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Abstract: The popularity of unmanned aerial vehicles (UAVs) has made anti-UAV technology in-
creasingly urgent. Object tracking, especially in thermal infrared videos, offers a promising solution
to counter UAV intrusion. However, troublesome issues such as fast motion and tiny size make
tracking infrared drone targets difficult and challenging. This work proposes a simple and effective
spatio-temporal attention based Siamese method called SiamSTA, which performs reliable local
searching and wide-range re-detection alternatively for robustly tracking drones in the wild. Con-
cretely, SiamSTA builds a two-stage re-detection network to predict the target state using the template
of first frame and the prediction results of previous frames. To tackle the challenge of small-scale UAV
targets for long-range acquisition, SiamSTA imposes spatial and temporal constraints on generating
candidate proposals within local neighborhoods to eliminate interference from background distrac-
tors. Complementarily, in case of target lost from local regions due to fast movement, a third stage
re-detection module is introduced, which exploits valuable motion cues through a correlation filter
based on change detection to re-capture targets from a global view. Finally, a state-aware switching
mechanism is adopted to adaptively integrate local searching and global re-detection and take their
complementary strengths for robust tracking. Extensive experiments on three anti-UAV datasets
nicely demonstrate SiamSTA’s advantage over other competitors. Notably, SiamSTA is the foundation
of the 1st-place winning entry in the 2nd Anti-UAV Challenge.

Keywords: anti-UAV; single object tracking; thermal infrared videos; Siamese network; correlation
filter; re-detect; motion feature

1. Introduction

In recent years, the rapid development of unmanned aerial vehicles (UAVs) has
promoted a large number of applications, such as aerial photography [1–3], video surveil-
lance [4], and biological monitoring [5]. On the contrary, the potential abuses of this
technology could lead to significant negative impacts on society. Thus, anti-UAV tech-
niques are of great importance and in urgent need of practical research, among which
vision-based approaches are more widely adopted due to their higher efficiency, lower
power consumption, and easier deployment.

Given a UAV target specified by a bounding box in the first frame, visual object
tracking aims to determine the exact state of the target sequentially in a video, which
servers as a fundamental step for anti-UAV task. As is obvious, Thermal Infrared (TIR)
tracking technique is better suited to the low-light scenarios, thus catering to all-weather
requirements. However, tracking UAVs in TIR video, compared to tracking objects in visible
video, further introduces significant challenges, e.g., small object, fast motion, thermal
clutter background. How to tackle these problems remain challenging and ill-solved.
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Siamese-based algorithms play a dominant role in the field of visual object tracking.
SiamFC [6] first treats the tracking task as a similarity matching problem between target
template and the search region. Later on, numerous improvements have been done in
terms of adding auxiliary branch [7], digging deeper feature [8], improving embedding
strategy [9], augmenting online update mechanism [10–12], etc. While considering the
tracking object is UAV, which contains a wide range of fast motion and out-of-view situa-
tions, unlike the improvements mentioned above, the global re-detection mechanism and
trajectory modeling could play critical roles in accurate tracking.

SiamRCNN [13] introduces global re-detection mechanism into Siamese networks and
achieves outstanding tracking performance, which is thus used as our baseline algorithm.
But on the other hand, as the UAV targets themselves severely lack semantic features,
continuous global detection mechanism could be more likely to induce tracking drift,
especially when the UAV targets are drowned in thermal clutter background. At this time,
it seems more appropriate to detect targets in the local neighborhoods. Obviously, local
detection and global re-detection are the two opposite strategies that can cope with different
challenging situations during tracking. For this reason, this work elaborately designs a
framework adaptively switching these two strategies, achieving robust tracking through
performing reliable designed local tracking and wide-range re-detection alternatively.

This paper proposes a simple yet effective spatio-temporal attention-based Siamese
network, called SiamSTA, to track UAVs in TIR videos robustly. SiamSTA follows the
typical Siamese framework that consists a template branch and a detection branch. The
template branch extracts features for the template target specified in the first frame, while
the detection branch takes the search image as input and selects target candidates from
redundant Region Proposal Network (RPN) proposals. To tackle the key challenges, i.e.,
small scale and fast movement, commonly faced in anti-UAV tracking scenarios, SiamSTA
integrates both a reliable local tracking and a wide-range global re-detection mechanism,
and takes their complementary advantages in an alternative-performing fashion.

Specifically, to better perceive small targets that easily be distracted by background
clusters, the local tracking strategy incorporates spatial and temporal constraints to limit
the position and aspect ratio of generated candidate proposals in a local neighborhood,
so as to suppress background distractors and locate the target accurately. Meanwhile, in
case the target runs out of the local region due to rapid movement, a three-stage global
re-detection mechanism is designed to redetect the target: (i) provides re-detections using
the first-frame template, (ii) implements re-detections of high-confidence predictions from
previous frames, and (iii) adopts correlation filter based on change detection, short for
CDCF, to exploit beneficial motion features to better locate fast-moving target in a wide
range. Finally, a switching policy is adopted to apply local tracking and global re-detection
adaptively depending on varying target states to make optimal predictions, hence achieving
robust tracking.

To verify the performance of SiamSTA, comprehensive experiments are conducted
on three challenging UAV infrared tracking datasets, i.e., Anti-UAV2020 test-dev [14],
Anti-UAV2021 test-dev [15], Anti-UAV [16]. Detailed experimental comparisons show that
SiamSTA has advantages over its competing counterparts in addressing the key challenges
faced by anti-UAV tracking, including but not limited to small scale and fast movements.
In addition, SiamSTA serves as the foundation of the 1st-place winning entry in the 2nd
Anti-UAV Challenge, further evidencing its robustness in real-world scenarios.

