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Abstract

The classical maximum a-posteriori (MAP) framework

for non-blind image deblurring requires defining suitable

data and regularization terms, whose interplay yields the

desired clear image through optimization. The vast majority

of prior work focuses on advancing one of these two crucial

ingredients, while keeping the other one standard. Con-

sidering the indispensable roles and interplay of both data

and regularization terms, we propose a simple and effective

approach to jointly learn these two terms, embedding deep

neural networks within the constraints of the MAP frame-

work, trained in an end-to-end manner. The neural net-

works not only yield suitable image-adaptive features for

both terms, but actually predict per-pixel spatially-variant

features instead of the commonly used spatially-uniform

ones. The resulting spatially-variant data and regulariza-

tion terms particularly improve the restoration of fine-scale

structures and detail. Quantitative and qualitative results

underline the effectiveness of our approach, substantially

outperforming the current state of the art.

1. Introduction

The goal of single image deblurring is to estimate a de-

sirable clear image from a blurry input. Mathematically, the

process leading to the image blur is frequently formulated

as

y = x ∗ k + n, (1)

where y, x, k, and n denote blurry observation, latent clear

image, blur kernel, and image noise, respectively; ∗ is the

convolution operator. Significant progress [e.g., 20, 40, 42,

48] has been made in blind image deblurring, which aims

to estimate the latent clear image when the blur kernel is

unknown. When the blur kernel can be obtained or esti-

mated, this problem reduces to non-blind image deblurring,

which has been an active area of research since the pioneer-

ing work of Richardson and Lucy [29]. Other classical ap-

proaches include the Wiener filter [46].

Non-blind image deblurring is a well-known ill-posed

problem. Most existing methods formulate it as a maximum

a-posteriori (MAP) estimation problem [17, 21]:

x∗ = argmax
x

p(y | x, k) p(x), (2)

where p(y | x, k) denotes the likelihood that measures how

consistent the estimated x is with the observation of y and

the known k under the model in Eq. (1); p(x) denotes the

prior on the latent clear image x, which is used to regularize

the problem. Equation (2) can be equivalently reformulated

as

x∗ = argmin
x

D(y, x, k) +R(x), (3)

where D(·) denotes the data term and R(·) denotes the reg-

ularization term [32, 33, 44]. Effectively solving non-blind

image deblurring within the MAP framework thus requires

carefully designing both D(·) and R(·).
To restore high-quality clear images using Eq. (3), nu-

merous approaches have been proposed. One family of

methods focuses on advancing the data term to better mea-

sure the image reconstruction error. Starting from the most

commonly used ℓ2 norm [17], data terms have been care-

fully designed for specific types of outliers [1, 6] or even

discriminatively learned [11, 28]. A second family of

approaches focuses on developing effective regularization

terms/image priors to ensure desirable properties of the esti-

mated clear image. This includes modeling statistical prop-

erties, e.g. by employing Laplacian/hyper-Laplacian pri-

ors [17, 21]. Learning effective image priors based on data-

driven methods has been a dominant research theme for

non-blind image deblurring, e.g., using Gaussian mixture

models [52], fields of experts [31], or deep learning [49, 50].

Therefore, most existing non-blind image deblurring meth-

ods focus on improving either the data term or the regular-

ization term. However, as the data and regularization terms

play different but indispensable roles in non-blind image de-

blurring, only improving one of these two terms will limit

the power of the MAP framework in Eq. (3) and result in de-

blurred images with artifacts, see Fig. 1(b)–(d). In contrast,

we jointly learn both the data term and the regularization

term to build a more expressive deblurring model in which

these two terms can benefit from their interplay, resulting in

higher fidelity results as shown in Fig. 1(e).
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(a) Blurry input (b) EPLL [52] (c) LDT [11] (d) IRCNN [50] (e) SVMAP (ours)

Figure 1. Visual comparison with state-of-the-art non-blind image deblurring methods. The results in (b)–(d) exhibit severe artifacts or do

not effectively restore fine-scale structures. In contrast, our approach can recover a clearer image with finer detail as shown in (e).

We further note that existing data or regularization terms

are mostly designed or learned to be spatially invariant.

While this yields a compact model, the local structures dif-

fer notably across the image, e.g., in flat vs. textured areas.

Moreover, saturated regions or outliers can occur locally.

