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Abstract. Modern multi-tier application systems are generally based on
high performance database systems in order to process and store business
information. Containing valuable business information, these systems are
highly interesting to attackers and special care needs to be taken to pre-
vent any malicious access to this database layer. In this work we propose
a novel approach for modelling SQL statements to apply machine learn-
ing techniques, such as clustering or outlier detection, in order to detect
malicious behaviour at the database transaction level. The approach in-
corporates the parse tree structure of SQL queries as characteristic e.g.
for correlating SQL queries with applications and distinguishing benign
and malicious queries. We demonstrate the usefulness of our approach
on real-world data.

1 Introduction

The majority of today’s web-based applications does rely on high performance
data storage for business processing. A lot of attacks on web-applications are
aimed at injecting commands into database systems or try to otherwise trigger
transactions to gain unprivileged access to records stored in these systems. See
[1] for a list of popular attacks on web applications.

Traditional network-based firewall systems offer no protection against these
attacks, as the malicious (fractions of) SQL or tampered requests are located at
the application layer and thus are not visible to most of these systems.

The usual way of protecting modern application systems is by introducing
detection models on the network layer or by the use of web application firewall
systems. These systems often employ a misuse detection approach and try to
detect attacks by matching network traffic or HTTP request against a list of
known attack patterns. A very popular system based on pattern matching is for
instance the Snort IDS [2]. Another project aiming at the detection of tampered
HTTP requests is the ModSecurity module, which provides a rule-engine for
employing pattern based rules within a Web-Server [3].
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Instead of using pattern based approaches, there exists a variety of papers on
employing anomaly-based methods for detecting web-based intrusions [4,5,6].
These either try to analyze log-files or protocol-level information to detect
anomalies based on heuristics or data-mining techniques. We earlier proposed a
rule based learning approach using the ModSecurity module in [7].

These approaches are rooted at the network or application protocol layer. In
this work we focus on the detection at the database layer, i.e. the detection of
anomalous SQL statements, that are either malicious in the sense that they in-
clude parts of injected code or differ from the set of queries usually issued within
an application. The main contribution of our work is the use of a grammar based
analysis, namely tree-kernel based learning, which became popular within the field
of natural language processing (NLP). Our approach incorporates the parse tree
structure of SQL queries as characteristic e.g. for correlating SQL queries with
applications and distinguishing benign and malicious queries. By determining a
context sensitive similarity measure we can locate the nearest legal query for an
malicious statements which tremendously helps in root cause analysis.

The remainder of this paper is organized as follows: Section 2 states the prob-
lem in detail and gives an overview of related work regarding intrusion detection
in databases. In Section 3 we give a short introduction to kernel-based learning
algorithms in general and their application on structured data in detail. Fol-
lowing this overview we define our tree-kernel based method and describe its
application to learning SQL for intrusion detection in databases in Section 4.
Finally we present our results on real-world data in Section 5 and summarize
our experiments.

2 Problem and Related Work

Executing malicious statements on a database may result in severe problems,
which can range from exposure of sensitive information to loosing records or
broken integrity. Once an attacker manages to inject code into a database this
will likely not only affect specific records, but may lead to a compromise of the
complete application environment. This in turn can cause severe outages with
respect to data records and a company’s public reputation.

Although the risk may seem low on a first glance, given the database layer
is separated from the public interface (web/presentation layer) and not directly
accessible from the outside, anomalous queries caused by e.g. SQL injection
attacks are a widespread problem. The Web Hacking Incident Database provides
a listing of recent web hacks, a lot of them relying on SQL injections [8].

There have been approaches to apply data-mining and machine learning meth-
ods to detect intrusions in databases. Lee et al [9] suggest learning fingerprints
of access patterns of genuine database transactions (e.g. read/write sequences)
and using them to identify potential intrusions. Typically there are many pos-
sible SQL queries, but most of them only differ in constants that represent the
user’s input. SQL queries are summarized in fingerprints (regular expressions)
by replacing the constants with variables or wild-cards. Such fingerprints cap-
ture some structure of the SQL queries. Following the approach of [9], queries
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Fig. 1. SQL parse tree of an SQL injection

not matching any of the existing fingerprints are reported as malicious. A draw-
back of this approach is its inability to correlate and identify fingerprints with
applications.

In [10] the authors also try to detect SQL injections by a kind of fingerprints.
They use parse trees of queries as fingerprints for the queries structure. The main
idea here is to compare the parse tree of an SQL statement before and after user-
variables have been inserted. Injected SQL fragments will typically significantly
change the trees structure. An example of such structural changes in the parse
tree of a query is shown in figure 1. In this figure, the rounded nodes of the tree
indicate the additional parts that have been added due to the injection SQL
fragment ’ OR 1 > 0 --. As this work only uses a one-to-one comparison on
parse-trees it is missing any generalization capabilities and thus not applicable
for machine learning methods, such as clustering and outlier detection.