To sum up, this paper makes the following contributions:

• This paper proposes a novel Siamese based tracker that integrates local tracking and
global re-detection mechanisms in a unified framework and perform them adaptively
depending on varying target states.

• This paper designs a spatio-temporal attention based local tracking strategy to elimi-
nate background clusters and better perceive small targets.

• A three-stage global re-detection strategy to recapture targets in a wide range is
proposed.
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• Our method establishes state-of-the-art performance in Anti-UAV2020 test-dev [14],
Anti-UAV2021 test-dev [15] and Anti-UAV [16] datasets.

2. Related Works

This section first reviews the development of two mainstream tracking frameworks,
i.e., correlation filters and Siamese networks. Then, some representative tracking algorithms
in thermal infrared videos are introduced.

2.1. Correlation Filter

Correlation filter (CF) based tracking methods have been widely applied to visual
tracking due to the high computational efficiency. MOSSE [17] tracker is the first to validate
the feasibility of the correlation filter in tracking. After MOSSE, CF trackers obtain a
wide attention. Refs. [18,19] introduce circulant matrix to produce enough samples for
training, while maintaining a fast speed. However, the resulting periodic repetitions at
boundary positions limit the discriminative ability of the tracker. To mitigate this issue,
Danelljan et al. [20] adopt a spatial regularization term which allows the tracker focus
on the target center, Galoogahi et al. [21] apply a binary matrix to crop real samples
for training, both of which are promising in lifting the performance of trackers. Besides
addressing boundary effect, some CF trackers introduce scale estimation [22–24] to improve
the tracking performance. In addition, A powerful feature extraction such as HOG [18,19],
CN [25] and deep feature [26] will enhance the feature representation ability and increase
the tracking accuracy. However, traditional CF trackers mostly apply nearby search, which
is difficult to capture the target again when the target is out of view for a while and then
re-enters the field of view, which limits the application of CF trackers in anti-UAV mission.

2.2. Siamese Network

Recently, the Siamese network based trackers have gained a lot of attention for
their great success in multiple video object tracking benchmarks and competitions.
Bertinetto et al. [6] propose the initial SiamFC tracker, which formulates visual track-
ing as a cross-correlation problem and expects to learn a similarity evaluation map based
fully-convolutional network in an end-to-end manner. Li et al. [27] significantly enhance
the tracking performance of SiamFC by introducing a Region Proposal Network (RPN),
which allows estimation of target locations, sizes, and ratios by enumerating multiple
anchors. However, these trackers implement nearby search, which is difficult to recap-
ture target after it lost. Recently, Voigtlaender et al. [13] unleash the full power of global
searching by a two-stage Siamese re-detection architecture, which makes full use of both
the first-frame template and previous-frame predictions for the optimal decision. Ref. [13]
not only solves the problem of update, but also improves the probability of re-detection
after target lost. However, global searching also introduces too much distractors which
hurts the performance of tracking small target in complex background. To this end, this
paper proposes a spatio-temporal attention based Siamese network to enhance the tracking
robust of global re-detection.

2.3. TIR Tracking

Recently, more attentions [28–30] have been paid to TIR tracking for the rapidly
development of infrared sensors in resolution and quality. Due to the poor semantic
information in TIR images, how to extract effective features is crucial to distinguish targets
from background. Refs. [31–33] compute motion features by thresholding the absolute
difference between the current and the previous frame in pixel-wise as an extra feature
channel, which is beneficial for identifying moving objects. Yu et al. [34] propose structural
learning on dense samples around the object. Their tracker uses edge and HOG features
which is suitable for UAV tracking. With the development of deep learning, Convolutional
Neural Networks (CNN) have shown competitive performance compared to handcrafted
feature. However, due to the limited semantic information in TIR images, traditional
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RGB backbones performs poorly, and a number of works [35,36] start to design networks
specialized for TIR images. However, the limited data in the infrared dataset and the
large amount of data required for training the deep network are not friendly to anti-UAV
tasks. Wu et al. [36] exploit the information in the initial frame to train a feature extraction
network for correlation filter. However, in long-term tracking, the target and background
in the initial frame and subsequent frames differ significantly, which is not general to
long-term anti-UAV tasks. Based on our previous work [37], our method first extracts
motion features using a Gaussian mixed model to select candidate regions where small
targets are likely to exist, and then combines the Histograms of Oriented Gradients (HOG)
features of the candidate regions to train a Correlation Filter based tracker to assist the
Siamese network in making joint decisions, thus better perceiving small targets in TIR
images. Finally, a novel distractor-aware regularization term is further proposed to learn
the distractor information in the background, thus leading to better tracking robust against
thermal clutter background.

3. Method

This section first briefly reviews the baseline tracker SiamRCNN [13]. Then the design
of the proposed SiamSTA is described, which consists of spatio-temporal constraints, global
motion estimation and change detection based CFs. Next, the online tracking and updating
strategy integrating both local search and global detection is further presented.

