contrast to our approach where sparsification happens during training, thus
theoretically allowing conditional computation to speed-up training (Bengio et al., 2013; 2015).

Emulating binary r.v.s with rectifications of continuous r.v.s is not a new concept and has been
previously done with Gaussian distributions in the context of generative modelling (Hinton &
Ghahramani, 1997; Harva & Kabán, 2007; Salimans, 2016) and with logistic distributions at (Bengio
et al., 2013) in the context of conditional computation. These distributions can similarly represent the
value of exact zero, while still maintaining the tractability of continuous optimization. Nevertheless,
they are sub-optimal when we require approximations to binary r.v.s (as is the case for the L0 penalty);
we cannot represent the bimodal behavior of a Bernoulli r.v. due to the fact that the underlying
distribution is unimodal. Another technique that allows for gradient based optimization of discrete
r.v.s are the smoothing transformations proposed by Rolfe (2016). There the core idea is that if a
model has binary latent variables, then we can smooth them with continuous noise in a way that allows
for reparametrization gradients. There are two main differences with the hard concrete distribution
we employ here; firstly, the double rectification of the hard concrete r.v.s allows us to represent the
values of exact zero and one (instead of just zero) and, secondly, due to the underlying concrete
distribution the random samples from the hard concrete will better emulate binary r.v.s.

4 EXPERIMENTS

We validate the effectiveness of our method on two tasks. The first corresponds to the toy classification
task of MNIST using a simple multilayer perceptron (MLP) with two hidden layers of size 300
and 100 (LeCun et al., 1998), and a simple convolutional network, the LeNet-5-Caffe4. The second

4https://github.com/BVLC/caffe/tree/master/examples/mnist
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corresponds to the more modern task of CIFAR 10 and CIFAR 100 classification using Wide Residual
Networks (Zagoruyko & Komodakis, 2016). For all of our experiments we set γ = −0.1, ζ = 1.1
and, following the recommendations from Maddison et al. (2016), set β = 2/3 for the concrete
distributions. We initialized the locations logα by sampling from a normal distribution with a
standard deviation of 0.01 and a mean that yields α

α+1 to be approximately equal to the original

dropout rate employed at each of the networks. We used a single sample of the gate z for each
minibatch of datapoints during the optimization, even though this can lead to larger variance in the
gradients (Kingma et al., 2015). In this way we show that we can obtain the speedups in training with
practical implementations, without actually hurting the overall performance of the network.

4.1 MNIST CLASSIFICATION AND SPARSIFICATION

For these experiments we did no further regularization besides the L0 norm and optimization was
done with Adam (Kingma & Ba, 2014) using the default hyper-parameters and temporal averaging.
We can see at Table 1 that our approach is competitive with other methods that tackle neural network
compression. However, it is worth noting that all of these approaches prune the network post-training
using thresholds while requiring training the full network. We can further see that our approach
minimizes the amount of parameters more at layers where the gates affect a larger part of the cost;
for the MLP this corresponds to the input layer whereas for the LeNet5 this corresponds to the
first fully connected layer. In contrast, the methods with sparsity inducing priors (Louizos et al.,
2017; Neklyudov et al., 2017) sparsify parameters irrespective of that extra cost (since they are only
encouraged by the prior to move parameters to zero) and as a result they achieve similar sparsity on all
of the layers. Nonetheless, it should be mentioned that we can in principle increase the sparsification
on specific layers simply by specifying a separate λ for each layer, e.g. by increasing the λ for gates
that affect less parameters. We provide such results at the “λ sep.” rows.

Table 1: Comparison of the learned architectures and performance of the baselines from Louizos
et al. (2017) and the proposed L0 minimization under L0hc

. We show the amount of neurons left
after pruning with the estimator in Eq. 13 along with the error in the test set after 200 epochs. N
denotes the number of training datapoints.

Network & size Method Pruned architecture Error (%)

MLP Sparse VD (Molchanov et al., 2017) 512-114-72 1.8
784-300-100 BC-GNJ (Louizos et al., 2017) 278-98-13 1.8

BC-GHS (Louizos et al., 2017) 311-86-14 1.8

L0hc
, λ = 0.1/N 219-214-100 1.4

L0hc
, λ sep. 266-88-33 1.8

LeNet-5-Caffe Sparse VD (Molchanov et al., 2017) 14-19-242-131 1.0
20-50-800-500 GL (Wen et al., 2016) 3-12-192-500 1.0