Using uniform data and regularization terms for the whole

image thus cannot effectively characterize the spatially-

variant properties of the image, hindering the restoration of

finer-scale structures and detail (Fig. 1(b)–(d)). To enhance

the model expressivity, we propose a spatially-variant MAP

model (SVMAP) by predicting a set of pixel-dependent fil-

ters to adjust the regularization behavior and the treatment

of the data-term residuals to the local requirements.

We make the following contributions: (i) We propose

an expressive filter-based MAP deblurring framework, in

which the data and regularization terms are jointly learned

based on deep neural networks. A detailed analysis shows

that our model is more effective at restoring high-quality

images compared to existing ones that focus on improving

either the data or the regularization term. (ii) To improve the

goodness-of-fit and capture the properties of clear images,

we construct spatially-variant data and regularization terms

by predicting a set of pixel-dependent filters. In contrast

to spatially-uniform formulations, our learned pixel-depen-

dent ones are able to model the spatially-variant property

of the image structures, facilitating finer-scale structure and

detail restoration. (iii) We develop an end-to-end learn-

ing approach to better capture the spatially-variant proper-

ties, integrating the MAP-based optimization framework as

a constraint for the deep neural network. (iv) Finally, we

both quantitatively and qualitatively demonstrate the effec-

tiveness of our method and show that it is able to gener-

ate better deblurred results for blurry images with Gaussian

noise as well as outliers (e.g., saturated pixels).

2. Related Work

Data term modeling. The data term measures the image

reconstruction error and models the image noise distribu-

tion. Early methods [1, 17, 32] assume that the image noise

conforms to a Gaussian or Laplacian distribution and con-

sequently use an ℓ2 or ℓ1 norm-based data term. This has

been extended to the case when the noise level is unknown

[15, 37]. However, the assumptions of Gaussian or Lapla-

cian noise do not hold in certain challenging environments

(e.g., in low light conditions), as the captured image may

contain outliers or non-Gaussian noise [6], whose distribu-

tion is mixed and not easily modeled by a fixed parametric

distribution. To address this, Cho et al. [6] analyze the prop-

erties of various types of outliers and use them to classify

inliers vs. outliers. The estimated inliers are used to define

the data term. To obtain more flexible and robust data terms,

Dong et al. [11] learn discriminative shrinkage functions to

indirectly model complex noise distributions, inspired by

work on learning regularizers [36].

Regularization term modeling. The regularization term

determines the property of the restored images, making

MAP-based non-blind image deblurring well-posed. Early

methods are mostly derived based on statistical prior knowl-

edge, e.g., total variation [32, 33, 44], hyper-Laplacian

[17, 21] or image-adaptive Laplacian priors [30], internal

patch recurrence [25], nonlocal patch-wise image modeling

[7], etc. To better capture the characteristics of clear images,

various methods learn the regularization term rather than

adopting a hand-defined one. Early work focuses mostly

on Markov random fields (MRFs) to learn generic image

priors [31, 34]. Zoran and Weiss [52] learn a prior model

of natural image patches based on Gaussian mixture mod-

els (GMMs). Over the years, conditional random fields

(CRFs) have grown increasingly popular, including Gaus-

sian CRFs [14, 43] or cascades of Gaussian CRFs [35].

Schmidt and Roth [36] derive such a cascade based on more

general shrinkage functions. Note that mean-field inference

for CRFs can even be integrated in deep networks [51].

Such (discriminative) learning-based methods yield more

powerful regularization terms than traditional methods, but

the underlying features are usually not image-adaptive. Al-

ternatively, deep learning provides a powerful tool for non-

blind image deblurring. Several methods [30, 38, 49, 50]

decompose the problem into image deconvolution and de-

noising, adopting deep networks to solve the sub-problem

w.r.t. the regularization term. Kruse et al. [18] generalize

an FFT-based deconvolution by using a powerful regulariza-

tion term based on CNNs. Gong et al. [12] indirectly model

the regularization term by integrating deep neural networks

into a parameterized gradient descent scheme.
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Joint modeling. The above methods focus on improving

either the data or regularization term alone, thus do not fully

leverage the power of the MAP framework as both terms

play indispensable roles for non-blind image deblurring.

Ren et al. [28] recently propose to simultaneously learn

the data and regularization terms. However, their fixed fea-

ture extractors are not image-adaptive, limiting the ability to

capture complex noise distributions and image properties.

