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Abstract

Learning sparse representations on data adaptive dictionaries is a state-of-the-art
method for modeling data. But when the dictionary is large and the data dimen-
sion is high, it is a computationally challenging problem. We explore three aspects
of the problem. First, we derive new, greatly improved screening tests that quickly
identify codewords that are guaranteed to have zero weights. Second, we study
the properties of random projections in the context of learning sparse representa-
tions. Finally, we develop a hierarchical framework that uses incremental random
projections and screening to learn, in small stages, a hierarchically structured dic-
tionary for sparse representations. Empirical results show that our framework can
learn informative hierarchical sparse representations more efficiently.

1 Introduction

Consider approximating a p-dimensional data point x by a linear combination x ≈ Bw of m (pos-
sibly linearly dependent) codewords in a dictionary B = [b1,b2, . . . ,bm]. Doing so by imposing
the additional constraint that w is a sparse vector, i.e., x is approximated as a weighted sum of only
a few codewords in the dictionary, has recently attracted much attention [1]. As a further refinement,
when there are many data points xj , the dictionary B can be optimized to make the representations
wj as sparse as possible. This leads to the following problem. Given n data points in R

p organized as
matrix X = [x1,x2, . . . ,xn] ∈ R

p×n, we want to learn a dictionary B = [b1,b2, . . . ,bm] ∈ R
p×m

and sparse representation weights W = [w1,w2, . . . ,wn] ∈ R
m×n so that each data point xj is

well approximated by Bwj with wj a sparse vector:

min
B,W

1

2
‖X−BW‖2F + λ‖W‖1

s.t. ‖bi‖22 ≤ 1, ∀i = 1, 2, . . . ,m.

(1)

Here ‖·‖F and ‖·‖1 denote the Frobenius norm and element-wise l1-norm of a matrix, respectively.

There are two advantages to this representation method. First, the dictionary B is adapted to the
data. In the spirit of many modern approaches (e.g. PCA, SMT [2], tree-induced bases [3,4]), rather
than fixing B a priori (e.g. Fourier, wavelet, DCT), problem (1) assumes minimal prior knowledge
and uses sparsity as a cue to learn a dictionary adapted to the data. Second, the new representation w
is obtained by a nonlinear mapping of x. Algorithms such as Laplacian eigenmaps [5] and LLE [6],
also use nonlinear mappings x 7→ w. By comparison, l1-regularization enjoys a simple formula-
tion with a single tuning parameter (λ). In many other approaches (including [2–4]), although the
codewords in B are cleverly chosen, the new representation w is simply a linear mapping of x,
e.g. w = B†x. In this case, training a linear model on w cannot learn nonlinear structure in the
data. As a final point, we note that the human visual cortex uses similar mechanisms to encode
visual scenes [7] and sparse representation has exhibited superior performance on difficult computer
vision problems such as face [8] and object [9] recognition.
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The challenge, however, is that solving the non-convex optimization problem(1) is computationally
expensive. Most state-of-the-art algorithms solve (1) by iteratively optimizing W and B. For a fixed
B, optimizing W requires solving n, p-dimensional, lasso problems of size m. Using LARS [10]
with a Cholesky-based implementation, each lasso problem has a computation cost of O(mpκ +
mκ2), where κ is the number of nonzero coefficients [11]. For a fixed W, optimizing B is a
least squares problem of pm variables and m constraints. In an efficient algorithm [12], the dual
formulation has only m variables but still requires inverting m×m matrices (O(m3) complexity).

To address this challenge, we examine decomposing a large dictionary learning problem into a set
of smaller problems. First (§2), we explore dictionary screening [13, 14], to select a subset of code-
words to use in each Lasso optimization. We derive two new screening tests that are significantly
better than existing tests when the data points and codewords are highly correlated, a typical scenario
in sparse representation applications [15]. We also provide simple geometric intuition for guiding
the derivation of screening tests. Second (§3), we examine projecting data onto a lower dimensional
space so that we can control information flow in our hierarchical framework and solve sparse repre-
sentations with smaller p. We identify an important property of the data that’s implicitly assumed in
sparse representation problems (scale indifference) and study how random projection preserves this
property. These results are inspired by [16] and related work in compressed sensing. Finally (§4), we
develop a framework for learning a hierarchical dictionary (similar in spirit to [17] and DBN [18]).
To do so we exploit our results on screening and random projection and impose a zero-tree like struc-
tured sparsity constraint on the representation. This constraint is similar to the formulation in [19].
The key difference is that we learn the sparse representation stage-wise in layers and use the exact
zero-tree sparsity constraint to utilize the information in previous layers to simplify the computation,
whereas [19] uses a convex relaxation to approximate the structured sparsity constraint and learns
the sparse representation (of all layers) by solving a single large optimization problem. Our idea of
using incremental random projections is inspired by the work in [20, 21]. Finally, unlike [12] (that
addresses the same computational challenge), we focus on a high level reorganization of the compu-
tations rather than improving basic optimization algorithms. Our framework can be combined with
all existing optimization algorithms, e.g. [12], to attain faster results.

