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Numerous clinical investigations require understanding changes in anatomical shape
over time, such as in dynamic organ cycle characterization or longitudinal analyses
(e.g., for disease progression). Spatiotemporal statistical shapemodeling (SSM) allows
for quantifying and evaluating dynamic shape variation with respect to a cohort or
population of interest. Existing data-driven SSM approaches leverage information
theory to capture population-level shape variations by learning correspondence-
based (landmark) representations of shapes directly from data using entropy-based
optimization schemes. These approaches assume sample independence and thus
are unsuitable for sequential dynamic shape observations. Previous methods for
adapting entropy-based SSM optimization schemes for the spatiotemporal case
either utilize a cross-sectional design (ignoring within-subject correlation) or impose
other limiting assumptions, such as the linearity of shape dynamics. Here, we present
a principled approach to spatiotemporal SSM that relaxes these assumptions to
correctly capture population-level shape variation over time. We propose to
incorporate modeling the underlying time dependency into correspondence
optimization via a regularized principal component polynomial regression. This
approach is flexible enough to capture non-linear temporal dynamics while
encoding population-specific spatial regularity. We demonstrate our method’s
efficacy on synthetic data and left atrium segmented from cardiac MRI scans. Our
approach better captures the population modes of variation and a statistically
significant time dependency than existing methods.
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1 Introduction

Statistical shape models (SSMs) provide a compact representation of shape in relation to a
population. SSM is a valuable tool in clinical research because it allows for quantifying and
analyzing anatomical shape variation with respect to a cohort of interest. SSM has been
effectively used to quantify group differences (for example, between healthy and disease-specific
populations) and in downstream tasks such as pathology detection and disease diagnosis
(Bhalodia et al. (2020); Harris et al. (2013); Atkins et al. (2017); Gaffney et al. (2019)). Many
clinical investigations require spatiotemporal evaluation, i.e., analysis of anatomical shape
change over time. Such is the case for studies of dynamicmotion that involve dense observations
over short time intervals (such as organ cycles), as well as for longitudinal studies that involve
sparse observations over extended periods (such as in disease staging and intervention analysis).
Traditional SSM methods are incapable of representing spatiotemporal data and can only be
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applied in a time-agnostic manner by assuming a cross-sectional study
design. Here individual subject correlation across time is ignored, and
each time point is incorrectly assumed to be an independent
observation, i.e., a different subject. Disregarding the inherent
correlation of shapes from the same sequence can confound the
resulting population statistics and subsequent analyses (Gerig et al.
(2016); Fitzmaurice and Ravichandran (2008)). Spatiotemporal SSM
captures the time-based trajectory of shapes across patient sequences
(intra-subject variation) and the population (inter-subject variation).

In SSM, a shape can be represented explicitly or implicitly. The
explicit representation comprises of sets of landmark or
correspondence points, i.e., geometrically consistent points defined
on each anatomical surface in the shape population. The implicit
representation takes the form of deformation fields or coordinate
transformations in relation to a predefined shape atlas (Miller et al.
(2014); Cootes et al. (2004)). Explicit correspondence-based SSM is
one of the most popular techniques due to the simplicity and
interpretability of the shape representation (Cerrolaza et al. (2019)).
Correspondence points can be easily interpreted and visualized by
clinicians. Additionally, this approach does not require the
formulation of an atlas, which is non-trivial to define. For these
reasons, we focus on correspondence-based SSM in this work.
Historically, correspondence points were defined manually by
domain experts to capture biologically relevant features (Bookstein
(1996); Dryden and Mardia (2016)). However, such manual
annotation was burdensome, subjective, and sparse—potentially
missing clinically relevant shape attributes. More recently,
computational methods have been utilized automatically define
dense sets of correspondence points, or point distribution models
(PDMs), to represent shape. A small example of a PDM can be
seen in Figure 1.

Automatic PDM construction is computationally derived by
formulating point placement as an optimization problem.
Parametric optimization schemes have been formulated which
utilize a geometric basis, i.e., spherical harmonics (assuming a
template sphere) (Styner et al. (2006)), wavelet-based (Nain et al.
(2007)), and functional maps (Ovsjanikov et al. (2012)).
Optimization schemes that do not rely on parameterization but
rather utilize a point-based representation have also been formulated
using metrics such as entropy (Cates et al. (2007)) and minimum
description length (Davies et al. (2002)). These approaches avoid

complex parameterization construction steps and the limitations
inherent in parametric representations, such as restriction to specific
topologies and bias resulting from the choice of basis or template.
The non-parametric techniques have been shown to produce more
robust and compact models that better retain clinically relevant
shape characteristics (Goparaju et al. (2018); Goparaju et al. (2022)).
In this work, we utilize the entropy-based approach to PDM
optimization formulated in Cates et al. (2007), a. k.a. particle-
based shape modeling, as it is a data-driven approach that does
not require any form of atlas. Correspondence point, or particle,
positions are optimized directly from shape data to capture
population-level shape variations. This formulation is
implemented in the open source software, ShapeWorks (Cates
et al. (2017)), and explained in detail in Section 2.2.1.
ShapeWorks SSM has been proven to be state-of-the-art
(Goparaju et al. (2018)) and has been successfully used in a
variety of medical applications, including downstream tasks such
as pathology detection and disease diagnosis (Bhalodia et al. (2020);
Harris et al. (2013); Atkins et al. (2017)).

