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Learning Stable Nonlinear Dynamical Systems
With Gaussian Mixture Models

S. Mohammad Khansari-Zadeh and Aude Billard

Abstract—This paper presents a method to learn discrete robot
motions from a set of demonstrations. We model a motion as a non-
linear autonomous (i.e., time-invariant) dynamical system (DS) and
define sufficient conditions to ensure global asymptotic stability at
the target. We propose a learning method, which is called Stable
Estimator of Dynamical Systems (SEDS), to learn the parameters
of the DS to ensure that all motions closely follow the demonstra-
tions while ultimately reaching and stopping at the target. Time-
invariance and global asymptotic stability at the target ensures that
the system can respond immediately and appropriately to pertur-
bations that are encountered during the motion. The method is
evaluated through a set of robot experiments and on a library of
human handwriting motions.

Index Terms—Dynamical systems (DS), Gaussian mixture
model, imitation learning, point-to-point motions, stability
analysis.

I. INTRODUCTION

W
E consider modeling of point-to-point motions, i.e.,

movements in space stopping at a given target [1].

Modeling point-to-point motions provides basic components

for robot control, whereby more complex tasks can be decom-

posed into sets of point-to-point motions [1], [2]. As an example,

consider the standard “pick-and-place” task: First, reach for the

item, then after grasping, move to the target location, and finally,

return home after release.

Programming by demonstration (PbD) is a powerful means

to bootstrap robot learning by providing a few examples of

the task at hand [1], [3]. We consider PbD of point-to-point

motions where motions are performed by a human demonstrator.

To avoid addressing the correspondence problem [4], motions

are demonstrated from the robot’s point of view by the user

that guides the robot’s arm passively through the task. In our

experiments, this is done either by back driving the robot or by

teleoperating it using motion sensors (see Fig. 1). We, hence,

focus on the “what to imitate” problem [4] and derive a means

to extract the generic characteristics of the dynamics of the
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Fig. 1. Demonstrating motions by teleoperating a robot (left) using motion
sensors or (right) by back driving it.

motion. In this paper, we assume that the relevant features of

the movement, i.e., those to imitate, are the features that appear

most frequently, i.e., the invariants across the demonstration.

As a result, demonstrations should be such that they contain

the main features of the desired task, while exploring some of

the variations allowed within a neighborhood around the space

covered by the demonstrations.

A. Formalism

We formulate the encoding of point-to-point motions as con-

trol law that is driven by autonomous dynamical systems (DS):

Consider a state variable ξ ∈ R
d that can be used to unambigu-

ously define a discrete motion of a robotic system (e.g., ξ could

be a robot’s joint angles, the position of an arm’s end-effector in

the Cartesian space, etc.). Let the set of N given demonstrations

{ξt,n , ξ̇t,n}T n ,N
t=0,n=1 be instances of a global motion model that

is governed by a first-order autonomous ordinary differential

equation (ODE)

ξ̇ = f(ξ) + ǫ (1)

where f : R
d → R

d is a nonlinear continuous and continu-

ously differentiable function with a single equilibrium point

ξ̇∗ = f(ξ∗) = 0, θ is the set of parameters of f , and ǫ represents

a zero mean additive Gaussian noise. The noise term ǫ encapsu-

lates both inaccuracies in sensor measurements and errors that

result from imperfect demonstrations. The function f̂(ξ) can be

described by a set of parameters θ, in which the optimal values

of θ can be obtained based on the set of demonstrations us-

ing different statistical approaches.1 We will further denote the

obtained noise-free estimate of f from the statistical modeling

with f̂ throughout this paper. Our noise-free estimate will, thus,

be

ξ̇ = f̂(ξ). (2)

1Assuming a zero mean distribution for the noise makes it possible to estimate
the noise free model through regression.

1552-3098/$26.00 © 2011 IEEE
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Fig. 2. Typical system’s architecture that illustrates the control flow in a
robotic system as considered in this paper. The system is composed of two loops:
the inner loop that represents the robot’s dynamics and a low-level controller
and an outer loop that defines the desired motion at each time step. The learning
block is used to infer the parameters of motion θ from demonstrations.

Given an arbitrary starting point ξ0 ∈ R
d , the evolution of

motion can be computed by integrating from (2).