2 Reducing the Dictionary By Screening

In this section we assume that all data points and codewords are normalized: ‖xj‖2 = ‖bi‖2 =
1, 1≤ j ≤ n, 1≤ i≤m (we discuss the implications of this assumption in §3). When B is fixed,
finding the optimal W in (1) requires solving n subproblems. The jth subproblem finds wj for
xj . For notational simplicity, in this section we drop the index j and denote x = xj ,w = wj =
[w1, w2, . . . , wm]T . Each subproblem is then of the form:

min
w1,w2,...,wm

1

2
‖x−

m
∑

i=1

wibi‖22 + λ

m
∑

i=1

|wi|. (2)

To address the challenge of solving (2) for large m, we first explore simple screening tests that
identify and discard codewords bi guaranteed to have optimal solution w̃i = 0. El Ghaoui’s SAFE
rule [13] is an example of a simple screening test. We introduce some simple geometric intuition for
screening and use this to derive new tests that are significantly better than existing tests for the type
of problems of interest here. To this end, it will help to consider the dual problem of (2):

max
θ

1

2
‖x‖22 −

λ2

2
‖θ − x

λ
‖22

s.t. |θTbi| ≤ 1 ∀i = 1, 2, . . . ,m.

(3)

As is well known (see the supplemental material), the optimal solution of the primal problem w̃ =
[w̃1, w̃2, . . . , w̃m]T and the optimal solution of the dual problem θ̃ are related through:

x =
m
∑

i=1

w̃ibi + λθ̃, θ̃
T
bi ∈

{

{sign w̃i} if w̃i 6= 0,
[−1, 1] if w̃i = 0.

(4)

The dual formulation gives useful geometric intuition. Since ‖x‖2 = ‖bi‖2 = 1, x and all bi lie on
the unit sphere Sp−1 (Fig.1(a)). For y on Sp−1, P (y) = {z : zTy = 1} is the tangent hyperplane
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Figure 1: (a) Geometry of the dual problem. (b) Illustration of a sphere test. (c) The solid red, dotted blue and
solid magenta circles leading to sphere tests ST1/SAFE, ST2, ST3, respectively. (d) The thresholds in ST2 and
ST1/SAFE when λmax = 0.8 (top) and λmax = 0.9 (bottom). A higher threshold yields a better test.

of Sp−1 at y and H(y) = {z : zTy ≤ 1} is the corresponding closed half space containing the
origin. The constraints in (3) indicate that feasible θ must be in H(bi) and H(−bi) for all i. To

find θ̃ that maximizes the objective in (3), we must find a feasible θ closest to x/λ. By (4), if θ̃ is
not on P (bi) or P (−bi), then w̃i = 0 and we can safely discard bi from problem (2).

Let λmax = maxi |xTbi| and b∗ ∈ {±bi}mi=1 be selected so that λmax = xTb∗. Note that
θ = x/λmax is a feasible solution for (3). λmax is also the largest λ for which (2) has a nonzero
solution. If λ > λmax, then x/λ itself is feasible, making it the optimal solution. Since it is not on
any hyperplane P (bi) or P (−bi), w̃i = 0, i = 1, . . . ,m. Hence we assume that λ ≤ λmax.

These observations can be used for screening as follows. If we know that θ̃ is within a region R,
then we can discard those bi for which the tangent hyperplanes P (bi) and P (−bi) don’t intersect
R, since by (4) the corresponding w̃i will be 0. Moreover, if the region R is contained in a closed
ball (e.g. the shaded blue area in Fig.1(b)) centered at q with radius r, i.e., {θ : ‖θ − q‖2 ≤ r},
then one can discard all bi for which |qTbi| is smaller than a threshold determined by the common
tangent hyperplanes of the spheres ‖θ − q‖2 = r and Sp−1. This “sphere test” is made precise in
the following lemma (All lemmata are proved in the supplemental material).