3.1. Revisiting SiamRCNN

SiamRCNN [13] is a two-stage Siamese tracker with elaborate re-detection mechanism.
Its network architecture is sequentially composed of three modules: (1) A backbone feature
extraction module containing a template branch for extracting ground-truth features in the
target area, and a test branch for preparing possible RPN proposals in the search area; (2) A
re-detection head module which performs a two-stage re-detection to learns a similarity
evaluation using the initial template and previous predictions; (3) An online dynamic
programming module that implicitly tracks both the target and potential similar-looking
distractors based on spatio-temporal cues. In the vital third module, SiamRCNN preserves
plenty of discontinuous trajectories for making the most comprehensive decisions. Suppose
one tracking trajectory consists of N non-overlapping sub-trajectories, A = (a1, a2, . . . , aN),
each sub-trajectory ai, ∀i ∈ {1, 2, . . . , N − 1} satisfies end(ai) < start(ai+1), where start and
end denote the start and end times of a sub-trajectory, respectively. The overall measuring
score of such trajectory is computed by,

score(A) =
N

∑
i=1

sim_eva(ai) +
N−1

∑
i=1

wl loc_eva(ai, ai+1), (1)

where the similarity evaluation sim_eva and location consistency evaluation loc_eva are
defined as following,

sim_eva(ai) =
end(ai)

∑
t=start(ai)

[wrsim(ai,t, gt) + (1− wr)sim(ai,t, ai,start)], (2)

loc_eva(ai, ai+1) = −|end_box(ai)− start_box(ai+1)|1, (3)

here wl and wr are the complementary ratios. ai,t denotes the detection of sub-trajectory ai
at time t, and ai,start means the first detection of ai. sim(ai,t, gt) and sim(ai,t, ai,start) return
the re-detection confidence of ai,t using the first-frame ground truth reference and the
initial detection of the current sub-trajectory, respectively. As presented in Equation (3), the
location consistency evaluation between two adjacent sub-trajectory is computed using
the negative L1 norm of the difference between the last bounding box of ai and the first
bounding box of ai+1.



Remote Sens. 2022, 14, 1797 5 of 20

SiamRCNN backs up a lot of trajectories to ensure the success rate of re-detection.
However, due to the lack of semantic target features and the presence of complex thermal
background in TIR video, these trajectories introduce a large number of similar-looking
distractors, thus causing too much disruptions during tracking and eventually leading to
tracking drift. To address such issue, finer exploitation of spatio-temporal prior knowledge
is a feasible solution.

3.2. SiamSTA Framework

Inspired by SiamRCNN, SiamSTA is built based on a three-stage re-detection mecha-
nism that first retains template information in the initial frame, then integrates predictive
information from historical frames, and finally lifts discriminative capability to perceive tiny
objects with a change detection based CF, as shown in Figure 1. To deal with background
distractors, several practical guidelines using spatio-temporal attention are introduced to
regulate candidate proposals. SiamSTA further incorporates a collaborative strategy that
combines local search and global detection to facilitate online tracking.

Figure 1. Overall architecture of SiamSTA. It consists of a Siamese backbone that extracts deep
features from the template and the search image, followed by a three-stage re-detector that first
re-detects the first-frame template, then re-locates historical predictions from previous frames, and
finally fixes potential tracking failures using a change detection based CF. The symbol

⊕
indicates

an ensemble classifier that conditionally switches between local track and global detection to make
optimal decisions upon predictions from the three-stage re-detector.

3.2.1. Spatio-Temporal Constraints for Local Tracking

UAV targets in practical TIR tracking are typically very small and without salient
texture or fixed shapes, making them extremely hard to be distinguished. To alleviate
this, a novel spatio-temporal constraint is introduced. From the spatial perspective, con-
sidering the drastic position changes of the targets are unlikely to occur in two adjacent
frames captured by a long-range static camera, reliable tracking results can be obtained
by searching for targets in local neighborhoods rather than detecting it globally. From
the temporal perspective, SiamSTA introduces a memory bank to store valuable historical
states of the targets, i.e., target size and aspect ratio, learned from all previous frames to
better distinguish potential distractors.

Concretely, SiamSTA records the historical minimum and maximum size and aspect
ratio of the target appeared in all previous frames, denoted as (Smin, Smax) and (Rmin, Rmax),
respectively, to indicate its range of potential scale variation. Initialize Smin = Smax = S,
Rmin = Rmax = R with the size S and aspect ratio R of the ground-truth target bounding box
specified in the first frame. For an arbitrary frame c, we specify a local neighborhood around
the previous target center as the search region where the target is most likely to appear.
Only if a high-confidence proposal has been found within the specified search region,
whose size Sc and aspect ratio Rc meets the constrain below Sc ∈ [0.8 ∗ Smin, 1.2 ∗ Smax],
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Rc ∈ [0.8 ∗ Rmin, 1.2 ∗ Rmax], we regard the detection result to be reliable and the trajectory
to be continuous. Then SiamSTA updates the stored target state as following:

Smin = min(Smin, Sc), Smax = max(Smax, Sc), (4)

Rmin = min(Rmin, Rc), Rmax = max(Rmax, Rc). (5)

The above process lasts until the end of a trajectory. Define the trusted trajectory as
C = (c1, c2, . . . , cL), and compute the evaluation score of a candidate proposal cc as,

score(cc) = wrsim(cc, gt) + (1− wr)
1
L

L

∑
i=1

sim(cc, ci,start) + wl iou(cc, cL,end), (6)

where iou(cc, cL,end) is the intersection over union (IoU) of bbox(cc) and bbox(cL,end).
Thanks to the spatio-temporal constraints, the number of remaining candidate proposals
can be very small, or even unique, which greatly alleviates the interference of distractors.