A similar grammar-based approach has been used in [11], which studied the
use of syntax-aware analysis of the FTP protocol using tree-kernel methods on
protocol parse-trees. A slightly different approach was taken in [12] where the
parse tokens are used along with their values to detect anomalies in HTTP-
traffic. The latter approach does not use the full parse tree but its leaves. Our
work is similar to [11,12] in the sense that it employs machine learning methods
on syntax trees derived from a protocol parser.

Also approaches on investigating data dependencies have been proposed in
[13] and [14]. Data dependencies refer to access correlations among sensitive
data items. Data dependencies are generated in form of classification rules like
before an update of item1 a read of item2 is likely. Transactions not compliant
to these rules are flagged as malicious. Srivastava et al [14] further distinguish
different levels of sensitivity of data items which need to be specified by hand.
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Both approaches ignore the structure of SQL queries and are unable to correlate
SQL queries with applications. A more recent work has been presented in[15],
focusing on the sequential nature of SQL queries. These studies also make use of
a smart modelling technique to easily apply data mining methods on their SQL
representations.

3 A Grammar-Based Modelling

Since most learning approaches work on vectorized data, a key issue when using
machine learning for intrusion detection is the representation of monitored data
to apply any learning algorithm. A popular technique in IDS is the exhaustive
creation of n-grams, yielding histogram vectors for observed input data. These
do not maintain any syntactical information of SQL. A little more syntax is
regarded by creating term-vectors of a query. A term-vector can be obtained by
splitting the query in a “proper way”, i.e. by splitting on whitespace characters
(optionally maintaining quoted strings).

As in this work we are dealing with the detection of malicious database queries,
we choose a grammar based approach to represent SQL queries. We propose two
alternative modelling approaches for making SQL queries suitable for machine
learning.

3.1 Parsing SQL

The basic idea of [10] is to detect SQL injection attacks by means of changes
in a queries syntax tree. An example of such a tree has been shown before (see
figure 1). In order to obtain such a parse tree, a parser for the SQL dialect is
required. Usually complex parsers are automatically generated based on a given
grammar description using tools such as yacc, antlr or javacc. Unfortunately, the
availability of proper grammar descriptions for SQL is pretty sparse and most
existing parser implementations are tightly wired into the corresponding DBMS,
making it laborious to extract a standalone parser.

We therefore decided to modify an existing open-source DBMS, in our case the
Apache Derby database, which provides a standalone deployment. The Derby
parser is itself generated off a grammar file using javacc, but does not explicitly
output a syntax tree suitable for our decomposition. Using the tree-interface of
the parser, we derived a tree-inspection tool which traverses the tree object of a
query and writes out the corresponding node information.

3.2 Vectorization of SQL Queries

To incorporate more syntax, we determine the parse tree of a query. As we are
interested in the detection of abnormal queries within our database application,
we are looking for a similarity measure for the space of structured objects, i.e.
the space of valid SQL parse trees. Thus, we are faced with the problem of having
to create a distance function for matching trees.
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Definition: Let q be an SQL query and τq the parse tree of q, identifying with τq

the root node of the tree. Each node n within that tree is labeled with an identifier
type(n), reflecting the node type.

For a node n within τq we denote by succ(n) the ordered set of successors of
n and by succi(n) the ith child of n.

This definition is basically just a formalization of a query’s syntax tree. It
allows us to enlist the production or grammar rules, which generate a given SQL
query q. This list of production rules will be defined as follows:

Definition: For a node n within the parse tree τq of a query q, the list of pro-
duction rules P (n) is given by

P (n) =
⊎

c∈succ(n)

{type(n) → type(c)} �
⊎

c∈succ(n)

P (c).

Given P (n), denote by |P (n)|r the number of times the rule r occurs in P (n).
Please note that we use the � notation here for list concatenation, thus, the

resulting list may contain the same rule more than once. Now, denoting with Q
the set of all valid trees for a given SQL dialect, these simple definitions allow us
to define a mapping ϕ : Q → R

n, by following the bag of words approach known
from text classification tasks like spam detection as proposed in [16].

Definition: Let R be the sorted set of all possible production rules, defined by
some SQL grammar and ri the ith rule of R. For an SQL query q with the
associated parse tree τq the rule vector v ∈ R

|R| is given by vi = |P (τq)|ri .
The function ϕ maps an SQL query q to the vector space R

|R| by ϕ(q) = v.