Lemma 1. If the solution θ̃ of (3) satisfies ‖θ̃ − q‖2 ≤ r, then |qTbi| < (1− r) ⇒ w̃i = 0.

El Ghaoui’s SAFE rule [13] is a sphere test of the simplest form. To see this, note that x/λmax is a
feasible point of (3), so the optimal θ cannot be further away from x/λ than x/λmax. Therefore we

have the constraint : ‖θ̃ − x/λ‖2 ≤ 1/λ−1/λmax (solid red ball in Fig.1(c)). Plugging in q = x/λ
and r = 1/λ− 1/λmax into Lemma 1 yields El Ghaoui’s SAFE rule:

Sphere Test # 1 (ST1/SAFE): If |xTbi| < λ− 1 + λ/λmax, then w̃i = 0.

Note that the SAFE rule is weakest when λmax is large, i.e., when the codewords are very similar to
the data points, a frequent situation in applications [15]. To see that there is room for improvement,

consider the constraint: θTb∗ ≤ 1. This puts θ̃ in the intersection of the previous closed ball (solid
red) and H(b∗). This is indicated by the shaded green region in Fig. 1(c). Since this intersection is
small when λmax is large, a better test results by selecting R to be the shaded green region. However,
to simplify the test, we relax R to a closed ball and use the sphere test of Lemma 1. Two relaxations,
the solid magenta ball and the dotted blue ball in Fig. 1(c), are detailed in the following lemma.

Lemma 2. If θ satisfies (a) ‖θ − x/λ‖2 ≤ 1/λ− 1/λmax and (b) θ
Tb∗ ≤ 1, then θ satisfies

‖θ − (x/λ− (λmax/λ− 1)b∗‖2 ≤
√

1/λ2
max − 1(λmax/λ− 1), and (5)

‖θ − x/λmax‖2 ≤ 2
√

1/λ2
max − 1(λmax/λ− 1). (6)

By Lemma 2, since θ̃ satisfies (a) and (b), it satisfies (5) and (6). We start with (6) because of its
similarity to the closed ball constraint used to derive ST1/SAFE (solid red ball). Plugging q =

x/λmax and r = 2
√

1/λ2
max − 1(λmax/λ− 1) into Lemma 1 yields our first new test:
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Sphere Test # 2 (ST2): If |xTbi| < λmax(1− 2
√

1/λ2
max − 1(λmax/λ− 1)), then w̃i = 0.

Since ST2 and ST1/SAFE both test |xTbi| against thresholds, we can compare the tests by plotting
their thresholds. We do so for λmax = 0.8, 0.9 in Fig.1(d). The thresholds must be positive and
large to be useful. ST2 is most useful when λmax is large. Indeed, we have the following lemma:

Lemma 3. When λmax >
√
3/2, if ST1/SAFE discards bi, then ST2 also discards bi.

Finally, to use the closed ball constraint (5), we plug in q = x/λ − (λmax/λ − 1)b∗ and r =
√

1/λ2
max − 1(λmax/λ− 1) into Lemma 1 to obtain a second new test:

Sphere Test # 3 (ST3):

If |xTbi − (λmax − λ)bT
∗ bi| < λ(1−

√

1/λ2
max − 1(λmax/λ− 1)), then w̃i = 0.

ST3 is slightly more complex. It requires finding b∗ and computing a weighted sum of inner prod-
ucts. But ST3 is always better than ST2 since its sphere lies strictly inside that of ST2:

Lemma 4. Given any x,b∗ and λ, if ST2 discards bi, then ST3 also discards bi.

To summarize, ST3 completely outperforms ST2, and when λmax is larger than
√
3/2 ≈ 0.866, ST2

completely outperforms ST1/SAFE. Empirical comparisons are given in §5.

By making two passes through the dictionary, the above tests can be efficiently implemented on
large-scale dictionaries that can’t fit in memory. The first pass holds x,u,bi ∈ R

p in memory at
once and computes u(i) = xTbi. By simple bookkeeping, after pass one we have b∗ and λmax.
The second pass holds u,b∗,bi in memory at once, computes bT

∗ bi and executes the test.