In addition, previous work mostly models and exploits spa-

tially invariant characteristics, thus ignoring locally unique

structures. In contrast, our approach (i) jointly learns

image-adaptive data and regularization terms through deep

neural networks, and (ii) leverages pixel-dependent features

owing to the spatially variant properties of image structure

and detail. This allows us to build a more expressive de-

blurring model, benefitting from the interplay of both key

ingredients in an image- and spatially-adaptive way.

Other related work. As it is hard to find one solution that

can equally address various non-blind image deblurring sce-

narios, several methods utilize domain knowledge for spe-

cific types of noise or outliers. Whyte et al. [45] modify

the Richardson-Lucy algorithm to prevent error propagation

caused by saturated pixels. Xu et al. [47] exploit kernel in-

formation for deconvolution and embed it into a deep neu-

ral network, which performs well for images with saturated

pixels. Hu et al. [13] explicitly model the property of light

streaks in low-light images and detect useful light streaks

to help deblur low-light images. Since these methods de-

pend on specific domain knowledge, they cannot be easily

extended to handle other types of noise and outliers. Our

method, in contrast, is based on a filter-based MAP frame-

work that can adaptively learn a suitable model from the

training data, addressing a range of scenarios.

3. Spatially-Variant MAP Model

Our goal is to learn a flexible non-blind image deblurring

model for high-quality image restoration. Different from

existing methods that focus on improving either the data or

the regularization term, we jointly learn these two terms in

a unified MAP framework. We formulate the underlying

learning task as a bilevel optimization problem [8, 9, 19]:

min
Ds,Rs

L(x̂, xgt) (4a)

s.t. x̂ = argmin
x

Ds(y, x, k) +Rs(x), (4b)

where Ds(·) and Rs(·) denote spatially-variant data and

regularization terms, which we will model using deep neu-

ral networks; L(·) denotes the loss function and xgt is

the ground truth clear image. Once Ds(·) and Rs(·) are

learned, we can use the proposed spatially-variant model

from Eq. (4b) to restore latent clear images. In the follow-

ing, we will present how to model and learn the spatially-

variant Ds(·) and Rs(·) for non-blind image deblurring.

3.1. Data term

In the MAP-based image deblurring model of Eq. (3),

previous methods [1, 17] usually define the data term as

D(y, x, k) = ρ(y − x ∗ k), (5)

where ρ(·) denotes a penalty function [2, 3]. As pointed

out by [11, 28], the data term defined with only the inten-

sity information and a fixed form of ρ(·) is not expressive

enough to model the image noise well, and usually leads to

deblurred results with artifacts. Thus, more powerful fea-

ture information has been introduced to the data term [11]

as

D(y, x, k) =
M
∑

i=1

Di

(

fi ∗ (y − x ∗ k)
)

, (6)

where fi is the i-th feature extractor, Di(·) is the correspon-

ding penalty function, and k is the spatially uniform blur

kernel.

However, the noise distribution can be very complex in

real applications. Not all areas of the image may be equally

affected by noise or outliers (e.g., localized saturation) and

the characteristics of the image are also not uniform across

the image plane (e.g., smooth vs. textured areas). Hence

a combination of fixed feature extractors fi, i.e. filters that

are the same for all input images, limits the expressivity

of the model. Similarly, assuming spatial invariance of the

feature extractor for the whole residual image (y − x ∗ k)
as in Eq. (6) limits the local adaptivity of the data term.

The resulting formulation is thus not effective in fine-scale

structure restoration as shown in Fig. 1(c).

To enhance the modeling capacity, we propose a more

expressive data term with image-adaptive and spatially-

variant feature extractors, predicted by a learned non-linear

deep neural network. Our learnable data term, assuming a

known, spatially uniform blur kernel k, is defined as

Ds(y, x, k) =
M
∑

i=1

∑

p∈P

Di,p

(

fi,p ∗ (y − x ∗ k)(p)
)

, (7)

where fi,p and Di,p(·) denote the i-th pixel-dependent fea-

ture extractor for pixel p and the corresponding penalty

function to be predicted. (y − x ∗ k)(p) denotes the im-

age patch centered at the p-th pixel of the residual image

(y − x ∗ k), and P is the set of all pixels. Compared to the

data term in Eq. (6) with spatially-invariant feature extrac-

tors and penalty functions, our learnable data term (Eq. 7)

is more flexible, and can generate better results (Sec. 5).