ShapeWorks cannot be directly applied to spatiotemporal data
without assuming a cross-sectional design, where instances from a
temporal sequence are treated independently. Adams et al. (2022)
proposed adapting the entropy-based PDM optimization objective
to disentangle subject and time dependencies. This disentangled
technique (explained further in Section 2.2.2) outperforms an
image-based approach that was originally proposed in Morris
et al. (2020) for estimating organ segmentation and functional
measurements over time. Adams et al. (2022) adapted this image-
based approach for spatiotemporal SSM by first generating a PDM
for a single, corresponding time point across subjects, then
independently propagating the correspondence points across
individual time sequences using image-based deformable
registration. The disentangled entropy formulation provided an
improvement over this image-based method, both in terms of
capturing shape variation and the underlying time dependency.
However, this approach still assumes a Gaussian distribution to
approximate subject-wise entropy across time, hence violating the
independence assumption. Furthermore, it does not explicitly
parameterize the time dependency and requires consistent,
identical time points for every subject in the cohort, limiting its
utility in practical medical settings.

FIGURE 1
Example PDM: An example of a PDM with 128 particles on three ellipsoid shapes, where color denotes correspondence. The particle color pattern
matches across shapes, indicating geometrically consistent particle placement.
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Datar et al. (2009) proposed incorporating regression analysis in
the process of optimizing correspondences. The details of this
approach are explained in Section 2.2.3. Linear regression allowed
for directly modeling the time-dependency and including partial
sequences; however, it is limited to cases of linear shape dynamics.
This technique may be applicable to specific studies of developmental
modeling that involve linear growth, but it is not applicable to the
general, much more common case of non-linear shape dynamics or
longitudinal changes. The motion of the left atrium, for example, is an
instance of highly non-linear dynamics as the volume increases and
decreases cyclically. Datar et al. (2012) proposed using linear mixed
effect modeling rather than simple regression in spatiotemporal PDM
optimization. This hierarchical model allowed for capturing the global
population trend as a fixed effect and individual trends as random
effects. However, it is still limited to the case of linear longitudinal
changes. Both the linear regression and mixed effects methods further
suffered from the limitation of not handling spatial correlations
between points on a shape (i.e., spatial regularity). In these
methods, each particle coordinate is regressed independently
without providing smoothness constraints.

In this paper, we introduce a novel approach to spatiotemporal
SSM that combines entropy-based PDM optimization with non-linear
regression to model the time dependency. Specifically, we extend the
method presented by Cates et al. (2007) to incorporate regularized
polynomial regression analysis in particle optimization. This
regression is fit in the principal component subspace that best
explains the data span to leverage population-specific statistics for
capturing the spatial regularity of shape dynamics across time. The
benefits of our proposed approach to spatiotemporal PDM
optimization can be outlined as follows.

• It provides both inter-subject shape correspondence across the
population and temporal intra-subject correspondence across
time points without incorrect independence assumptions.

• It directly models the time-dependency in a manner that is not
only flexible and non-linear, but also regularized to be
generalizable and to reflect population-specific statistics.

• It does not require temporal sequences to be consistent across
subjects. Thus subjects with partial observations or missing time
points can be included in PDMs generated via the proposed
approach.

The proposed method is capable of modeling any case of dynamic
or longitudinal shape, surpassing the limitations of existing,
aforementioned spatiotemporal SSM methods and increasing the
potential for SSM to provide medical insight. The code will be
released to magnify the scientific impact and clinical utility of the
proposed method. Section 2, provides the details of the method as well
as an explanation of three baseline methods used for comparison: the
cross-sectional PDM formulation presented in Cates et al. (2007), the
disentangled intra- and inter-subject entropy approach presented in
Adams et al. (2022), and the linear regression approach presented in
Datar et al. (2009). In Section 3, we first utilize a synthetic dataset to
provide evidence of the theoretical motivation for the proposed
method, then demonstrate its efficacy on a real dataset. We utilize
a population of left atrium sequences over the cardiac cycle from CINE
magnetic resonance imaging (MRI) scans to demonstrate the benefits
of our approach over the comparison methods in capturing non-linear
shape dynamics. The left atrium is an example of dynamic motion;

however, our method also applies to longitudinal studies. We employ
quantitative and qualitative metrics to verify the superiority of the
proposed method.

2 Methods

2.1 Notation

For spatiotemporal SSM, we define a dataset of N subjects each
with a consistent time-sequence of T − shapes, each represented as a
set of d − dimensional correspondence points (or particles). In this
work, shape is segmented from volumetric images, so d = 3. To
optimize particle position, we define two forms of random variables:
configuration and shape space variables. These two spaces are
illustrated in Figure 2.