Two observations follow from formalizing our problem using

(1) and (2): 1) The control law that is given by (2) will generate

trajectories that do not intersect, even if the original demonstra-

tions did intersect; and 2) the motion of the system is uniquely

determined by its state ξ. The choice of state variable ξ is, hence,

crucial. For instance, if one wishes to represent trajectories that

intersect in the state space, one should encode both velocity and

acceleration in ξ, i.e., ξ = [x; ẋ].
The use of DS is advantageous in that it enables a robot to

adapt its trajectory instantly in the face of perturbations [5].

A controller that is driven by a DS is robust to perturbations

because it embeds all possible solutions to reach a target into

one single function f̂ . Such a function represents a global map

that specifies on the fly the correct direction for reaching the

target, considering the current position of the robot and the

target. In this paper, we consider two types of perturbations:

1) spatial perturbations that result from a sudden displacement

in space of either the robot’s arm or of the target; and 2) temporal

perturbations which result from delays in the execution of the

task.2

Throughout this paper, we choose to represent a motion in

a kinematic coordinates system (i.e., the Cartesian or robot’s

joint space) and assume that there exists a low-level controller

that converts kinematic variables into motor commands (e.g.,

force or torque). Fig. 2 shows a schematic of the control flow.

The whole system’s architecture can be decomposed into two

loops. The inner loop consists of a controller that generates the

required commands to follow the desired motion and a system

block to model the dynamics of the robot. Here, q, q̇, and q̈ are

the robot’s joint angle and its first and second time derivatives.

2Note that we distinguish between spatial and temporal perturbations as
these result in different distortion of the estimated dynamics and, hence, require
different means to tackle these. Typically, spatial perturbations would result
from an imprecise localization of the target or from interacting with a dynamic
environment where either the target or the robot’s arm may be moved by an
external perturbation; temporal perturbations typically arise when the robot is
stopped momentarily due to the presence of an object or due to safety issues
(e.g., waiting until the operator has cleared the workspace).

Motor commands are denoted by u. The outer loop specifies the

next desired position and velocity of the motion with respect

to the current status of the robot. An inverse kinematics block

may also be considered in the outer loop to transfer the desired

trajectory from the Cartesian to the joint space (this block is not

necessary if the motion is already specified in the joint space).

In this control architecture, both the inner and outer loops

should be stable. The stability of the inner loop requires the

system to be input-to-state stable (ISS) [6], i.e., the output of the

inner loop should remain bounded for a bounded input. The sta-

bility of the outer loop is ensured when learning the system. The

learning block refers to the procedure that determines a stable

estimate of the DS to be used as the outer-loop control. In this

paper, we assume that there exists a low-level controller which is

not necessarily accurate,3 that makes the inner-loop ISS. Hence,

we focus our efforts on designing a learning block that ensures

stability of the outer-loop controller. Learning is data driven and

uses a set of demonstrated trajectories to determine the param-

eters θ of the DS that is given in (2). Learning proceeds as a

constraint optimization problem, satisfying asymptotic stability

of the DS at the target. A formal definition of stability is given

next.

Definition 1: The function f̂ is globally asymptotically stable

at the target ξ∗ if f(ξ∗) = 0 and ∀ξ0 ∈ R
d ; the generated motion

converges asymptotically to ξ∗, i.e.,

lim
t→∞

ξt = ξ∗ ∀ξ0 ∈ R
d . (3)

f̂ is locally asymptotically stable if it converges to ξ∗ only

when ξ0 is contained within a subspace D ⊂ R
d .

Nonlinear DS are prone to instabilities. Ensuring that the

estimate f̂ results in asymptotically stable trajectories, i.e., tra-

jectories that converge asymptotically to the attractor as per

Definition 1, is thus a key requirement for f̂ to provide a use-

ful control policy. In this paper, we formulate the problem to

estimate f and its parameters θ as a constrained optimization

problem, whereby we maximize accuracy of the reconstruction

while ensuring its global asymptotic stability at the target.

The remainder of this paper is structured as follows.