3.2. Regularization term

Existing methods [e.g., 21, 36] usually formulate the reg-

ularization term as

R(x) =

N
∑

j=1

Rj(gj ∗ x), (8)
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where gj is the j-th filter to extract useful features and Rj(·)
is the corresponding penalty function to model desirable

properties of the feature (gj ∗ x). Classical methods usu-

ally take the filters {gj} to be horizontal and vertical image

derivative operators and model Rj(·) as the ℓ1 or ℓp (p < 1)

norm to impose Laplacian [17] or hyper-Laplacian [21] pri-

ors. To overcome the limitations of first-order image gradi-

ents and hand-crafted priors, several methods [4, 28, 35, 36]

learn linear filters gj and penalty functions Rj(·) from train-

ing data based on discriminative learning. Although de-

cent image quality has been achieved, various limitations

remain: (i) the feature extractors gj are not image-adaptive,

and (ii) they are spatially-invariant. This limits the expres-

sive power of the regularizer, e.g. it cannot capture the spa-

tially-variant characteristics of images, hindering fine-scale

detail restoration (Fig. 1(b) and (d)).

To better describe the properties of clear images, we for-

mulate our spatially-variant regularization term as

Rs(x) =

N
∑

j=1

∑

p∈P

Rj,p

(

gj,p ∗ x(p)

)

, (9)

where Rj,p and gj,p are specified per pixel. As demon-

strated in Sec. 5, the proposed spatially-variant regulariza-

tion term predicted by learned deep neural networks is more

expressive and effective for non-blind image deblurring.

3.3. Learning and inference

Let {yl, xl
gt, k

l}Ll=1 denote a set of L training samples.

Putting together Eqs. (4), (7) and (9), the crucial compo-

nents {Di,p, fi,p}, {Rj,p, gj,p} to define our model can thus

be learned by solving

min
{Di,fi},{Rj ,gj}

L
∑

l=1

L(x̂l, xl
gt), (10a)

s.t. x̂l = argmin
xl

∑

p∈P

[

M
∑

i=1

Di,p

(

fi,p ∗ (y
l− xl∗ kl)(p)

)

+
N
∑

j=1

Rj,p

(

gj,p ∗ (x
l)(p)

)

]

. (10b)

We here use the ℓ1 norm to define the robust image loss

L(·). Next, we will discuss how to solve the inner opti-

mization problem in the constraint of Eq. (10b) to obtain

the latent image. Moreover, we develop a method to train

the required learnable components in an end-to-end manner.

The constraint in Eq. (10b) is a highly non-convex op-

timization problem. To solve it, we adopt the Iteratively

Reweighted Least Squares (IRLS) method and iteratively

solve the weighted quadratic problem

min
x

∑

p∈P





M
∑

i=1

ωd
i,p

∣

∣fi,p ∗ (y − x ∗ k)(p)
∣

∣

2
+

N
∑

j=1

ωr
j,p

∣

∣gj,p ∗ x(p)

∣

∣

2



 ,

(11)

where {ωd
i,p} and {ωr

j,p} are the pixel-wise weights for the

data and regularization terms. For ease of notation, we omit

the training sample index l here. Note that we assume a

spatially uniform blur kernel k.

As the filters {fi,p} and {gj,p} are pixel-dependent in our

formulation, the weights {ωd
i,p} and {ωr

j,p} can be absorbed

into {fi,p} and {gj,p}, respectively. Let Fi, Gj , y, K, and

x denote the vector/matrix forms of fi, gj , y, k, and x. We

can then reformulate Eq. (11) as

min
x

∑

p∈P





M
∑

i=1

∥

∥Fi,p(y −Kx)(p)
∥

∥

2
+

N
∑

j=1

∥

∥Gj,px(p)

∥

∥

2



 . (12)

In other words, learning {Di,p, fi,p}, {Rj,p, gj,p} is equiv-

alent to learning {Fi,p} and {Gj,p}. Similar to the clas-

sical IRLS method used in [21], we alternatingly update

{Fi,p}, {Gj,p} and solve Eq. (12), noting that Eq. (12) is

a least squares problem whose solution can be easily ob-

tained. What remains to be addressed is to specify deep

neural networks to effectively predict {Fi,p} and {Gj,p}.

To this end, we develop the networks Nf and Ng to pre-

dict the filters {Fi,p} and {Gj,p}, respectively, in an image-

adaptive fashion. Consequently, the estimate of the latent

image from the current IRLS iteration is fed as input to the

networks Nf and Ng; at the first iteration, the deconvolved

result with an ℓ2 norm and a Gaussian prior is used. Both

networks share the same architecture, consisting of 6 convo-

lutional layers followed by a ReLU, except for the last layer.