The configuration space variable captures sample-specific
geometry. It is denoted Xn,t, representing the particle position on
the n − th subject at the t − th time point, where n ∈ [1, N] and t ∈ [1,
T]. M − realizations of this random variable defines the point set (or
PDM) of the n, t − shape: xn,t � [x1n,t, x2n,t, . . . , xMn,t] ∈ RdM, where a
single particle xmn,t ∈ Rd. Here xmn,t is the vector of three coordinates of
the m − th particle. The shape space variable describes population-
level shape statistics, and is denoted as Z. As explained in later
sections, this variable is used differently in the proposed and
comparison methods. In general, a single random variable Z ∈ RdM

is used to denote the vector form of the PDM for a subject at a specific
time point, where coordinates from all particles are concatenated in a
single vector.

2.2 Baseline methods

2.2.1 Cross-sectional
Cross-sectional denotes the vanilla PDM optimization approach

formulated for non-temporal modeling introduced in Cates et al.
(2007), Cates et al. (2017). This is applied to spatiotemporal SSM by
treating each time point as an independent observation, ignoring
inter-subject correlation. We consider this baseline to showcase the
impact of the sample independence assumption to model study
designs with repeated measurements. Shape can be represented
either as mesh or binary image volume, and the structure of the
shape representation can vary across the cohort. Particle positions are
constrained to shape surfaces and optimized by minimizing the
following entropy-based objective.

Qcross−sectional � αH Z( ) −∑N
n�1

∑T
t�1

H Xn,t( ) (1)

where α is a relative weighting parameter and H is the differential
entropy. Minimizing this objective balances two terms. The first
encourages a compact distribution of samples in the shape space,
ensuring maximal correspondence between particles across shapes
(i.e., lower model complexity). Minimizing this term alone would
cause the particles to collapse to a single location on all shapes,
providing the most compact model possible. The second
encourages the maximal uniformly-distributed spread of points
across individual shapes so that the shape is faithfully represented
(i.e., better geometric accuracy). Intuitively the second term causes the
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particles on a given shape to repel each other and spread out. The
combination of the two entropy terms encourages particles to spread
uniformly across each shape while retaining geometrically consistent
locations across shapes.

Eq. (1) is optimized via gradient descent. This requires taking the
derivative of H(Z) with respect to particle positions. Differential
entropy is defined as:

H Z( ) � −∫
Z
p z( )logp z( )dz � −E logp Z( )[ ]. (2)

To make this tractable, p(Z) is modeled parametrically as a Gaussian
distribution with a population-specific mean μ and covariance matrix
Σ. Assuming the shape space is Gaussian distributed introduces a
generative statistical model:

z � μ + ,  ~ N 0,Σ( ) (3)
where  is a normally-distributed error. The entropy can then be
estimated by:

H Z( ) ≈ 1
2
logΣ � 1

2
∑dM
i�1

logλi (4)

where λi are the eignevalues of Σ. The covariance is estimated from the
data and found to be:

zH Z( )
zX

≈ Y Y⊤Y + αI( )−1 (5)

where Y denotes the matrix of points minus the sample mean μ of the
ensemble, and the regularization term, α, accounts for the possibility of
diminishing gradients (see Cates et al. (2007) for more detail). We get
an update for each point by combining Eq. (5) with the shape-based
updates explained in Cates et al. (2007). By intermittently fitting
N (μ,Σ) to Z and updating the particle positions to decrease Σ (via
Eq. (5)), H(Z) is minimized producing correspondence.

2.2.2 Disentangled
Disentangled denotes the spatiotemporal SSM method proposed

in Adams et al. (2022). This approach uses an adjusted optimization
objective that disentangles the shape space entropy for Zt and Zn,

where Zt represents shapes across subjects at a specific time point t
(i.e., inter-subject variable) and Zn represents shape across time for a
specific subject n (i.e., intra-subject variable):

Qdisentangled � α ∑T
t�1

H Zt( ) +∑N
n�1

H Zn( )⎛⎝ ⎞⎠ −∑N
n�1

∑T
t�1

H Xn,t( ) (6)

The first term encourages intra-subject correspondence across time
points, the second promotes inter-subject correspondence across
sequences, and the third retains geometric accuracy across subjects
and time points. The particle updates are found in the same manner as
in the cross-sectional formulation, except p(Zt) and p(Zn) are modeled
as separate Gaussian distributions with covariance matrices Σt and Σn,
respectively. Thus the gradient has multiple terms that follow the form
of Eq. (5). Given that the Gaussian distributions are fit using
overlapping samples, simultaneously minimizing H(Zt) and H(Zn)
encourages correspondence across all subjects and time points. In this
approach, the inter- and intra-subject variability are disentangled.
However, by assuming p(Zt) is Gaussian, the independence
assumption is violated, and the temporal trajectory is diminished.