Since an SQL query usually consists of only a small fraction of the complete
SQL grammar, these rule vectors are typically very sparse. Based on this map-
ping we can now define a distance measure on SQL queries using any distance
function Δ in the vector space R

|R| by defining the corresponding distance func-
tion ΔSQL using

ΔSQL(q1, q2) := Δ(ϕ(q1), ϕ(q2)), (1)

where q1, q2 are any two SQL statements of a common dialect. This allows for
the application of a wide range of distance based learning algorithms such as
clustering or outlier detection.

4 Using Tree-Kernels for SQL Grammars

The simple vectorization of SQL queries defined above includes a weak context
based reasoning to be used within the distance measure in R

|R|. It can be seen as
an an explicit feature extraction approach, as it explicitly creates feature vectors
from SQL statements. Unfortunately, the rule counting does only incorporate
direct antecessor relationships, limiting the contextual scope.
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4.1 Introduction to Tree-Kernels

To overcome these limitations the natural language processing community makes
use of context based tree-kernels, which provide a so-called kernel-function over
trees. In the machine learning community kernel-based methods have received a
lot of attention not ultimately owing to the well-known support vector machine
method, which has also been used for intrusion detection [17,12]. These methods
make use of a kernel-function to measure the similarity between instances of
some input space X , i.e. a kernel k is symmetric and positive (semi-) definite
function

k : X × X → R

which implicitly computes an inner product in a reproducing kernel Hilbert
space. There exists kernel functions for complex structures like trees or graphs,
which are often defined as convolution kernels [18]. For these kernels one defines
a kernel over atomic structures and defines the convolution kernel for complex
objects by combining the kernel function of its sub structures.

In [19] Collins and Duffy propose a simple kernel over trees for use in natural
language processing. The basic idea is to capture structural information over
trees in the kernel function by incorporating all sub-trees occuring within the
trees of interest. Let T be the space of all trees in question and denote with T
the ordered set of all possible sub-trees in T . For a tree τ ∈ T denote by hi(τ)
the number of occurrences of the i-th sub-tree of T in τ and with N(τ) the set
of all nodes in τ . For two trees τ1, τ2 the tree-kernel in [19] is defined by

KC(τ1, τ2) = hi(τ1)hi(τ2) =
∑

n1∈N(τ1),n2∈N(τ2)

Δ(n1, n2).

The function Δ is defined as follows

Δ(n1, n2) =

⎧
⎨

⎩

0 if P (n1) �= P (n2)
λ if height(n1) = height(n2) = 1

Δ∗(n1, n2) otherwise,

where Δ∗(n1, n2) is recursively defined as

Δ∗(n1, n2) = λ

| succ(n1)|∏

k=1

[1 + Δ(succk(n1), succk(n2))]

Roughly speaking, this kernel measures the similarity of two trees by the set of
common sub trees. As it does not consider the context of a sub tree, Zhou et al
[20] designed a context-sensitive convolution tree-kernel, by taking into account
a sub trees’ context by means of its ancestors.

Starting with a tree τ , a root node path of length l in τ is a path from the root
node τ or any of its successors to a node in τ , which has a length of l. Following
the notation of [20], the set of all root node paths for a tree τj with a maximal
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length of m is denoted by Nm[j]. Given a maximum length m for the root node
paths considered, the context-sensitive tree-kernel is given be

KCSC(τ1, τ2) =
m∑

i=1

∑

ni
1[1]∈Ni

1[1],n
i
2[2]∈Ni

1[2]

ΔCSC(ni
1[1], ni

2[2]),

where ni
1[j] = (n1, n2, . . . , ni)[j] denotes a root node path of length i in tree τj .

This kernel will therefore incorporate the similarity of common sub-trees.

4.2 Using Tree-Kernels for SQL Parse-Trees

As mentioned in the beginning, the use of tree-kernels in intrusion detection has
been proven to provide a syntax-oriented analysis in protocols such as FTP or
HTTP [11,12]. To exploit the benefit of syntax-level awareness in SQL query-
analysis, we derive the distance measure induced by a tree-kernel function to
directly measure the similarity of SQL queries by means of their parse-trees.

For a kernel k and examples x1, x2, such a distance can be obtained by

d(x1, x2) =
√

k(x1, x2) − 2k(x1, x2) + k(x1, x2). (2)

Using a tree-kernel we can therefore use this kernel to directly compute the
distance of two SQL parse-trees using (2).

5 Experimental Analysis and Results

For an evaluation of the different modelling approaches we collected data of the
popular Typo3 content management system. This application heavily depends
on the use of SQL for various tasks beyond page content storage, such as session-
persistence, user-management and even page-caching.

We created a set of distinct queries and added synthetic attacks, which closely
reflect modifications that would follow from SQL injections, by inserting typi-
cal injection vectors such as OR ’a’ = ’a’ or the like into legal statements.
The intention was to observe whether, using different models, the SVM is to
distinguish between legal and malicious statements even though the latter were
only marginally different. We created two sets with different ratios of normal to
malicious queries, one with 200:15, the other with 1000:15 queries.