3 Random Projections of the Data

In §4 we develop a framework for learning a hierarchical dictionary and this involves the use of
random data projections to control information flow to the levels of the hierarchy. The motivation for
using random projections will become clear, and is specifically discussed, in §4. Here we lay some
groundwork by studying basic properties of random projections in learning sparse representations.

We first revisit the normalization assumption ‖xj‖2 = ‖bi‖2 = 1, 1≤ j≤n, 1≤ i≤m in §2. The
assumption that all codewords are normalized: ‖bi‖2 = 1, is necessary for (1) to be meaningful,
otherwise we can increase the scale of bi and inversely scale the ith row of W to lower the loss. The
assumption that all data points are normalized: ‖xj‖2 = 1, warrants a more careful examination.
To see this, assume that the data {xj}nj=1 are samples from an underlying low dimensional smooth
manifold X and that one desires a correspondence between codewords and local regions on X . Then
we require the following scale indifference (SI) property to hold:

Definition 1. X satisfies the SI property if ∀x1,x2 ∈ X , with x1 6= x2, and ∀γ 6= 0, x1 6= γx2.

Intuitively, SI means that X doesn’t contain points differing only in scale and it implies that points
x1,x2 from distinct regions on X will use different codewords in their representation. SI is usually
implicitly assumed [9,15] but it will be important for what follows to make the condition explicit. SI
is true in many typical applications of sparse representation. For example, for image signals when
we are interested in the image content regardless of image luminance. When SI holds we can indeed
normalize the data points to Sp−1 = {x : ‖x‖2 = 1}.

Since a random projection of the original data doesn’t preserve the normalization ‖xj‖2 = 1, it’s
important for the random projection to preserve the SI property so that it is reasonable to renormalize
the projected data. We will show that this is indeed the case under certain assumptions. Suppose
we use a random projection matrix T ∈ R

d×p, with orthonormal rows, to project the data to R
d

(d < p) and use TX as the new data matrix. Such T can be generated by running the Gram-
Schmidt procedure on d, p-dimensional random row vectors with i.i.d. Gaussian entries. It’s known
that for certain sets X , with high probability random projection preserves pairwise distances:

(1− ǫ)
√

d/p ≤ ‖Tx1 −Tx2‖2
‖x1 − x2‖2

≤ (1 + ǫ)
√

d/p. (7)

For example, when X contains only κ-sparse vectors, we only need d ≥ O(κ ln(p/κ)) and when X
is a K-dimensional Riemannian submanifold, we only need d ≥ O(K ln p) [16]. We will show that
when the pairwise distances are preserved as in (7), the SI property will also be preserved:
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Theorem 1. Define S(X ) = {z : z = γx,x ∈ X , |γ| ≤ 1}. If X satisfies SI and ∀(x1,x2) ∈
S(X )× S(X ) (7) is satisfied, then T (X ) = {z : z = Tx,x ∈ X} also satisfies SI.

Proof. If T (X ) doesn’t satisfy SI, then by Definition 1, ∃(x1,x2) ∈ X × X , γ /∈ {0, 1} s.t.:
Tx1 = γTx2. Without loss of generality we can assume that |γ| ≤ 1 (otherwise we can exchange
the positions of x1 and x2). Since x1 and γx2 are both in S(X ), using (7) gives that ‖x1 − γx2‖2 ≤
‖Tx1 − γTx2‖2/((1− ǫ)

√

d/p) = 0. So x1 = γx2. This contradicts the SI property of X .

For example, if X contains only κ-sparse vectors, so does S(X ). If X is a Riemannian submanifold,
so is S(X ). Therefore applying random projections to these X will preserve SI with high probability.
For the case of κ-sparse vectors, under some strong conditions, we can prove that random projection
always preserves SI. (Proofs of the theorems below are in the supplemental material.)

Theorem 2. If X satisfies SI and has a κ-sparse representation using dictionary B, then the pro-
jected data T (X ) satisfies SI if (2κ− 1)M(TB) < 1, where M(·) is matrix mutual coherence.