However, if the target is temporarily lost, the local search strategy may cause the
tracker to fail completely. To mitigate the effect of target loss, especially severe occlusion
or out-of-view, global re-detection techniques associated with a mutual compensation
mechanism that conditionally switches between local tracking and global search is essential,
as detailed below.

3.2.2. Global Motion Estimation

Targets in anti-UAV tracking are typically very small with little semantic information,
which easily leads to early tracking failures. Fortunately, background scenes in such
tracking scenario commonly remain fixed throughout an entire sequence, which provides
feasibility to employ motion features to re-capture lost targets.

Motivated by this, this section establishes a global motion estimation model to reveal
dynamic change of background scenes. To be specific, SiamSTA extracts the ShiTomasi [38]
key points from background regions and track these points to estimate the motion of
background scenes. Let I(x, y) denotes the intensity value of pixel (x, y) on input image
I. Key points should have a significant gradient change in gray values, such as corner
points. Let [u, v] be the local displacement, and the gradient change vector in the local
neighborhood can be calculated as,

E(u, v) = ∑
x,y

τ(x, y)[I(x + u, y + v)− I(x, y)]2, (7)

where τ(x, y) is a Gaussian window function. Equation (7) can be further simplified as,

E(u, v) ∼= [u, v]M
[

u
v

]
, (8)

where M is a 2× 2 matrix:

M = ∑
x,y

w(x, y)
[

I2
x Ix Iy

Ix Iy I2
y

]
, (9)

where Ix and Iy represent the derivatives of image I in the horizontal and vertical direction,
respectively. We can obtain two eigenvalues λ1, λ2 of M, and the key point response
function is defined as,

G = λ1λ2 − k(λ1 + λ2)
2, (10)

point (x, y) is consider as a key point if G > 0, more details can be found in [38].
The number of key points is set to 5 to 100. Then Lucas-Kanade (L-K) optical flow

algorithm [39] is applied to track these key points, with forward-backward (F-B) error [39]
employed to evaluate the matching accuracy of key points between two consecutive frames.
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Key points with F-B error less than a preset threshold are regarded as successful tracking
points. If the average spatial displacement of all successful tracking points is less than
0.5 pixel across 5 consecutive frames, we consider the background scene is static without
camera jitters.

3.2.3. Change Detection Based CFs for Three-Stage Re-Detection

Based on the accurate motion estimation of background, change detection based
correlation filter (CDCF) tracker is further proposed to take advantage of target’s motion
features. CDCF is coupled with SiamRCNN’s two-stage re-detection to form a three-stage
re-detection framework. The pipeline of CDCF module is shown in Figure 2. The red
area on the left side indicates the Gaussian Mixture Model (GMM) construction process,
which is used to describe the background and updated every frame. The blue area shows
the computation process of correlation filter, and the green area depicts the combination
of motion features and the correlation filter tracker to finally obtain a credible target
state output.
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Figure 2. Pipeline of CDCF. We use the first frame of sequence to construct a Gaussian Mix Model
(GMM), and update GMM model every frame. CDCF extracts hand-drafted feature to build a
correlation filter, which can track target and redetect target when target lost.

Background Modeling. When the background is static, each pixel is normally dis-
tributed in the time domain, pixels within a certain threshold are judged as background
and vice versa as moving targets. Based on this assumption, a Gaussian mixed model
(GMM) is built to capture moving targets. Denote Xt as the intensity value of pixel (x, y) in
frame t, and the GMM model is computed as,

P(Xt) =
K

∑
i=1

κi,t ∗ η(Xt, µi,t, Σi,t), (11)

where K is the number of Gaussian components (usually ranges from 3 to 5), κi,t is the
weight of component i in frame t, µi,t and Σi,t are the mean and variance matrix of compo-
nent i, respectively. Gaussian probability density function η(Xt, µi,t, Σi,t) is defined as,

η(Xt, µi,t, Σi,t) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2 (Xt−µt)

TΣ−1(Xt−µt). (12)
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For a pixel value, Xt, it will be checked from the existing K Gaussian components, until
a match is found. The match is defined as success if the pixel value Xt is within 2.5 times
the standard deviations of a component. Then, GMM model is updated as,

κi,t = (1− α)κi,t−1 + αQi,t, (13)

where α is the learning rate, Qi,t equals 1 when the matching is successful and 0 otherwise.
Keep the parameters µ, Σ for unmatched components unchanged, and update matched
component as,

µt = (1− ρ)µt−1 + ρXt, (14)

Σt = (1− ρ)Σt−1 + ρ(Xt − µt)
T(Xt − µt), (15)

where ρ is learning rate:
ρ = αη(Xt|µk, σk). (16)

If Xt does not match any of the K components, we classify the pixel as motion target
(As we can see in the right subfigures of Figure 3, the pink region is the visualization of
motion feature, represents the presence probability of the moving target). Based on the
motion feature, SiamSTA can perceive tiny moving target with little semantic information
in dynamic background.

Figure 3. Motion features of CDCF. The areas with motion features are marked in pink, the rest in
blue. When background is static e.g., frame 287, 1267, the motion feature is quite distinct, which
is suitable for CDCF to perceive target, even the target is tiny and with little semantic information.
When dynamic background occurs e.g., frame 17, 1349, the moving clouds in the scene will cause a
heavy disturbance in discerning the real target.