GD (Srinivas & Babu, 2016) 7-13-208-16 1.1
SBP (Neklyudov et al., 2017) 3-18-284-283 0.9
BC-GNJ (Louizos et al., 2017) 8-13-88-13 1.0
BC-GHS (Louizos et al., 2017) 5-10-76-16 1.0

L0hc
, λ = 0.1/N 20-25-45-462 0.9

L0hc
, λ sep. 9-18-65-25 1.0

To get a better idea about the potential speedup we can obtain in training we plot in Figure 3 the
expected, under the probability of the gate being active, floating point operations (FLOPs) as a
function of the training iterations. We also included the theoretical speedup we can obtain by using
dropout (Srivastava et al., 2014) networks. As we can observe, our L0 minimization procedure that is
targeted towards neuron sparsity can potentially yield significant computational benefits compared to
the original or dropout architectures, with minimal or no loss in performance. We further observe
that there is a significant difference in the flop count for the LeNet model between the λ = 0.1/N
and λ sep. settings. This is because we employed larger values for λ (10/N and 0.5/N ) for the
convolutional layers (which contribute the most to the computation) in the λ sep. setting. As a result,
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this setting is more preferable when we are concerned with speedup, rather than network compression
(which is affected only by the number of parameters).

(a) Expected FLOPs at the MLP. (b) Expected FLOPs at LeNet5.

Figure 3: Expected number of floating point operations (FLOPs) during training for the original,
dropout and L0 regularized networks. These were computed by assuming one flop for multiplication
and one flop for addition.

4.2 CIFAR CLASSIFICATION

For WideResNets we apply L0 regularization on the weights of the hidden layer of the residual blocks,
i.e. where dropout is usually employed. We also employed an L2 regularization term as described
in Section 2.3 with the weight decay coefficient used in Zagoruyko & Komodakis (2016). For the
layers with the hard concrete gates we divided the weight decay coefficient by 0.7 to ensure that
a-priori we assume the same length-scale as the 0.3 dropout equivalent network. For optimization
we employed the procedure described in Zagoruyko & Komodakis (2016) with a minibatch of 128
datapoints, which was split between two GPUs, and used a single sample for the gates for each GPU.

Table 2: Results on the benchmark classification tasks of CIFAR 10 and CIFAR 100. All of the
baseline results are taken from Zagoruyko & Komodakis (2016). For the L0 regularized WRN we
report the median of the error on the test set after 200 epochs over 5 runs.

Network CIFAR-10 CIFAR-100

original-ResNet-110 (He et al., 2016a) 6.43 25.16
pre-act-ResNet-110 (He et al., 2016b) 6.37 -

WRN-28-10 (Zagoruyko & Komodakis, 2016) 4.00 21.18
WRN-28-10-dropout (Zagoruyko & Komodakis, 2016) 3.89 18.85

WRN-28-10-L0hc
, λ = 0.001/N 3.83 18.75

WRN-28-10-L0hc
, λ = 0.002/N 3.93 19.04

(a) (b) (c)

Figure 4: (a, b) Expected number of FLOPs during training for the dropout and L0 regularized WRNs
for CIFAR 10 (a) and CIFAR 100 (b). The original WRN is not shown as it has the same practical
FLOPs as the dropout equivalent network. (c) Train (dashed) and test (solid) error as a function of
the training epochs for dropout and L0 WRNs at CIFAR 10.
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As we can observe at Table 2, with a λ of 0.001/N the L0 regularized wide residual network improves
upon the accuracy of the dropout equivalent network on both CIFAR 10 and CIFAR 100. Furthermore,
it simultaneously allows for potential training time speedup due to gradually decreasing the number
of FLOPs, as we can see in Figures 4a, 4b. This sparsity is also obtained without any “lag" in
convergence speed, as at Figure 4c we observe a behaviour that is similar to the dropout network.
Finally, we observe that by further increasing λ we obtain a model that has a slight error increase but
can allow for a larger speedup.

5 DISCUSSION

We have described a general recipe that allows for optimizing the L0 norm of parametric models in
a principled and effective manner. The method is based on smoothing the combinatorial problem
with continuous distributions followed by a hard-sigmoid. To this end, we also proposed a novel
distribution which we coin as the hard concrete; it is a “stretched” binary concrete distribution, the
samples of which are transformed by a hard-sigmoid. This in turn better mimics the binary nature of
Bernoulli distributions while still allowing for efficient gradient based optimization. In experiments
we have shown that the proposed L0 minimization process leads to neural network sparsification that
is competitive with current approaches while theoretically allowing for speedup in training. We have
further shown that this process can provide a good inductive bias and regularizer, as on the CIFAR
experiments with wide residual networks we improved upon dropout.