2.2.3 Linear regression
Linear regression denotes the approach to spatiotemporal SSM

presented in Datar et al. (2009) where regression analysis is
incorporated into in the optimization process. This approach
utilizes the same cross-sectional optimization objective (Eq. (1))
but optimizes correspondence with regression against an
explanatory variable, t. This is done by replacing μ in the
generative model of Eq. (3) with a function of t. The linear
regression generative model can be written as:

z � f t( ) + ~, ~ ~ N 0, ~Σ( ) (7)
where

f t( ) � a + bt. (8)
and a ∈ RdM are fit intercepts and b ∈ RdM are fit slopes. In the cross-
sectional formulation, minimizing H(Z) decreases the entropy
associated with , which is the difference from the mean. Here,
minimizing H(Z) decreases the entropy associated with ~, which is

FIGURE 2
Configuration Space vs. Shape Space: This illustration aids in understanding the notation in Section 2. A point in shape space corresponds to a particle set
in configuration space.
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the residual from the linear regression model, f(t). Minimizing the
residual has a similar effect to minimizing H (Zt) in the disentangled
approach. Intuitively, we can think of f(t) as defining the mean of each
p (Zt) distribution. By moving particles closer to f(t), we encourage
inter-subject correspondence. However, unlike the disentangled
approach, f(t) expresses linear time-dependency rather than
diminishing intra-subject trajectory.

The linear parameters a and b are estimated by minimizing the
sum of squared error (SSE) (Charnes et al. (1976)). Let k be an index
for a shape of a specific subject at a specific time, then for shape
zk ∈ RdM, let tk ∈ R1 denote the time. The SSE is then defined as:

SSE � ∑
k

zk − f tk( )( )2 (9)

Estimating via a least-squares fit to the correspondence data,

argmina,bE a, b( ) � ∑
k

a + btk( ) − zk[ ]⊤~Σ−1
a + btk( ) − zk[ ]. (10)

The regression parameters are found to be:

a � 1
M

∑
k

zk −∑
k

btk⎛⎝ ⎞⎠ (11)

b � ∑ktkzk −∑ktk∑kzk∑kt
2
k − ∑ktk( )2 (12)

The regression optimization algorithm is then carried out as follows.
Initial correspondences are optimized using the cross-sectional
approach, and initial estimates for a and b are computed. Then
correspondence positions are updated by replacing Σ from the
cross-sectional formulation with ~Σ, the covariance of the
underlying residual relative to the generative model. The two
estimation problems are then interleaved and the parameters a and
b are re-estimated after each iteration of the gradient descent on the
particle positions.

2.3 Proposed method: Regularized principal
component polynomial regression

We propose to capture the trajectory of shape across time (from
1 to T) using polynomial regression. This could be accomplished
similarly to the linear regression formulation by replacing the function
f(t) in Eq. (7) with a polynomial. However, the spatial relationship
between the particle coordinates is ignored in the linear regression
approach. Each value of the dM-dimensional parameters a and b are fit
separately without utilizing spatial correlations between points on a
shape. This is fundamentally equivalent to fitting dM individual
functions, one for each particle coordinate. There is no smoothness
constraint that reflects the natural spatial regularity prior for
anatomies, where the regression models for neighboring particles
should be encouraged to vary smoothly over anatomical surfaces.
This can lead to particle miscorrespondences across time and increases
the risk of individual regression models overfitting the data noise.

To address this issue, we propose performing principal
component analysis (PCA) (Abdi and Williams (2010)) on the set
of shape space variables, then fitting a regularized polynomial in the
principal subspace that represents the data span. PCA provides an
orthogonal projection of the high dimensional particle sets, zk ∈ RdM,
onto a lower dimensional linear space, RNT, such that the variance of

the projected data is maximized. By formulation, the dimensions of the
principal subspace are independent and uncorrelated; thus, defining
separate polynomial functions for each principal component is
justified. The principal subspace is parameterized by mean vector
(denoted μ ∈ RdM), a diagonal matrix of eigenvalues (denoted
Δ ∈ RNT×NT), and a matrix of eigenvectors (denoted U ∈ RdM×NT).
Note we are modeling the full data span by considering NT − 1
eigenvectors, such that all shape variability is preserved. The
projection of an instance zk is defined as qk = U⊤(zk − μ). These
projected representations, or PCA scores, can be mapped back to
shape space as follows: zk = Uqk + μ.