Change Detection Correlation Filter. CDCF is trained using the initial frame and
perform correlation operation to track the target in subsequent frames. Previous work [37]
exploits motion feature as a re-detection method, which simply treats the motion feature as
candidate region of target, and restart tracking on the new position based on the motion
feature. However, motion feature is not accurate enough to describe target state. As shown
in Figure 3 (frame 17), when there are moving distractors in the background and the target
remains static, the motion feature will produce a strong response value in the background
distractors, while the response at the target position is zero, which will easily lead to
tracking drift.

To make better use of motion feature, this work proposes a novel correlation filter
which is not only used as tracking, but also used as re-detection. To construct a robust
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correlation filter, a novelty objective function is proposed, which can perceive background
distractors [40]:

E( fk, H) =
1
2

∥∥∥∥∥ D

∑
d=1

(Bxd
k ∗ f d

k )− H

∥∥∥∥∥
2

2

+
1
2

D

∑
d=1

∥∥∥ f d
k

∥∥∥2

2
+

α

2
‖H − y‖2

2, (17)

where xd
k , f d

k ∈ RT denote the d-th channel of the vectorized image and filter of frame k,
respectively. D is the total channel number. y ∈ RT is the expected response (with Gaussian
distribution). ∗ indicates convolution operator. B ∈ RM×N is a cropping matrix to select
central M elements in xd

k , N is the length of x. Usually N >> M, H is expected response
output. α is a adaptive parameter during tracking, which can be calculated from APCE [41]:

α = APCE =
1

WH
· |Fmax − Fmin|2

∑N
i=1 ∑H

j=1(Fi,j − Fmin)2
. (18)

APCE is a confidence evaluation method, when the target state is quite credible, the
APCE value is high, otherwise, the value will decrease. We use it as the regularization coef-
ficient, when background is clear, APCE is very high, we make the expected output closer
to the Gaussian response y, and when there are cluttered disturbances in the background,
we choose to tolerate them so that the expected output has a non-zero value response at the
background.

Then Alternating Direction Method of Multipliers (ADMM) algorithm is applied to
minimize Equation (17) to achieve a local optimal solution. The augmented Lagrangian
form of the equation can be formulated as:

Lk( fk, ĝd
k , ξT , Ĥ) = E( fk, ĝd

k , Ĥ) + ξ̂T(ĝk −
√

N(FBT ⊗ ID) fk)

+
ρ

2

∥∥∥ĝk −
√

N(FBT ⊗ ID) fk

∥∥∥2

2
,

(19)

where ξ̂T = [ξ̂T
1 , ξ̂T

2 , . . . , ξ̂T
D] is the 1× DN Lagrangian vector in Fourier domain, ρ is a

penalty factor. Then, ADMM is applied by alternately solving the following sub-problems:

ĝk+1 = argmin
1
2

∥∥∥∥∥ D

∑
d=1

(x̂d
k � ĝd

k )− Ĥ

∥∥∥∥∥
2

2

+ ξ̂T(ĝk −
√

N(FBT ⊗ ID) fk)

+
ρ

2

∥∥∥ĝk −
√

N(FBT ⊗ ID) fk

∥∥∥2

2
,

(20)

fk+1 = argmin
1
2

D

∑
d=1

∥∥∥ f d
k

∥∥∥2

2
+ ξ̂T(ĝk −

√
N(FBT ⊗ ID) fk) +

ρ

2

∥∥∥ĝk −
√

N(FBT ⊗ ID) fk

∥∥∥2

2
, (21)

Ĥ = argmin
Ĥ

1
2

∥∥∥∥∥ D

∑
d=1

(x̂d
k � ĝd

k )− Ĥ

∥∥∥∥∥
2

2

+
α

2

∥∥Ĥ − ŷ
∥∥2

2, (22)

which can be easily solved as follows:

ĝk+1(t) =
1

ρN
(I − x̂(t)x̂(t)T

ρN + x̂(t)x̂(t)T )(Ĥ(t)x̂(t)− NξT + Nρ f̂k(t)). (23)

fk+1 =
ξT N + ρNgk+1

1 + ρN
. (24)

Ĥ =
∑D

d=1(ĝd
k ∗ x̂d

k) + αŷ
1 + α

. (25)
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Beside used for tracking target, the correlation filter calculated from (23) is also served
as a detector in CDCF.

Then the appearance model x̂model
k is updated as follows:

x̂model
k = (1− η)x̂model

k−1 + ηx̂k, (26)

where η is the learning rate of the appearance model.

Remark 1. To the best of our knowledge, no correlation filters have been used for re-detection. This
is mainly because the correlation filter is very sensitive to the position offset, and when there is a
large position deviation between the correlation filter model and the target, the correlation filter will
get a very low response value, and the target will be detected only when the position deviation is
very small. Therefore, how to judge the location where the target reappears is crucial for whether the
correlation filter can find the target again. Thanks to the robust motion feature, CDCF will obtain
a suitable target candidate region when background is static. Then, CDCF will correct the target
position and scale based on correlation operation.

3.3. Online Tracking and Updating

As aforementioned, local tracking equipped with spatial-temporal constraints helps to
locate small targets with limited semantic information. Global re-detection, instead, could
be more reliable when faced with challenges like occlusion and out-of-view in long-term
tracking. Hence, it is crucial to learn to switch adaptively between local tracking and global
re-detection to leverage their complementary strengths.