As for future work; better harnessing the power of conditional computation for efficiently training
very large neural networks with learned sparsity patterns is a potential research direction. It would be
also interesting to adopt a full Bayesian treatment over the parameters θ, such as the one employed
at Molchanov et al. (2017); Louizos et al. (2017). This would then allow for further speedup and
compression due to the ability of automatically learning the bit precision of each weight. Finally, it
would be interesting to explore the behavior of hard concrete r.v.s at binary latent variable models,
since they can be used as a drop in replacement that allow us to maintain both the discrete nature as
well as the efficient reparametrization gradient optimization.
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APPENDIX

A RELATION TO VARIATIONAL INFERENCE

The objective function described in Eq. 3 is in fact a special case of a variational lower bound over
the parameters of the network under a spike and slab (Mitchell & Beauchamp, 1988) prior. The spike
and slab distribution is the golden standard in sparsity as far as Bayesian inference is concerned and
it is defined as a mixture of a delta spike at zero and a continuous distribution over the real line (e.g.
a standard normal):

p(z) = Bernoulli(π), p(θ|z = 0) = δ(θ), p(θ|z = 1) = N (θ|0, 1). (18)

Since the true posterior distribution over the parameters under this prior is intractable, we will use
variational inference (Beal, 2003). Let q(θ, z) be a spike and slab approximate posterior over the
parameters θ and gate variables z, where we assume that it factorizes over the dimensionality of the
parameters θ. It turns out that we can write the following variational free energy under the spike and

11



Published as a conference paper at ICLR 2018

slab prior and approximate posterior over a parameter vector θ:

F = −Eq(z)q(θ|z)[log p(D|θ)] +

|θ|
∑

j=1

KL(q(zj)||p(zj))+

+

|θ|
∑

j=1

(

q(zj = 1)KL(q(θj |zj = 1)||p(θj |zj = 1))+

+ q(zj = 0)KL(q(θj |zj = 0)||p(θj |zj = 0))
)

(19)

= −Eq(z)q(θ|z)[log p(D|θ)] +

|θ|
∑

j=1

KL(q(zj)||p(zj))+

+

|θ|
∑

j=1

q(zj = 1)KL(q(θj |zj = 1)||p(θj |zj = 1)), (20)

where the last step is due to KL(q(θj |zj = 0)||p(θj |zj = 0)) = 05. The term that involves
KL(q(zj)||p(zj)) corresponds to the KL-divergence from the Bernoulli prior p(zj) to the Bernoulli
approximate posterior q(zj) and KL(q(θj |zj = 1)||p(θj |zj = 1)) can be interpreted as the “code
cost” or else the amount of information the parameter θj contains about the data D, measured by the
KL-divergence from the prior p(θj |zj = 1).

Now consider making the assumption that we are optimizing, rather than integrating, over θ and
further assuming that KL(q(θj |zj = 1)||p(θj |zj = 1)) = λ. We can justify this assumption from
an empirical Bayesian procedure: there is a hypothetical prior for each parameter p(θj |zj = 1)
that adapts to q(θj |zj = 1) in a way that results into needing, approximately, λ nats to transform
p(θj |zj = 1) to that particular q(θj |zj = 1). Those λ nats are thus the amount of information the
q(θj |zj = 1) can encode about the data had we used that p(θj |zj = 1) as the prior. Notice that under
this view we can consider λ as the amount of flexibility of that hypothetical prior; with λ = 0 we
have a prior that is flexible enough to represent exactly q(θj |zj = 1), thus resulting into no code cost
and possible overfitting. Under this assumption the variational free energy can be re-written as:

F = −Eq(z)[log p(D|θ̃ ⊙ z)] +

|θ|
∑

j=1

KL(q(zj)||p(zj)) + λ

|θ|
∑

j=1

q(zj = 1) (21)

≥ −Eq(z)[log p(D|θ̃ ⊙ z)] + λ

|θ|
∑

j=1

πj , (22)

where θ̃ corresponds to the optimized θ and the last step is due to the positivity of the KL-divergence.
Now by taking the negative log-probability of the data to be equal to the loss L(·) of Eq. 1 we see that
Eq. 22 is the same as Eq. 3. Note that in case that we are interested over the uncertainty of the gates
z, we should optimize Eq. 21, rather than Eq. 22, as this will properly penalize the entropy of q(z).
Furthermore, Eq. 21 also allows for the incorporation of prior information about the behavior of the
gates (e.g. gates being active 10% of the time, on average). We have thus shown that the expected L0

minimization procedure is in fact a close surrogate to a variational bound involving a spike and slab
distribution over the parameters and a fixed coding cost for the parameters when the gates are active.