We propose to define the generative model as:

zk � g tk( ) + ̃k, ~ ~ N 0, ~Σ( ) (13)
where

g tk( ) � Uh tk( ) + μ (14)
g (tk) maps a time value to a particle set, g(tk): R1 → RdM, and h(tk) is
a polynomial of degree P. h(tk): R1 → RNT models the shape
trajectory in the principal subspace over time and is defined as:

h tk( ) � β0 + β1tk + β2 tk( )2 + . . . βP tk( )P � β0 + ∑P
p�1

βp tk( )p (15)

where β0 ∈ RNT is the intercept and βp ∈ RNT (where p ∈ [1, P]) are
the coefficients of the polynomial. This formulation requires selecting
the degree of the polynomial, P ∈ [1, T − 1]. If p = 1 then h(tk) is linear,
and if P = T − 1 or greater, then the curve will polynomially interpolate
all of the points, meaning if N = 1, it would perfectly fit with a residual
of zero. Selecting P = T − 1 would allow the polynomial to be
maximally expressive or flexible, reducing residuals. However, there
is a risk of over-fitting. Cross validation could be used to directly tune
P, however this is computationally expensive. Thus to ensure model
generalizability, we add regularization that biases β values to be small
and sparse. We employ elastic net regularization (Zou and Hastie
(2005)), which adds an L1 and L2 penalty on coefficients to the SSE cost
function:

∑
k

qk − h tk( )( )2 + r1 ∑
p

‖βp‖1 + r2 ∑
p

‖βp‖22 (16)

where r1 and r2 are parameters that control the weight of the
regularization terms. The L1 penalty imposes a sparsity prior on
the coefficients and the L2 penalty encourages the coefficients to
have small magnitude. This allows us to set P = T − 1 and fit only
relevant coefficients while keeping the rest close to zero, also known as
variable selection. Regularization is necessary for robust, generalizable
polynomial regression. It prevents the h(tk) from over-fitting to lesser
components in the principal subspace that capture mostly noise so
that false time dependency is not incorporated into the particle
updates. We utilize 5-fold cross validation to select the optimal
values for the r1 and r2 weights each time Eq. (16) is fit.

Optimization is carried out using a similar alternating process as
in the linear regression approach. First initial correspondences are fit
using the cross-sectional formulation. Next the polynomial
coefficients {β0, β1, . . .βT−1} are fit using Eq. (16) on the PCA
scores of the initial correspondence points. Then correspondence
positions are updated by replacing Σ from the cross-sectional
formulation with ~Σ, the covariance of the underlying residual
relative to g(tk). The two estimation problems are then interleaved.
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PCA is performed (updating U and μ) and β-values are re-estimated
after each iteration of the gradient descent on the particle positions.

The particle density is a parameter that depends on the complexity of
the shape cohort. Simple, smooth shapes can be described by fewer
particles than more complex, variable shapes. ShapeWorks utilizes a
particle splitting strategy in optimization. Particles are added in a multi-
step fashion by splitting each particle to produce a new, nearby particle at
each step until the desired number of particles is reached. This coarse-to-
fine optimization scheme speeds up convergence to an acceptable local
minimum Cates et al. (2017). It also allows for selecting the number of
particles empirically, by adding particles until the representation is
deemed to capture enough details for the given application.

2.4 Evaluation metrics

2.4.1 Population variation analysis
In a PDM shape model, particle positions capture the modes of

variation present in the population. Principal component analysis
(PCA) is commonly utilized in SSM analysis to reduce the complexity
of high dimensional shape models. PCA enables visualization and
interpretation of the population-level shape variation while preserving
the information captured by the PDM. We can identify the dominant
modes of variation in the population as the PCA modes that account
for a large portion of the overall variance. We can then visualize these
modes by computing the mean of the correspondences and deforming
the mean along the dominant modes to plus or minus one standard
deviation. Meshes are created for such visualizations by first finding
the warp transform between particles of shape with a knownmesh and
the particles of interest, then applying that transform to the mesh to
create a new mesh that provides a denser representation of the
particles of interest. In the case of spatiotemporal SSM, we would
expect that the dominant modes of variation shift smoothly over time.

2.4.2 Time dependency analysis
Analysis of spatiotemporal SSM also requires evaluating how well

the PDM captures the underlying time dependency. If we know the
true form of the underlying time dependency function f, then we can
perform regression on the particles and analyze the R2 value:

R2 � ∑k f tk( ) − �z( )∑k zk − �z( ) (17)

The best possible R2 score is one, indicating the regression equation
explains all of the variability of the data. A constant model f(t) that
always predicts the average of the particles, disregarding input time t,
would get and R2 score of zero. If form of the underlying time
dependency is unknown, we can utilize statistical tests to analyze
the significance of the shape dynamics captured by the PDM.

3 Results

This section provides experiments that illustrate and validate the
proposed method. First, we validate the method with synthetically
generated ellipsoids (3D surfaces for which all plane cross sections are
either ellipses or circles). Next, we present an application of real dynamic
motion; the left atrium over the cardiac cycle. An overview of these
datasets is provided in Table 1. ShapeWorks Cates et al. (2017) was used

for cross-sectional optimization and as a starting point for implementing
the proposed and other comparison methods.