Local Tracking: Suppose ci = [ci,start, ci,start+1, . . . , ci,t−1] is a continuous sub-trajectory
from frame start(ci), and ci,t−1 is a trustworthy tracking result in frame t− 1. For frame t,
previous trusted predictions in [c1, c2, . . . , ci] are fed into the second stage of the re-detector.
For static background, only proposals with an overlap greater than 0.01 with the bounding
box in ci,t−1 are considered as target candidates. If the re-detector finds a proposal with a
confidence score over 0.5, local tracking is believed to be valid, and its corresponding result
ci,t is added to ci. Otherwise, local tracking is paused, indicating the end of this continuous
trajectory.

Global Re-detection: Starting from the failed frame, global re-detection is performed.
Like SiamRCNN, SiamSTA also track potential similar-looking distractors and record their
trajectories A. Then the results of CDCF is introduced to guide the global re-detection.
SiamSTA compares the bounding box size SCD predicted by CDCF with the target size of
previous frames. When the background is static and SCD ∈ [Smin, Smax], CDCF’s results
are judged to be credible, initialize a new sub-trajectory ci+1, and restart local tracking.
Otherwise, SiamSTA treats it as a reference result to facilitate selecting the suitable pro-
posal as output for the current frame. When the predicted bounding box of CDCF has
a large overlap with a high-confidence proposal, SiamSTA considers the target has been
successfully recaptured and initialize a new sub-trajectory ci+1, then restart local tracking.
If there is no overlap between CDCF and high-confidence proposals, SiamSTA chooses
the proposal with highest score as current frame output. For dynamic background, the
continuous sub-trajectory is terminated directly, and the tracker relies on global re-detection
to estimate the position and size of the target.

4. Experiments
4.1. Experimental Setup
4.1.1. Evaluation Metrics

This experiment uses three widely-used metrics to evaluate, including precision plot,
success rate plot and average overlap accuracy. The first metric computes the percentages
of frames in which the estimated target location is within a given distance threshold to
the ground-truth. The second one measures the fractions of successful frames where the
Intersection over Union (IoU) between the predicted bounding box and ground-truth is
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greater than a certain threshold varied from 0 to 1. The last one is the evaluation metric
given in the Anti-UAV benchmark [16]. It calculates the mean IoU of all videos. In this
experiment, an error threshold of 20 pixels are adopted in the precision plot, and the area
under the curve (AUC) of the success plot is used to evaluate tracking performance.

4.1.2. Network Parameters

Our SiamSTA is built upon SiamRCNN network, and SiamSTA also borrows its trained
weights. The max corners, min distance and block size for computing the background key
points are set to 500, 7 and 7 respectively. For optical flow, SiamSTA utilizes a two-level
pyramid with a 15× 15 sliding window. The F-B error threshold for selecting the correct
key points is set to 1.0. If the average moving distance of these selected key points for
5 consecutive frames is less than 0.5, SiamSTA considers the background to be static. A
5× 5 median filter is used to remove the tiny foreground noises in the change detection.
The weight wr, for the first stage of re-detection is set to 0.1, hence the weight for the second
re-detection stage is 0.9. The location score weight wl is set to 5.5. In the global detection
phase, the settings are consistent with SiamRCNN. As for CDCF, the learning rate η is set
as 0.02.

Remark 2. Due to the competition restrictions of the 2nd Anti-UAV challenge, we did not perform
additional training on the model when testing the Anti-UAV2020 [14] and Anti-UAV2021 [15]
test-dev dataset, and directly exploit the model trained on RGB datasets given by SiamRCNN. While
the Anti-UAV [16] dataset contains a training subset, SiamSTA is retrained on the train subset of
the Anti-UAV dataset, with a total of 160 sequences. During training, we also apply motion blur,
grayscale, gamma, flip and scale augmentations. The other parameters about training is the same as
the SiamRCNN [13].

4.1.3. Details about UAV Platform

In the evaluation datasets, the picture sizes include 640× 512, 640× 480 and 1280 × 720
(in pixels). The detection range (distance from UAVs) varies from 0.1 km to 2.5 km. The UAV
size in the image ranges from 5 × 5 to 60 × 90 (in pixels), including a variety of UAV plat-
form such as DJI-Phantom4 (196× 289.5× 289.5 mm), DJI-Mavic-Air (168 × 184 × 64 mm),
DJI-Spark (143 × 143 × 55 mm), DJI-Mavic-Pro (322 × 242 × 84 mm), DJI-Inspire (438 ×
451 × 301 mm) and Parrot.

Remark 3. The evaluation videos include a variety of UAV platforms with detection distances
ranging from 0.1 to 2.5 km, which fully demonstrates the generality of our approach.

4.2. Comparing with State-of-the-Arts Trackers

Comprehensive experiments are conducted to compare our SiamSTA with some of
the currently best performing deep trackers, i.e., SiamRCNN [13], SiamRPN++ [8], Glob-
altrack [42], PrDiMP [11], DiMP [43], ATOM [10], KYS [44], SiamRPN [27] and other
recent CF trackers including AutoTrack [45], ECO [46], ARCF [47], STRCF [48], KCF [18],
CSRDCF [49]. For a fair comparison, these compared algorithms are reproduced on our plat-
form with their default parameter settings maintained. The details of different comparison
results on different datasets are listed below.

Anti-UAV2020 test-dev datasets [14]: The datasets contains 100 high quality IR videos
and 100 RGB videos, spanning multiple occurrences of multi-scale UAVs with complex
backgrounds such as clouds, urban buildings, etc. The results of the precision plots and
success plots which compare the trackers mentioned above on Anti-UAV2020 test-dev
datasets are shown in Figure 4. It is obviously that the proposed SiamSTA can perform better
than the other trackers. SiamSTA outperforms the previous best tracker SiamRCNN [13] by
2.32% and 0.97% in terms of precision and success, respectively.
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Figure 4. Precision and success plots of our SiamSTA and state-of-the-art trackers on the Anti-
UAV2020 test-dev dataset. The mean precision and AUC scores are reported for each tracker. Best
viewed in color and zoom.