The filter size is 3×3 pixels; their stride is 1. We use 64 fea-

tures in the first 5 layers. Let us assume that filters {Fi,p}
and {Gj,p} have sf × sf and sg × sg pixels. Then similar

to [26], we let the networks Nf and Ng predict s2fM and

s2gN channels. We reshape the outputs of the networks Nf

and Ng to M filters of size sf × sf and N filters of sg × sg
pixels. With the predicted pixel-dependent filters, we fi-

nally use the conjugate gradient method to solve Eq. (12).

Note that we use the same network architecture in different

IRLS iterations, but the network parameters are not shared

across iterations. During training, we update the network

parameters of Nf and Ng by minimizing the loss function

in Eq. (10a) based on the final solution of Eq. (10b).

At test time, the latent clear image is estimated by solv-

ing the spatially-variant MAP model in Eq. (10b) with the

same IRLS method used in the training phase, i.e. iteratively

updating x via Eq. (12). In each iteration, the filters {Fi,p}
and {Gj,p} are predicted by the learned models Nf and Ng ,

whose parameters are iteration-specific as mentioned above.

4. Experimental Results

Next, we discuss the datasets and implementation details

for our proposed SVMAP approach. Then we evaluate our

method on images with simulated Gaussian noise and satu-

rated pixels, as well as on real-world images. More results

are included in the supplemental material.
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Table 1. Quantitative comparison to state-of-the-art methods on the datasets of [24] and [41] with Gaussian noise.

Dataset Noise level EPLL [52] MLP [38] CSF [36] LDT [11] FCN [49] IRCNN [50] FDN [18] FNBD [39] RGDN [12] SVMAP (ours)

Martin et al. [24]

1%
PSNR (dB) 29.81 28.47 29.00 28.20 29.51 30.63 29.93 30.92 29.51 31.89

SSIM 0.8385 0.7977 0.8230 0.7922 0.8339 0.8645 0.8555 0.8799 0.8616 0.8973

5%
PSNR (dB) 24.66 24.01 24.93 24.90 25.45 25.65 25.93 25.49 25.33 27.25

SSIM 0.6276 0.5619 0.6428 0.6358 0.6771 0.6640 0.6943 0.6589 0.6688 0.7550

Sun et al. [41]

1%
PSNR (dB) 32.48 31.47 31.52 30.52 32.36 33.57 32.63 31.22 31.25 34.51

SSIM 0.8815 0.8535 0.8622 0.8399 0.8853 0.8977 0.8887 0.8860 0.8869 0.9273

5%
PSNR (dB) 26.78 24.65 26.62 26.71 27.67 27.64 27.75 27.63 26.93 29.20

SSIM 0.6975 0.5198 0.6735 0.6694 0.7340 0.6884 0.7319 0.7010 0.7161 0.7940

Table 2. Quantitative comparison to state-of-the-art methods on a dataset with saturated pixels (see text for details).

EPLL [52] MLP [38] CSF [36] LDT [11] FCN [49] IRCNN [50] FDN [18] FNBD [39] RGDN [12] Whyte [45] Cho [6] SVMAP (ours)

PSNR (dB) 29.78 28.60 29.28 30.52 29.14 29.92 28.20 27.48 28.61 28.14 33.02 33.91

SSIM 0.8950 0.8652 0.8931 0.9167 0.8789 0.9089 0.8560 0.8739 0.8919 0.8824 0.9388 0.9529

(a) Blurry input (b) EPLL [52] (c) MLP [38] (d) CSF [36] (e) LDT [11]

(f) FCN [49] (g) IRCNN [50] (h) FDN [18] (i) RGDN [12] (j) SVMAP (ours)

Figure 2. Example with simulated blur (1% noise level) from the dataset of [24]. The deblurred images by [18, 38] exhibit severe artifacts,

cf . (c) and (h). For other methods, fine-scale detail is not effectively recovered, see (b), (d)–(g), and (i). Compared to existing methods,

our approach can effectively preserve finer detail as shown in (j). (Best viewed on high-resolution displays.)

4.1. Datasets and implementation details

Training dataset. We collect 400 images from the Berke-

ley segmentation dataset [24] and 4744 images from the

Waterloo Exploration dataset [23] for training. Following

previous work [49, 50], we randomly crop image patches of

240 × 240 pixels from the clear images and convolve each

crop with a simulated realistic kernel [35], where the kernel

size ranges from 13×13 to 35×35 pixels. Then we add 1%
or 5% Gaussian noise, respectively, to each blurry image.