5.1 Importance of Context

A central question in our work is the importance of contextual information when
analyzing SQL queries. We therefore analyzed approaches such as n-grams, term-
vector and the SQL vectorization described in section 3.2. In this experiment we
did not mean to train a detector, but wanted to explore the expressiveness of the
different models and determined the detection rate (TPR) and the false-positive
rate (FPR) of the different modelling approaches. As learning algorithm we used
an SVM approach within a 10-fold cross-validation.
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Table 1. Separation capabilities of the different models based on a 10-fold cross-
validation

Model Ratio 200:15 Ratio 1000:15
TPR FPR time TPR FPR time

3-gram 0.6667 0.000 71 s 0.6667 0.002 643 s
4-gram 0.3333 0.000 149 s 0.7333 0.002 1055 s
Term vectors 0.6667 0.005 2 s 0.7333 0.002 283 s
SQL vectors 0.8667 0.000 16 s 0.8667 0.001 67 s

As you can see from table 1, the use of context information results in per-
formance gains especially with respect to the detection rate (TPR) and the
fraction of false positives (FPR). This supports our thesis on the importance of
the context when analyzing SQL queries. It is worth noting, that the variance
in TPR/FPR within the 10-fold cross validation proved to be much smaller for
the context-sensitive methods. Additionally, the training time using term- or
sql-vectorization decreased due to the smaller number of (irrelevant) attributes.
The times in table 1 refer to the complete parameter-optimization and 10-fold
cross-validation process.

5.2 Query Analysis Using Tree-Kernels

Using the tree-kernel similarity we are interested in analyzing an application’s
structure by means of different sets of similar statements used. Therefore we used
the kernel similarity within an interval self-organizing map (ISOM) to create a
visualization of an application’s statements. In figure 2 you see the ISOM of
200 regular queries taken from Typo-3 (dots), supplemented by 15 modified
“malicious” modifications (squares).

As can be seen in figure 2 the kernel does consolidate similar queries into
clusters, an inspection of the clustered regions revealed very reasonable groups,
such as “all page-content queries”, “all session update queries” and so on. The
heaps of dots turned out to be of a very similar structure, only differing in
terminal symbols. Further adding edges to the ISOM showed, that the modified
queries are consolidated very late, showing that they are highly dissimilar.

Fig. 2. ISOM of 215 Typo-3 queries (200 legal, 15 anomalous), created by the CSC
tree-kernel (λ = 0.6, m = 10)
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Fig. 3. Intra-Cluster ISOM of a cluster consisting of 46 legal queries and one single
anomalous modification, which resulted from adding SQL injection elements

5.3 Intra-cluster ISOMs

As the ISOM experiments proved to be useful to get a feeling for the similarity
measure, we employed a KMedoids clustering algorithm based on the tree-kernel
distance and inspected the clusters by creating ISOMs of each cluster separately.
Figure 3 shows the ISOM of a cluster containing “attacks” which are similar to
the majority of the queries, but differ by injected SQL fragments.

Within this cluster the anomalous queries is the one most dissimilar from
all other, resulting in isolation. The queries in the left-hand group are related
to selecting language-specific content from the database, whereas the group on
the right contains queries selecting page-content related to a user-id UID. The
anomalous query contains an additional OR UID > 0, neutralizing the UID check.

This yields a two-way analysis which uses a clustering approach to first group
the different kinds of statements and then uses an intra-cluster outlier detection
for the detection of malicious queries.

6 Conclusions and Future Work

We presented two approaches for a context sensitive modelling/fingerprinting of
SQL queries by use of generic models. Using tree-kernels for analyzing SQL state-
ments brings together the results of natural language processing with a highly
structured query language. The results confirm the benefit of incorporation of
syntax information of previous works [11,12] in the domain of SQL queries.

The consideration of the SQL structures shows performance gains in both
performance and speed, the later due to the fewer but far more meaningful
features. Compared to previous approaches the tree-kernels allow for a similarity
measure on SQL statements providing flexible generalization capabilities.

However, a drawback in the use of tree-kernels is their computational over-
head. Given a set of 1015 queries, the computation of the kernel matrix took
about 210 seconds. Use of hierarchical models, such as hierarchical clustering,
may lower the impact of this performance decrease for future detection models.

Here, our first Clustering and ISOM experiments in 5 show the usefulness
of tree-kernels as a similarity measure in order to visualize SQL queries in ap-
plications. However, the tree-kernel approach still offers a lot of optimization
possibilities and needs further investigation. In future works we therefore plan
on using inter-cluster outlier detection to create hierarchical anomaly detection
models based on tree-kernels over SQL parse-trees.
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