Anti-UAV2021 test-dev datasets [15]: Based on Anti-UAV2020 test-dev, the 2021 ver-
sion [15] abandons RGB videos and extends the IR data of the former to 140 videos.
Furthermore, the dataset incorporates more complex scenarios such as sea, forest, moun-
tain, and more challenging issues such as tiny objects, weak targets, which makes the
tracker easily overwhelmed in the clustered backgrounds. Figure 5 reports the comparison
results on Anti-UAV2021 test-dev. As one can see, SiamSTA yields the best precision score
0.888, which surpasses the second-best (SiamRCNN [13]) and third-best (GlobalTrack [42])
trackers by 6.09% and 9.09%, respectively. What is more, SiamSTA is also the best tracker in
terms of success with a score of 0.655. Notably, the performance gains of our algorithm in
the Anti-UAV2021 test-dev dataset are more impressive than that of Anti-UAV2020. This is
mainly because the Anti-UAV2021 test-dev introduces many tiny and weak target videos,
while our spatio-temporal attention and change detection are exactly designed to address
such challenges, thus leading to a higher accuracy.
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Figure 5. Precision and success plots of our SiamSTA and state-of-the-art trackers on the Anti-
UAV2021 test-dev dataset. The mean precision and AUC scores are reported for each tracker. Best
viewed in color and zoom.
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Anti-UAV [16]: The dataset contains 318 high quality thermal infrared sequences,
including train (160 sequences), test (91 sequences) and validation (67 sequences) sub-
datasets. Besides the 14 trackers mentioned above, this experiment also introduce 15
state-of-the-art trackers for comparison, including, KeepTrack [50], Stark [51], HiFT [52],
STMTrack [53], TransT [54], TransformerTrack [55], ROAM [56], SiamBAN [57], Siam-
CAR [58], SiamFC++ [59], TADT [60], DaSiamRPN [61], BACF [21], SiamFC [6], SRDCF [20]
and DSST [23]. The results are shown in Table 1, SiamSTA performs best in both test and
validation sets, suppressing the previous best tracker SiamRCNN by 4.76% and 1.81%,
respectively.

Table 1. The overall average accuracy (%) of state-of-the-art trackers on Anti-UAV test and validation
sets. The top three results are highlighted in red, green and blue, respectively.

Method Source Test Validation

DSST [23] BMVC14 33.11 39.86
KCF [18] T-PAMI15 33.33 38.53
SRDCF [20] ICCV15 41.00 46.99
SiamFC [6] ECCVW16 37.51 45.14
BACF [21] ICCV17 40.94 45.74
ECO [46] CVPR17 43.68 51.95
STRCF [48] CVPR18 44.89 50.63
SiamRPN [27] CVPR18 41.64 43.87
DaSiamRPN [61] ECCV18 39.61 44.64
ARCF [47] ICCV19 40.55 43.82
ATOM [10] CVPR19 49.98 59.82
TADT [60] CVPR19 43.52 55.20
SiamRPN++ [8] CVPR19 42.58 45.88
DiMP50 [43] ICCV19 49.33 62.48
PrDiMP50 [11] CVPR20 55.70 62.61
AutoTrack [45] CVPR20 38.70 47.49
SiamFC++ [59] AAAI20 44.92 50.44
KYS [44] ECCV20 46.70 60.35
GlobalTrack [42] AAAI20 64.31 73.84
SiamCAR [58] CVPR20 46.59 54.79
SiamBAN [57] CVPR20 39.53 42.42
Siam R-CNN [13] CVPR20 65.16 74.76
ROAM [56] CVPR20 45.15 56.15
TransformerTrack [55] CVPR21 54.75 65.21
TransT [54] CVPR21 52.14 60.86
STMTrack [53] CVPR21 40.86 46.41
HiFT [52] ICCV21 37.87 47.41
Stark [51] ICCV21 59.08 69.03
KeepTrack [50] ICCV21 61.05 67.95
SiamSTA Ours 68.26 76.11

4.3. Qualitative Evaluation

Figure 6 shows qualitative comparisons between SiamSTA and other state-of-the-art
trackers. SiamSTA shows clear superiority over other trackers in handing challenging
tracking situations, including Motion Blur, Fast Motion, Thermal Crossover, Out-of-view
and Occlusion. With the help of the proposed spatio-temporal attention mechanism and
change detection correlation filter, SiamSTA performs excellent against target loss and
thermal crossover, which are common in TIR tracking.



Remote Sens. 2022, 14, 1797 14 of 20

## 00001 ## 00008 ## 00027 ## 00094 ## 00107

## 00001 ## 00085 ## 00086 ## 00656 ## 00657

## 00001 ## 00085 ## 00141 ## 00179 ## 00306

## 00001 ## 00244 ## 00245 ## 00253 ## 00262

## 00001 ## 00009 ## 00037 ## 00086 ## 00082

Ground Truth DiMP SiamRPN++ SiamRCNN Ours

20190925_210802_1_3_1

20190925_133630_1_9_1

20190925_222534_1_7_1

20190925_210802_1_8_1

20190925_143900_1_5_1

Figure 6. Qualitative comparison of SiamSTA with other state-of-the-art trackers in handling different
challenging scenarios. From top to bottom are Motion Blur (Sequence 20190925_222534_1_7_1), Fast
Motion (Sequence 20190925_210802_1_3_1), Thermal Crossover ( Sequence 20190925_133630_1_9_1),
Out-of-view ( Sequence 20190925_210802_1_8_1) and Occlusion (Sequence 20190925_143900_1_5_1).
The tracking video can be found in https://youtu.be/_l4hP1ZWG3w (accessed on 17 March 2022).