For training the model to handle images with saturated

pixels, we collect 500 low-light images from Flickr. Similar

to [27], we first enlarge the intensity range of the clear im-

ages with a factor of 1.2 and convolve with a simulated blur

kernel [35] to generate the blurry image. Afterwards, 0–

1% Gaussian noise is added. Finally, both clear and blurry

images are clipped to the intensity range of [0, 1].

Test dataset. To evaluate our approach on images with

Gaussian noise, we first test on the dataset of [24], which

contains 100 clear images; the blurry input is generated

as described above. We then validate our method on the

dataset of [41] (not trained on), containing 80 clear images

with 8 blur kernels from [22]. We test our model on these

test datasets with 1% and 5% Gaussian noise, respectively.

To evaluate the effect of the proposed model on images

with saturated pixels, we collect 44 low-light images from

the literature [6, 10, 27, 47] and use the same method as

above to generate the saturated blurry images.

Implementation details.1 The network is trained using

the Adam optimizer [16] with default parameters. The batch

size is set to 2. The learning rate is initialized as 5 × 10−5

and halved every 200 epochs. We empirically use M = 3
and N = 5 pixel-dependent filters for the data term and

1PyTorch code and trained models are available at gitlab.mpi-

klsb.mpg.de/jdong/svmap. See also supplemental material.
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(a) Blurry input (b) EPLL [52] (c) MLP [38] (d) CSF [36] (e) LDT [11]

(f) FCN [49] (g) FDN [18] (h) FNBD [39] (i) RGDN [12] (j) SVMAP (ours)

Figure 3. Example with simulated blur (5% noise level) from the dataset of [41]. The results by [11, 12, 36, 38, 39] contain significant

artifacts, see (c)–(e), (h), and (i). The methods from [18, 49, 52] oversmooth fine-scale structures, cf . (b), (f), and (g). In contrast, our

approach effectively restores a clear image with finer detail as shown in (j).

(a) Blurry input (b) EPLL [52] (c) MLP [38] (d) CSF [36] (e) LDT [11]

(f) IRCNN [50] (g) RGDN [12] (h) Whyte [45] (i) Cho [6] (j) SVMAP (ours)

Figure 4. Example with simulated blur and saturated pixels from [47]. The results in (b)–(g) exhibit severe artifacts or color distortions

and do not effectively restore small-scale structures. In contrast, our approach can preserve finer detail as shown in (j).

the regularization term, respectively, and set sf = sg =
5. Balancing effectiveness and efficiency, the number of

IRLS iterations, i.e. iteratively updating {Fi,p} as well as

{Gj,p} and estimating the latent clear image, is set to 2
unless specified otherwise. We apply 5 conjugate gradient

iterations to solve Eq. (12) at each IRLS step.

4.2. Results with simulated blur

We compare our SVMAP approach with state-of-the-

art non-blind image deblurring methods. For fair compari-

son, we finetune all learning-based methods using the same

training dataset as ours.

Blurry images with Gaussian noise. We first evaluate

our approach on the datasets of Martin et al. [24] and Sun

et al. [41] (not trained on) in Tab. 1. Our approach signifi-

cantly outperforms the competing methods on images with

various noise levels, improving the PSNR by at least 0.94dB

(1% Gaussian noise) and 1.32dB (5% noise), respectively.

It generalizes well to the unseen dataset of [41]. Among

the competing methods, the approaches [36, 38, 49, 50, 52]

mainly focus on learning effective priors and [11] proposes

to learn robust data terms. All these methods only uti-

lize spatially-invariant feature extractors. In contrast, our

method jointly optimizes both the data and regularization

terms with spatially-variant image-adaptive filter learning,

which facilitates these two terms adapting to each other and

leads to higher quality results.

Figure 2 shows an example from [24] with 1% Gaus-

sian noise. The results generated by [18, 38] contain signif-

icant artifacts as shown in Fig. 2(c) and (h). The methods of

[11, 12, 36, 49, 50, 52] do not effectively restore fine-scale

image detail in the deblurred images as seen in Fig. 2(b),
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(a) Blurry input (b) EPLL [52] (c) LDT [11] (d) IRCNN [50] (f) SFARL [28] (g) SVMAP (ours)

Figure 5. Example with real camera shake from [5]. The result obtained by [50] in (d) has severe artifacts. The methods [11, 28, 52] do not

recover small-scale structures, cf . (b), (c), and (f). Compared to competing methods, our approach can preserve finer detail as seen in (g).