Combining (7) with Theorem 1 or 2 provides an important insight: the projected data TX contains
rough information about the original data X and we can continue to use the formulation (1) on TX
to extract such information. Actually, if we do this for a Riemannian submanifold X , then we have:

Theorem 3. Let the data points lie on a K-dimensional compact Riemannian submanifold X ⊂ R
p

with volume V , conditional number 1/τ , and geodesic covering regularity R (see [16]). Assume
that in the optimal solution of (1) for the projected data (replacing X with TX), data points Tx1

and Tx2 have nonzero weights on the same set of κ codewords. Let wj be the new representation
of xj and µi = ‖Txj −Bwj‖2 be the length of the residual (j = 1, 2). With probability 1− ρ:

‖x1 − x2‖22 ≤ (p/d)(1 + ǫ1)(1 + ǫ2)(‖w1 −w2‖22 + 2µ2
1 + 2µ2

2)

‖x1 − x2‖22 ≥ (p/d)(1− ǫ1)(1− ǫ2)(‖w1 −w2‖22,
(8)

with ǫ1 = O((K ln(NVRτ−1) ln(1/ρ)
d )0.5−η) (for any small η > 0) and ǫ2 = (κ− 1)M(B).

Therefore the distances between the sparse representation weights reflect the original data point
distances. We believe a similar result should also hold when X contains only κ-sparse vectors.

4 Learning a Hierarchical Dictionary

Our hierarchical framework decomposes a large dictionary learning problem into a sequence of
smaller hierarchically structured dictionary learning problems. The result is a tree of dictionaries.
High levels of the tree give course representations, deeper levels give more detailed representations,
and the codewords at the leaves form the final dictionary. The tree is grown top-down in l levels
by refining the dictionary at the previous level to give the dictionary at the next level. Random data
projections are used to control the information flow to different layers. We also enforce a zero-tree
constraint on the sparse representation weights so that the zero weights in the previous level will
force the corresponding weights in the next level to be zero. At each stage we combine this zero-tree
constraint with our new screening tests to reduce the size of Lasso problems that must be solved.

In detail, we use l random projections Tk ∈ R
dk×p (1≤k≤ l) to extract information incrementally

from the data in l stages. Each Tk has orthonormal rows and the rows of distinct Tk are orthogonal.
At level k we learn a dictionary Bk ∈ R

dk×mk and weights Wk ∈ R
mk×n by solving a small sparse

representation problem similar to (1):

min
Bk,Wk

1

2
‖TkX−BkWk‖2F + λk‖Wk‖1

s.t. ‖b(k)
i ‖22 ≤ 1, ∀i = 1, 2, . . . ,mk.

(9)

Here b
(k)
i is the ith column of matrix Bk and mk is assumed to be a multiple of mk−1, so the

number of codewords mk increases with k. We solve (9) for level k = 1, 2, . . . , l sequentially.

An additional constraint is required to enforce a tree structure. Denote the ith element of the jth

column of Wk by w
(k)
j (i) and organize the weights at level k > 1 in mk−1 groups, one per level
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k − 1 codeword. The ith group has mk/mk−1 weights: {w(k)
j (rmk−1 + i), 0≤ r <mk/mk−1},

and has weight w
(k−1)
j (i) as its parent weight. To enforce a tree structure we require that a child

weight is zero if its parent weight is zero. So for every level k≥2, data point j (1≤ j≤n), group i

(1≤ i≤mk−1), and weight w
(k)
j (rmk−1 + i) (0≤r<mk/mk−1), we enforce:

w
(k−1)
j (i) = 0 ⇒ w

(k)
j (rmk−1 + i) = 0. (10)

This imposed tree structure is analogous to a “zero-tree” in EZW wavelet compression [22]. In
addition, (10) means that the weights of the previous layer select a small subset of codewords to
enter the Lasso optimization. When solving for wk

j , (10) reduces the number of codewords from

mk to (mk/mk−1)‖w(k−1)
j ‖0, a considerable reduction since w

(k−1)
j is sparse. Thus the screening

rules in §2 and the imposed screening rule (10) work together to reduce the effective dictionary size.

The tree structure in the weights introduces a similar hierarchical tree structure in the dictionaries

{Bk}lk=1: the codewords {b(k)
rmk−1+i, 0≤r<mk/mk−1} are the children of codeword b

(k−1)
i . This

tree structure provides a heuristic way of updating Bk. When k > 1, the mk codewords in layer k
are naturally divided into mk−1 groups, so we can solve Bk by optimizing each group sequentially.