3.1 Synthetic experiment

3.1.1 Ellipsoid data generation
Synthetic shapes are useful in analyzing the performance of

spatiotemporal PDM generation because the shape dynamics are
formulated in a known way. We select to use a cohort of axis-aligned
ellipsoids with differing x- and y-diameter values and a population
consistent z-diameter value. The x-diameter represents a subject-
dependent parameter that varies between subjects but not across time.
The y-diameter represents a time-dependent parameter that varies across
time in the same way for each subject. The x-diameter is randomly
sampled for each subject from the following normal Gaussian
distribution:

x − diameter ~ N 0.6, 0.13( ) (18)
This results in x-diameters with a high probability (99.7%) of being in the
range (0.2, 1). The y-diameter is defined to vary sinusoidal over time to
mimic non-linear dynamics encountered in organ cycles. For each time
point, t, the y-diameter is defined as follows for all ellipsoids in the cohort:

y − diameter t( ) � 0.6 + 0.4 sin
2π
T
t( ) (19)

This results in y-diameter values that vary cyclically between 0.2 and 1.We
select the period and total time points to be T = 8. The z-diameter is fixed
to be 1 across subjects and time for simplicity and 2D visualization
purposes. These constraints result in ellipsoids with x, y, and z-diameters
≤ 1; thus all shapes fit within a unit cube. This scaling allows us to
interpret SSE as relative SSE. Figure 3 displays plots of Eqs 18 and 19 as
well as two examples of ellipsoid shape sequences.

3.1.2 Ellipsoid results
We chose to use 128 particles in generating the PDM; this is

sufficient for representing the simple ellipsoid shapes (see Figure 1).

3.1.2.1 Modes of variation
As explained in Section 2.4.1, PCA is used to analyze and visualize

the modes of variation captured by a PDM. Based on the construction
of the ellipsoid cohort, a successful spatiotemporal shape model needs
to meet the following requirements:

1. Overall variation should be described by two modes: the x and y-
diameter.

2. For any given subject, inter-subject variation should be described
by a single mode: the x-diameter.

3. At any given time point, intra-subject variation should be described
by a single mode: the y-diameter.

The proposed method results in a PDM that meets all of these
requirements. A visualization of the significant mode of variation at
each time point is provided in Figure 4.

3.1.2.2 Time dependency analysis
A spatiotemporal PDM should correctly capture the shape dynamics

or underlying time dependency. In the case of the ellipsoid data, the
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dynamics are parameterized by a known sine function (Eq. (19)). Thus an
ideal PDM could be expressed via a sine function for each subject. To test
this, we use sinusoidal regression to fit subject-wise functions to the PDMs
resulting from the proposed method and then quantify the residual error
or SSE with respect to the fit functions. The general sine function:

s t( ) � o + A sin 2πft( ) (20)
is fit by estimating the parameters {o (offset), A (amplitude), and 2πf
(period)} using least squares. The SSE resulting from subject-wise
sinusoidal regression was 1.176e − 3 ± 2.468e − 3. The R2, value (Eq.
(17)) was found to be 0.999, suggesting the proposed approach captured
the time dependency very well.

3.2 Left atrium experiment

3.2.1 4D left atrium data
The left atrium shape cohort originated from 3D LGE and stacked

CINE CMR scans of 28 patients presenting with atrial fibrillation

between 2019 and 2020. The average patient age was 64.9 years, with
15 male and 13 female patients in the cohort. The scans for each
patient used in this work were captured before a cardiac RF ablation
procedure. Each CINE scan contained 25-time points covering the
cardiac cycle (between R wave peaks). The temporal dimension was
normalized at the time of acquisition to cover one heartbeat for each
patient. Thus the number of milliseconds covered varies patient-wise.
The 3D LGE images were manually segmented by a cardiac imaging
expert, and this segmentation was matched to the closest CINE time-
point based on CMR trigger time. The segmentation was then
transformed to each time point through pairwise deformable
registrations to create a full 3D segmentation for each time point
Morris et al. (2020). This technique reduces the manual burden and
has been shown to produce segmentations with a reasonable error
when compared to fully manual segmentation Parikh et al. (2019). An
example of one subject left atrium mesh sequence is provided in
Figure 5.

We selected this dataset to demonstrate how the proposed
approach can correctly capture highly non-linear dynamic motion.

TABLE 1 Overview of shape cohorts used in experiments.

Dataset Number of
subjects

Time points per
subject

Number of
particles

Optimization
iterations

Covariance calculation
frequency

Ellipsoid 30 8 128 1000 Every iteration

Left Atrium 28 25 1024 1000 Every 3rd iteration

FIGURE 3
Synthetic Ellipsoid Data: Two example ellipsoids shape sequences are provided. Plots illustrate the distribution of subject-dependent x-diameters (Eq. 18)
and the function for time-dependent y-diameters (Eq. 19).
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The left atrium shape varies greatly across patients (see Figure 6), and
atrial fibrillation affects the non-linear dynamics in differing ways.
These challenges help demonstrate the robustness of the proposed
spatiotemporal modeling approach.

3.2.2 Left atrium results
We built a PDM using the proposed method as well as the cross-

sectional, disentangled, and linear regression comparison methods.
We used 1024 particles in each left atrium PDM, which is sufficient to
capture the details of the shapes. Examples of the PDM resulting from
the proposed method are provided in Figure 7. Particle
correspondence was maintained across both time points and subjects.