(d)–(g), and (i). Compared to these competing methods,

our approach recovers a much clearer image with finer de-

tail, cf . Fig. 2(j). We further show visual comparisons on

an image from [41] with 5% Gaussian noise in Fig. 3. The

competing methods are not able to recover fine-scale struc-

tures, e.g., the chair back in Fig. 3(b)–(i). In contrast, our

result in Fig. 3(j) is much clearer with finer detail.

Blurry images with saturated pixels. Next, we evalu-

ate our approach on the dataset with saturated pixels. Ta-

ble 2 shows that our method continues to outperform previ-

ous work by a significant margin. The average PSNR from

our approach is at least 0.89dB higher than for the compet-

ing methods. As the approaches of [18, 36, 38, 49, 50, 52]

adopt a fixed ℓ2 norm-based data term, they are not robust

to images with saturated pixels. The method of [6] itera-

tively estimates outliers and latent images based on the EM

algorithm and performs better than other previous methods.

Compared to existing methods, even specialized ones, our

approach can adaptively learn a more effective deblurring

model. Figure 4 shows one example from [47], where our

result shows much clearer characters.

4.3. Results with real blur

We further evaluate our method on images with real cam-

era shake and unknown noise or outliers. Figure 5 shows a

real captured image from [5]. The method of [50] results

in severe artifacts in the deblurred result, see Fig. 5(d). The

results obtained by the methods of [11, 28, 52] are over-

smoothed as shown in Fig. 5(b), (c), and (f). In contrast,

our approach restores much clearer images with finer detail,

e.g., the branches and patterns in Fig. 5(g).

5. Analysis and Discussion

Effect of learning the data and regularization terms.

To demonstrate the effectiveness of the proposed method

that jointly learns the data and regularization terms, we

compare with the baseline methods that omit learning ei-

ther the data term or the regularization term. Specifically,

we respectively replace the learnable data term in Eq. (10b)

with the commonly used ℓ2 norm-based data term (Fix D

Table 3. Effectiveness of jointly learning the data and regulariza-

tion terms. All methods are evaluated on the dataset of [24] with

1% Gaussian noise and the dataset with saturated pixels (see text),

where the kernel size ranges from 13× 13 to 35× 35 pixels.

Dataset with 1% Gaussian noise

Data term D Regularization term R PSNR (dB)

/SSIMℓ2 norm learned hyper-Laplacian learned

Fix D&R " % " % 29.21/0.8260

Learn D & Fix R % " " % 29.88/0.8525

Fix D & Learn R " % % " 31.59/0.8917

SVMAP (ours) % " % " 31.89/0.8973

Dataset with saturated pixels

Data term D Regularization term R PSNR (dB)

/SSIMℓ2 norm learned hyper-Laplacian learned

Fix D&R " % " % 29.15/0.8917

Learn D & Fix R % " " % 30.58/0.9183

Fix D & Learn R " % % " 29.47/0.9015

SVMAP (ours) % " % " 33.91/0.9529

& Learn R for short) or replace the learnable regularization

term in Eq. (10b) with a hyper-Laplacian prior (Learn D &

Fix R for short). In addition, we also compare with a clas-

sical non-learned method that adopts an ℓ2 data term and a

hyper-Laplacian prior (Fix D&R for short). We evaluate all

baseline methods on the dataset of Martin et al. [24] with

1% Gaussian noise. Table 3 shows the quantitative results,

where our approach outperforms all baseline methods, in-

creasing the PSNR value by at least 0.30dB. This demon-

strates the importance of jointly learning the data and regu-

larization terms and taking advantage of their interplay.

Note that the ℓ2 data term is theoretically the most suit-

able one to model the Gaussian noise underlying the dataset.

However, Tab. 3 shows that our method still performs bet-

ter than the baseline method with the ℓ2 data term and a

learned regularization term. This demonstrates that jointly

optimizing the data and regularization terms can help them

in compensating each other’s limitations.

We further evaluate our approach and the baseline meth-

ods on the dataset with saturated pixels, see Sec. 4.1. As the

ℓ2 data term cannot model the distribution of saturated pix-

els well as demonstrated by [6, 10, 27], the methods based
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Table 4. Effectiveness of learning spatially-variant filters. All

methods are evaluated on the dataset of [24] with 1% Gaussian

noise (kernel size from 13× 13 to 35× 35 pixels).