4.4. Attribute-Based Evaluation

For a comprehensive evaluation of SiamSTA, in addition to the 5 attributes (Thermal
crossover, scale variation, out-of-view, fast motion and occlusion) defined in Anti-UAV [16],
this experiment has added a new attribute, tiny scale (with a diagonal length less than
10 pixels). Figure 7 reports the comparison results (precision and success plots) of SiamSTA
and other state-of-the-art trackers in different attributes. It can be seen that SiamSTA
achieves the highest scores on all attributes, which fully validates the superior performance
of SiamSTA in tackling the challenges of various attributes. Especially noteworthy is the fact
that SiamSTA performs particularly well in Thermal Crossover and Tiny Scale attributes,
surpassing the second-best tracker SiamRCNN by 7.76% and 7.45% in terms of precision,
7.24% and 9.51% in terms of success rate, respectively.

https://youtu.be/_l4hP1ZWG3w


Remote Sens. 2022, 14, 1797 15 of 20

Figure 7. Precision and success plots of our SiamSTA and state-of-the-art trackers on the different
attributes defined in Anti-UAV [16] test set. The mean precision and AUC scores are reported for
each tracker. Best viewed in color and zoom.

4.5. Tracker Robustness Testing against Weather Challenges

Weather conditions have a critical impact on tracker performance, especially for anti-
UAV tracking in real-world scenarios where complex weather conditions such as foggy
days, cloudy days, and nighttime bring new challenges to tracking. For this purpose,
we selected video sequences from the Anti-UAV [16] dataset under different weather
conditions for visualization and analysis. As shown in the Figure 8, the left side is the
scene captured by the visible camera, and the right side is the infrared imaging scene at the
same moment and under the same shooting angle. It can be seen that in extreme weather
conditions, the infrared imaging quality is superior to the visible imaging quality and
thus allows a clearer view of the UAV target, so the infrared anti-UAV tracking is more
adaptable to the environment. At the same time, SiamSTA can still stably track the target
under complex weather conditions, providing a strong guarantee for anti-UAV tracking.
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Figure 8. Visual analysis of SiamSTA for different weather challenges. From top to bottom are
Sequence 20190926_195921_1_9, Sequence 20190925_101846_1_8, Sequence 20190925_133630_1_2,
Sequence 20190925_131530_1_4. The red rectangle indicates the predicted results of SiamSTA.

4.6. Ablation Study

We perform an ablation study to demonstrate the impact of each component in the
proposed SiamSTA method on Anti-UAV2021 test-dev [15]. Average tracking accuracy
defined in Anti-UAV [16] is adpoted as the evaluation criteria. The baseline method is the
original SiamRCNN [13] method.

Effects of Lost Estimation. SiamSTA treats the target state as lost when the confidence
score falls below 0. As shown in Table 2, integrating lost estimation brings an improvement
of 0.71% over the SiamRCNN baseline, validating that this simple operation is quite
effective.

Table 2. Ablation studies on components of SiamSTA. Lost: lost estimation, STA: spatio-temporal
attention, CD: change detection.

Lost STA CD Score (%)

Baseline

64.29
X 64.70

X 65.61
X 66.44

X X X 67.30

GLCF 37.01
X X 56.04
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Effects of Spatio-Temporal Attention. To verify the effect of Spatio-Temporal atten-
tion, a variant is created by adding spatio-temporal attention (STA) to baseline. Result in
Table 2 shows the effectiveness of Spatio-Temporal Attention (STA) that leads to 2.05%
improvement in average tracking accuracy. This can be attributed to the precise switching
between global re-detection and nearby tracking, which suppresses the disturbance of
cluttered background and thus improves the robustness of tracking.

Effects of Change Detection. We further explore the effectiveness of Change detection
(CD). Through purely adding CD to the baseline, the tracking result achieves a performance
lift of 2.15% (from 64.29% to 66.44%), the best among all three components, which can be
mainly credited to the precise perception ability of tiny and weak target.

To further demonstrate the universality of our approach, we incorporate CD and
STA into GLCF tracker [40], which achieves a score of 56.04%, a 51.42% performance
improvement over the original GLCF tracker. This indicates that motion feature used in
CDCF is generic and applicable for various TIR trackers.

5. Conclusions

This paper proposes a novel algorithm called SiamSTA, which fully exploits the
prior knowledge to inspire the current tracker to make optimal decisions. SiamSTA first
employs a spatio-temporal attention mechanism to limit the candidate proposals focus on
the validate regions and reduce the interference caused by background distractors. Then
a CDCF re-detection submodule is introduced into SiamSTA to combat the challenges of
target occlusion and out of view. Finally, SiamSTA achieves high-precision online tracking
and high-confidence feedback updates by combining local search and global detection.
Extensive experiments on three anti-UAV datasets have demonstrated the effectiveness
of our SiamSTA, and we strongly believe that our work can promote the development of
visual tracking in remote sensing and its application in anti-UAV missions.
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