This is similar to block coordinate descent. For i = 1, 2, . . . ,mk−1, let B′ = [b
(k)
rmk−1+i]

mk/mk−1−1
r=0

denote the codewords in group i. Let W′ be the submatrix of W containing only the (rmk−1+ i)th

rows of W, r = 0, 1, . . . ,mk/mk−1 − 1. W′ is the weight matrix for B′. Denote the remaining
codewords and weights by B′′ and W′′. For all mk−1 groups in random order, we fix B′′ and
update B′ by solving (1) for data matrix TkX−B′′W′′. This reduces the complexity from O(mq

k)

to O(mq
k/m

q−1
k−1) where O(mq) is the complexity of updating a dictionary with size m. Since q≥3,

this offers big computational savings but might yield a suboptimal solution of (9).

After finalizing Wk and Bk, we can solve an unconstrained QP to find Ck =
argminC‖X−CWk‖2F . Ck is useful for visualization purposes; it represents the points on the
original data manifold corresponding to Bk.

In principle, our framework can use any orthogonal projection matrix Tk. We choose random pro-
jections because they’re simple and, more importantly, because they provide a mechanism to control
the amount of information extracted at each layer. If all Tk are randomly generated independently
of X, then on average, the amount of information in TkX is proportional to dk. This allows us to
control the flow of information to each layer so that we avoid using all the information in one layer.

5 Experiments

We tested our framework on: (a) the COIL rotational image data set [23], (b) the MNIST digit
classification data set [24], and (c) the extended Yale B face recognition data set [25] [26]. The basic
sparse representation problem (1) is solved using the toolbox provided in [12] to iteratively optimize
B and W until an iteration results in a loss function reduction of less than 0.01%.

COIL Rotational Image Data Set: This is intended as a small scale illustration of our frame-
work. We use the 72, 128x128 color images of object No. 80 rotating around a circle in 15 degree-
increments (18 images shown in Fig.2(a)). We ran the traditional sparse representation algorithm to
compare the three screening tests in §2. The dictionary size is m = 16 and we vary λ. As shown
in Fig.2(c), ST3 discards a larger fraction of codewords than ST2 and ST2 discards a larger fraction
than ST1/SAFE. We ran the same algorithms on 200 random data projections and the results are
almost identical. The average λmax for these two situations is 0.98.

Next we test our hierarchical framework using two layers. We set (d2,m2) = (200, 16) so that
the second layer solves a problem of the same scale as in the previous paragraph. We demonstrate
how the result of the first layer, with (d1,m1, λ1) = (100, 4, 0.5), helps the second layer discard
more codewords when the tree constraint (10) is imposed. Fig.2(b) illustrates this constraint: the 16
second layer codewords are organized in 4 groups of 4 (only 2 groups shown). The weight on any
codeword in a group has to be zero if the parent codeword in the first layer has weight zero. This
imposed constraint discards many more codewords in the screening stage than any of the three tests
in §2. (Fig.2(d)). Finally, the illustrated codewords and weights in Fig.2(b) are the actual values in
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Figure 2: (a): Example images of the data set. (b): Illustration of a two layer hierarchical sparse representa-
tion. (c): Comparison of the three screening tests for sparse representation. (d): Screening performance in the
second layer of our hierarchical framework using combinations of screening criteria. The imposed constraint
(10) helps to discard significantly more codewords when λ is small.
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Figure 3: Left: MNIST: The tradeoff between classification accuracy and average encoding time for various
sparse representation methods. Our hierarchical framework yields better performance in less time. The average
encoding time doesn’t apply to baseline methods. The performance of traditional sparse representation is
consistent with [9]. Right: Face Recognition: The recognition rate (top) and average encoding time (bottom)
for various methods. Traditional sparse representation has the best accuracy and is very close to a similar
method SRC in [8] (SRC’s recognition rate is cited from [8] but data on encoding time is not available). Our
hierarchical framework achieves a good tradeoff between the accuracy and speed. Using PCA projections in
our framework yields worse performance since these projections do not spread information across the layers.

C2 and W2 when λ2 = 0.4 (the marked point in Fig.2(d)). The sparse representation gives a multi-
resolution representation of the rotational pattern: the first layer encodes rough orientation and the
second layer refines it.