SIMAP SVMAP (ours)

[24] with 1% Gaussian noise 31.25/0.8861 31.89/0.8973

[24] with 5% Gaussian noise 26.72/0.7302 27.25/0.7550

on the ℓ2 data term cannot effectively handle blurry im-

ages with saturated pixels, cf . Tab. 3. Hence, learning a

proper data term can yield a significant improvement. Table

3, moreover, shows that in this challenging scenario learn-

ing both the data and regularization terms is essential for

high-quality deblurred results (> 3dB difference).

Effect of predicting spatially-variant filters. To demon-

strate the effectiveness of our spatially-variant formula-

tion over spatially-invariant data and regularization terms,

we compare with a baseline method that learns spatially-

invariant fi,Di, gj , and Rj for each i and j (SIMAP for

short). Note that when the filters are learned to be spatially

invariant, the weights in Eq. (11) cannot be merged into the

filters. Thus, for this baseline method, we actually need to

learn both the filters {fi, gj} and the weights {ωd
i , ω

r
j }. For

fair comparison, we use the same optimization method and

experimental settings to train and evaluate this baseline. Ta-

ble 4 shows that learning spatially-variant filters performs

notably better than learning spatially-invariant ones, espe-

cially when the blurry images contain significant noise.

Visualization of predicted spatially-variant filters. We

visualize some predicted filters in Fig. 6. Since the data

term measures the goodness-of-fit, the filters fi predicted

for the data term vary depending on the image reconstruc-

tion error (in the sense of Eq. (5)). We note that the ini-

tial latent image in Fig. 6(b) exhibits significant errors in

saturated areas. Comparing this to the predicted filters in

Fig. 6(e), we observe that the trained network predicts quite

different filters for saturated areas than in non-saturated ar-

eas (with smaller reconstruction errors). This improves the

quality of the latent image (Fig. 6(c)), but saturated pixels

continue to violate the underlying convolutional assumption

of the data term (as stated in Sec. 3.1). Thus, even further it-

erations show different filters being predicted for areas with

and without saturation (Fig. 6(f)). Similarly, the predicted

filters gj for the regularization term are based on the latent

image and can adapt to the image content. Hence, differ-

ing gj are predicted for different image structures, e.g., flat

and textured areas in Fig. 6(g) and (h). Thus, both the fil-

ters predicted for the data and regularization terms can ef-

fectively capture the spatially-variant image characteristics.

More analyses are included in the supplemental material.

Closely-related methods. The recent work of [28] simul-

taneously learns the data and regularization terms using a

linear combination of fixed Gaussian RBFs and spatially-

invariant filters. In contrast, we learn a spatially-variant

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Visualization of predicted spatially-variant filters. (a)

Blurry input. (b)–(d) Results of iterations 0, 1, 2 (i.e. our final

result), respectively. (e), (f) and (g), (h) fi and gj predicted from

(b), (c) for iterations 1 and 2. By learning spatially-variant filters

for both the data term (e), (f) and the regularization term (g), (h),

our approach can effectively leverage pixel-dependent properties

of image structure and generate a much clearer image with finer-

detail in (d). (Best viewed on high-resolution displays.)

MAP model, where the data and regularization terms are

modeled with deep neural networks. In addition and fol-

lowing [11, 36], using a linear combination of fixed Gaus-

sian RBFs may not suffice to model the noise distribution

or the spatially-variant properties of the image structure and

detail. As [28] does not provide training code, for fair com-

parison, we compare our result with the reported result of

[28] on one real example. Figure 5 shows that our approach

recovers a clearer result with finer detail than [28], high-

lighting the effectiveness of our SVMAP approach.

6. Conclusion

In this paper, we present an approach for jointly learn-

ing spatially-variant data and regularization terms within

the MAP framework for non-blind image deblurring. We

show that jointly learning both terms is more effective than

learning only one term alone; the difference becomes even

more striking in challenging scenarios. We further demon-

strate that predicting spatially-variant filters instead of the

usual spatially-invariant ones better captures the proper-

ties of clear images and facilitates finer detail restoration.

Taking the MAP-based optimization framework as a con-

straint for deep neural networks, our proposed model can be

trained in an end-to-end manner. Quantitative and qualita-

tive evaluations on benchmark datasets and real-world im-

ages demonstrate that our approach achieves substantially

better image quality than the current state of the art.
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