Each left atrium shape sequence covers one heartbeat, from the
peak of 1 R wave to the peak of the next R wave. The spread of the
volumes of the left atrium meshes across time is visualized via box
plots in Figure 8. Here we can see the three key left atrium functions:
reservoir or filling (where the volume increases), conduit or passive
emptying (where volume decreases slowly in a decelerating manner),
and pump or active emptying (where volume decreases quickly).
Figure 9 shows the mean shapes resulting from the proposed PDM
at five-time points. Heat maps show the difference to the next time
point mean, where red indicates expansion and blue indicates
contraction. Here we can see that the mean shapes correctly
expand during the reservoir, slightly contract during the conduit,
and further contract during the pump. This demonstrates that the
proposed method correctly captures the non-linear dynamics of the
left atrium across the cardiac cycle.

3.2.2.1 Modes of variation
As with the synthetic data experiment, we utilize PCA to analyze

and visualize the modes of variation captured by the PDMs. We are
interested in whether the PDM correctly captures the primary mode of
variation at each time point. This primary mode is expected to be
overall size or sphericity given the large spread of left atrium volume
across subjects (Figure 8). Sphericity is calculated as π1/3(6pVolume)2/3

Surface Area

where a higher value indicates the shape is closer to a sphere (for a

perfect sphere, sphericity = 1). In Figure 10, we display the primary
mode captured by the disentangled and proposed approaches across
time from top and anterior view.

3.2.2.2 Time dependency analysis
For this experiment, we do not know the parametric form of the

underlying time dependency as we did for the synthetic ellipsoid. Thus
in order to analyze if the shape models are capturing the underlying
time dependency, we must measure the statistical significance of the
relationship between particle positions and time. Here we employ a
repeated measures ANOVA test, which is used to determine whether or
not there is a statistically significant difference between the means of
multiple groups in which the same subjects show up in each group
(Girden (1992)). In this case, the null hypothesis is that there is no
difference in the mean particle positions at each time point. Rejecting
this hypothesis means that at least one time-point mean is different
from the rest, thus the PDM is capturing some time dependency. To
conduct this test, we utilized the repeated measures function RM()
from the R package MANOVA. RM (Friedrich et al. (2018)) with
significance level 0.05, specifying both time and particle coordinate
index as within-subject factors. For computational memory purposes,
a consistent randomly selected subset of 100 particle coordinates is
used. The RM() function calculates the modified ANOVA-type
statistic (Friedrich and Pauly (2018)) for repeated measure designs
with metric data. The assumptions of the multivariate repeated
measures ANOVA test are met as follows:

• Random Samples: The subject that comprises the left atrium
cohort are assumed to be a random sample from the population
of interest.

• Independent Observations: The subject sequences in the left
atrium cohort are independent of each other. Note that while
shape sequences are assumed to be independent, shapes within a
given sequence are not, they are considered repeated measures.

• Multivariate Normality: There are normally distributed
population values for each particle position at each time

FIGURE 4
Ellipsoid Mode of Variation: The primary mode of variation from the proposed shape model is shown at each time point via the mean shape and ±1
standard deviations. The heatmap and vectors show the difference to the associatedmean. The subject-dependent x-diameter variation is correctly captured
by the primary mode at each time point. The difference in the mean shapes across time correctly captures the time-dependent y-diameter. Green arrow
annotations are provided to illustrate these dynamics.
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point. This was verified using the Shapiro-Wilk test, which
provided p-values greater than 0.05 in all cases.

• Sphericity: As we are performing a repeated measures ANOVA
factor with two levels (time and particle coordinate), the
sphericity assumption is automatically met.

In Table 2, we report the test statistics and corresponding p-values
for the PDM resulting from each of the optimization approaches.

3.3 Discussion

The synthetic ellipsoid experiment provides a proof-of-concept,
demonstrating the efficacy of our proposed method. The resulting
PDM correctly captured the inter-subject variation as the x-diameter
(Figure 4) and the intra-subject variation as the y-diameter.

Additionally, the resulting PDM captured the known time
dependency very well (with R2 = 0.999). The left atrium dataset
served as a real use case of dynamic organ motion. Each left
atrium sequence was comprised of 25 time points which covered
the span of one cardiac cycle, including the reservoir, conduit, and
pump phases The time dependency underlying left atrium dynamics is
not parameterized by a known function. However, it is known that
throughout the cardiac cycle, the amount of blood contained by the left
atrium changes, resulting in a change in volume and sphericity
(Figure 8). Figure 9 shows that the changes in the mean shapes
resulting from the proposed approach correctly capture this
underlying mechanism. In mode visualization (Figure 10), we
selected not to compare against the cross-sectional and linear
regression approaches as these approaches are ill-suited to capture
the non-linear dynamics (as is evident by the subsequent time
dependency analysis). Both the PDM generated by disentangled

FIGURE 5
Left Atrium Examples: Left atrium volume is plotted over time for two subjects with meshes shown at selected time points from top and anterior view.
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FIGURE 6
Left Atrium Subjects: The first time point mesh for all 28 subjects in the left atrium cohort is displayed from the anterior view. The left atrium shape is
highly variable across subjects.