B THE HARD CONCRETE DISTRIBUTION

As mentioned in the main text, the hard concrete is a straightforward modification of the binary
concrete (Maddison et al., 2016; Jang et al., 2016); let qs(s|φ) be the probability density function

5We can see that this is indeed the case by taking the limit of σ → 0 of the KL divergence of two Gaussians
that have the same mean and variance.
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(pdf) and Qs(s|φ) the cumulative distribution function (CDF) of a binary concrete random variable s:

qs(s|φ) =
βαs−β−1(1− s)−β−1

(αs−β + (1− s)−β)2
, (23)

Qs(s|φ) = Sigmoid((log s− log(1− s))β − logα). (24)

Now by stretching this distribution to the (γ, ζ) interval, with γ < 0 and ζ > 1 we obtain s̄ =
s(ζ − γ) + γ with the following pdf and CDF:

qs̄(s̄|φ) =
1

|ζ − γ|
qs

(

s̄− γ

ζ − γ

∣

∣

∣

∣

φ

)

, Qs̄(s̄|φ) = Qs

(

s̄− γ

ζ − γ

∣

∣

∣

∣

φ

)

. (25)

and by further rectifying s̄ with the hard-sigmoid, z = min(1,max(0, s̄)), we obtain the following
distribution over z:

q(z|φ) = Qs̄(0|φ)δ(z) + (1−Qs̄(1|φ))δ(z − 1) + (Qs̄(1|φ)−Qs̄(0|φ))qs̄(z|s̄ ∈ (0, 1), φ),
(26)

which is composed by a delta peak at zero with probability Qs̄(0|φ), a delta peak at one with
probability 1−Qs̄(1|φ), and a truncated version of qs̄(s̄|φ) in the (0, 1) range.

C NEGATIVE KL-DIVERGENCE FOR HARD CONCRETE DISTRIBUTIONS

In case th 21 is to be optimized with a hard concrete q(z) then we have to compute the KL-divergence
from a prior p(z) to q(z). It is necessary for the prior p(z) to have the same support as q(z) in order
for the KL-divergence to be valid; as a result we can let the prior p(z) similarly be a hard-sigmoid
transformation of an arbitrary continuous distribution p(s̄) with CDF Ps̄(s̄):

p(z) = Ps̄(0)δ(z) + (1− Ps̄(1))δ(z − 1) + (Ps̄(1)− Ps̄(0))ps̄(z|s̄ ∈ (0, 1)) (27)

Since both q(z) and p(z) are mixtures with the same number of components we can use the chain
rule of relative entropy (Cover & Thomas, 2012; Hershey & Olsen, 2007) in order to compute the
KL-divergence:

KL(q(z)||p(z)) = Qs̄(0) log
Qs̄(0)

Ps̄(0)
+ (1−Qs̄(1)) log

1−Qs̄(1)

1− Ps̄(1)
+

+ (Qs̄(1)−Qs̄(0))Eqs̄(z|s̄∈(0,1))[log qs̄(z)− log ps̄(z)], (28)

where s̄ corresponds to the the pre-rectified variable. Notice that in case that the integral under the
truncated distribution q(s̄|s̄ ∈ (0, 1)) is not available in closed form we can still obtain a Monte Carlo
estimate by sampling the truncated distribution, on e.g. a (γ, ζ) interval, via the inverse transform
method:

u ∼ U(0, 1), z = Q−1
s̄

(

Qs̄(γ) + u(Qs̄(ζ)−Qs̄(γ))
)

, (29)

where Q−1
s̄ (·) corresponds to the quantile function and Qs̄(·) to the CDF of the random variable s̄.

Furthermore, it should be mentioned that KL(q(z)||p(z)) 6= KL(q(s̄)||p(s̄)), since the rectifications
are not invertible transformations.

13


	Introduction
	Minimizing the L0 norm of parametric models
	A general recipe for efficiently minimizing L0 norms
	The hard concrete distribution
	Combining the L0 norm with other norms
	Group sparsity under an L0 norm

	Related work
	Experiments
	MNIST classification and sparsification
	CIFAR classification

	Discussion
	Relation to variational inference
	The hard concrete distribution
	Negative KL-divergence for hard concrete distributions