The next two experiments evaluate the performance of sparse representation by (1) the accuracy of
a classification task using the columns in W (or in [WT

1 ,W
T
2 , . . . ,W

T
l ]

T for our framework) as
features, and (2) the average encoding time required to obtain these weights for a testing data point.
This time is highly correlated with the total time needed for iterative dictionary learning. We used
linear SVM (liblinear [27]) with parameters tuned by 10-fold cross-validations on the training set.
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MNIST Digit Classification: This data set contains 70,000 28x28 hand written digit images (60,000
training, 10,000 testing). We ran the traditional sparse representation algorithm for dictionary size
m ∈ {64, 128, 192, 256} and λ ∈ Λ = {0.06, 0.08, 0.11, 0.16, 0.23, 0.32}. In Fig.3 left panel,
each curve contains settings with the same m but with different λ. Points to the right correspond to
smaller λ values (less sparse solutions and more difficult computation). There is a tradeoff between
speed (x-axis) and classification performance (y-axis). To see where our framework stands, we tested
the following settings: (a) 2 layers with (d1, d2) = (200, 500), (m1,m2) = (32, 512), λ1 = 0.23
and λ2 ∈ Λ, (b) (m1,m2) = (64, 2048) and everything else in (a) unchanged, (c) 3 layers with
(d1, d2, d3) = (100, 200, 400), (m1,m2,m3) = (16, 256, 4096), (λ1, λ2) = (0.16, 0.11) and λ3 ∈
Λ. The plot shows that compared to the traditional sparse representation, our hierarchical framework
achieves roughly a 1% accuracy improvement given the same encoding time and a roughly 2X
speedup given the same accuracy. Using 3 layers also offers competitive performance but doesn’t
outperform the 2 layer setting.

Face Recognition: For each of 38 subjects we used 64 cropped frontal face views under differing
lighting conditions, randomly divided into 32 training and 32 testing images. This set-up mirrors
that in [8]. In this experiment we start with the random projected data (p ∈ {32, 64, 128, 256}
random projections of the original 192x128 data) and use this data as follows: (a) learn a traditional
non-hierarchical sparse representation, (b) our framework, i.e., sample the data in two stages using
orthogonal random projections and learn a 2 layer hierarchical sparse representation, (c) use PCA
projections to replace random projections in (b), (d) directly apply a linear classifier without first
learning a sparse representation. For (a) we used m = 1024, λ = 0.030 for p = 32, 64 and
λ = 0.029 for p = 128, 256 (tuned to yield the same average sparsity for different p). For (b) we
used (m1,m2) = (32, 1024), (d1, d2) = ( 38p,

5
8p), λ1 = 0.02 and λ2 the same as λ in (a). For (c)

we used the same setting in (b) except random projection matrices T1,T2 in our framework are now
set to the PCA projection matrices (calculate SVD X = USVT with singular values in descending
order, then use the first d1 columns of U as the rows in T1 and the next d2 columns of U as the rows
in T2). The results in Fig.3 right panel suggest that our framework strikes a good balance between
speed and accuracy. The PCA variant of our framework has worse performance because the first
3
8p projections contain too much information, leaving the second layer too little information (which
also drags down the speed for lack of sparsity and structure). This reinforces our argument at the end
of §4 about the advantage of random projections. The fact that a linear SVM performs well given
enough random projections suggests this data set does not have a strong nonlinear structure.

Finally, at any iteration, the average λmax for all data points ranges from 0.76 to 0.91 in all settings in
the MNIST experiment and ranges from 0.82 to nearly 1 in the face recognition experiment (except
for the second layer in the PCA variant, in which average λmax can be as low as 0.54). As expected,
λmax is large, a situation that favors our new screening tests (ST2, ST3).

6 Conclusion

Our theoretical results and algorithmic framework effectively make headway on the computational
challenge of learning sparse representations on large size dictionaries for high dimensional data
The new screening tests greatly reduce the size of the lasso problems to be solved and the tests are
proven, both theoretically and empirically, to be much more effective than the existing ST1/SAFE
test. We have shown that under certain conditions, random projection preserves the scale indiffer-
ence (SI) property with high probability, thus providing an opportunity to learn informative sparse
representations with data fewer dimensions. Finally, the new hierarchical dictionary learning frame-
work employs random data projections to control the flow of information to the layers, screening
to eliminate unnecessary codewords, and a tree constraint to select a small number of candidate
codewords based on the weights leant in the previous stage. By doing so, it can deal with large m
and p simultaneously. The new framework exhibited impressive performance on the tested data sets,
achieving equivalent classification accuracy with less computation time.
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