FIGURE 7
Proposed Spatiotemporal PDM Examples: Particles from the proposed approach are shown at selected time points for three different subjects. Zoomed-
in boxes illustrate that particle correspondence (denoted by color) is maintained across subjects and time.
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FIGURE 8
Left Atrium Volume over Time: Box plots display the spread in volume of the ground truth left atriummeshes across the subjects at each time point in the
cardiac cycle. The mean volume is plotted as a blue line across time. Annotations at the top show the intervals of the three left atrium functions: reservoir
during ventricular systole, conduit during early diastole, and pump during end diastole.

FIGURE 9
Mean Shape Dynamics: Themean shape from the proposed PDM is shown from the anterior view at a subset of time points. Heat maps show the change
in shape to the next displayed time point mean shape. Here red denotes expansion, and blue denotes contraction. Themean shape dynamics correctly match
the mean volume over time (Figure 8) and three left atrium function intervals: reservoir, conduit, and pump.
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optimization and the proposed optimization correctly capture the
primary mode as size. However, the primary mode from the proposed
approach is more consistent across time and demonstrates better
correspondence. This is evident by the smooth deformation from the

mean to ±1 standard deviation at each time point. The primary mode
from the proposed approach also explains a larger proportion of the
overall population variability than the cross-sectional, indicating a
superior, more compact model.

The statistical test demonstrated that the proposed approach
captured the underlying time dependency better than the baseline
methods (Table 2). In the case of the cross-sectional and linear
regression models, the p-values are greater than 0.05; thus, we
accept the null hypothesis that there is no difference in the mean
particle positions at each time point. The cross-sectional and linear
regression approaches do not provide a PDM that captures the time
dependency. The disentangled and proposed models, in contrast,
provide enough evidence to reject the null hypothesis, suggesting
that they are capturing the time dependency. Furthermore, the
proposed PDM resulted in a larger test statistic and a p-value that

FIGURE 10
Primary Mode of Variation over Time: The primary mode of variation shown at a subset of time points for the disentangled PDM and proposed PDM
shown from the top and anterior view. The heat map and vectors show the difference to the associated mean. Green arrow annotations are provided to note
the change, and zoomed-in boxes on the left help illustrate some of the differences.

TABLE 2 Repeated measures ANOVA-type test statistic (larger is better, in bold)
and corresponding p-value (smaller is better, in bold).

Test statistic p-value

Cross-Sectional 2.272 0.114

Disentangled 4.368 0.019

Linear Regression 2.568 0.090

Proposed 9.186 < 0.001
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is an order of magnitude smaller than the disentangled PDM. This
suggests the time dependency is more strongly captured by the
proposed model. These experiments validate the efficacy of the
proposed approach in modeling non-linear dynamic shape and
surpassing the limitations of existing spatiotemporal SSM methods.

3.3.1 Limitations
The proposed approach and baseline comparison methods

inherit the limitations of particle-based shape modeling. One
such limitation is defining correspondence with respect to
topological changes within a shape population. The proposed
approach assumes that shapes within the cohort have similar
features across time and subjects. Addressing anomalies or sub-
groups with the cohort would require additional methodology that
is out of the scope of this work. An additional limitation is this
approach is not generative. While partial shape sequences can be
use in PDM optimization, this model is not capable of inferring the
missing time points of a subjects sequence.

3.3.2 Future work
In future work, this formulation could be extended to utilize

regularized non-linear mixed effect modeling in the principal
subspace rather than regression. This hierarchical approach
would provide the benefit of characterizing both individual
subject trends and an overall population trend. Alternatively, we
could utilize a time-series generative statistical model for modeling
the shape projections, such as the linear dynamical system. This
generative approach would allow for inferring shapes for missing
time points in subject sequences.

4 Conclusion

We presented a principled approach for statistical shape
modeling of non-linear dynamic anatomies. By incorporating
regularized principal component polynomial regression into the
PDM optimization scheme, we are able to capture the underlying
non-linear shape trajectories in a smooth, generalizable manner.
We demonstrated our approach on synthetic ellipsoids as a proof-
of-concept and verified that it outperforms existing methods of
spatiotemporal SSM on a real cohort of left atrium over the cardiac
cycle. Our approach results in SSM with inter and intra-subject
correspondence that correctly captures a statistically significant
underlying time dependency. Additionally, our approach does not
require temporal sequences to be consistent across subjects,
allowing for the use of partial observations or missing time
points. Alleviating the requirement of complete sequences
makes the approach more viable as medical shape data is
typically scarce. Spatiotemporal SSM has great potential to
inform clinical research regarding dynamic anatomy and
longitudinal shape changes. Our approach provides a principled
solution for capturing non-linear shape trajectories, greatly
increasing the potential for SSM utilization in clinical studies.
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