Section II reviews related works on learning discrete motions

and the shortcomings of the existing methods. Section III for-

malizes the control law as a stochastic system composed of a

mixture of Gaussian functions. In Section IV, we develop con-

ditions to ensure global asymptotic stability of nonlinear DS. In

Section V, we propose a learning method to build an ODE

model that satisfies these conditions. In Section VI, we quan-

tify the performance of our method to estimate the dynamics

of motions 1) against a library of human handwriting motions;

and 2) in two different robot platforms (i.e., the humanoid robot

iCub and the industrial robot Katana-T). We further demonstrate

how the resulting model from the proposed learning methods

can adapt instantly to temporal and spatial perturbations. We

devote Section VII to discussion, and finally, we summarize the

obtained results in Section VIII.

3When controlled by a DS, the outer-loop controller can handle the inner-
loop controller’s inaccuracy by treating these as perturbations, comparing the
expected versus the actual state of the system.
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II. RELATED WORKS

Statistical approaches to modeling robot motion have become

increasingly popular as a means to deal with the noise inherent

in any mechanical system. They have proved to be interesting al-

ternatives to classical control and planning approaches when the

underlying model cannot be well estimated. Traditional means

of encoding trajectories is based on spline decomposition af-

ter averaging across training trajectories [7]–[10]. While this

method is a useful tool for quick and efficient decomposition

and generalization over a given set of trajectories, it is, how-

ever, heavily dependent on heuristics to segment and align the

trajectories and gives a poor estimate of nonlinear trajectories.

Some alternatives to spline-based techniques perform regres-

sion over a nonlinear estimate of the motion that is based on

Gaussian kernels [2], [11], [12]. These methods provide pow-

erful means to encode arbitrary multidimensional nonlinear tra-

jectories. However, similar to spline encoding, these approaches

depend on explicit time indexing and virtually operate in an open

loop. Time dependence makes these techniques very sensitive

to both temporal and spatial perturbations. To compensate for

this deficiency,4 one requires a heuristic to reindex the new tra-

jectory in time, while simultaneously optimizing a measure of

how good the new trajectory follows the desired one. To find

a good heuristic is highly task-dependent and a nontrivial task,

and becomes particularly nonintuitive in high-dimensional state

spaces.

Coates et al. [13] proposed an Expectation Maximization

(EM) algorithm that uses an (extended) Kalman smoother to

follow a desired trajectory from the demonstrations. They use

dynamic programming to infer the desired target trajectory and

a time alignment of all demonstrations. Their algorithm also

learns a local model of the robot’s dynamics along the desired

trajectory. Although this algorithm is shown to be an efficient

method to learn complex motions, it is time dependent and, thus,

shares the disadvantages that are mentioned earlier.

DS have been advocated as a powerful alternative to mod-

eling robot motions [5], [14]. Existing approaches to the sta-

tistical estimation of f in (2) use either Gaussian Process Re-

gression (GPR) [15], Locally Weighted Projection Regression

(LWPR) [16], or Gaussian Mixture Regression (GMR) [14],

where the parameters of the Gaussian Mixture are optimized

through EM [17]. GMR and GPR find a locally optimal model

of f̂ by maximizing the likelihood that the complete model rep-

resents the data well, while LWPR minimizes the mean square

error (MSE) between the estimates and the data (for a detailed

discussion on these methods, see [18]).

Because all of the aforementioned methods do not optimize

under the constraint of making the system stable at the attractor,

they are not guaranteed to result in a stable estimate of the mo-

tion. In practice, they fail to ensure global stability, and they also

rarely ensure local stability of f̂ (see Definition 1). Such esti-

mates of the motion may, hence, converge to spurious attractors

or miss the target (diverging/unstable behavior) even when esti-

4If one is to model only time-dependent motions, i.e., motions that are deemed
to be performed in a fixed amount of time, then one may prefer a time-dependent
encoding.

Fig. 3. Example of 2-D dynamics learned from three demonstrations using
five different methods: GMR, LWPR, GPR, BM, and SEDS (this study). For
further information, see the text.

mating simple motions such as motions in the plane, see Fig. 3.

This is due to the fact that there is yet no generic theoretical

solution to ensuring stability of arbitrary nonlinear autonomous

DS [19]. Fig. 3 illustrates an example of unstable estimation

of a nonlinear DS using the aforementioned three methods for

learning a 2-D motion. Fig. 3(a) represents the stability analysis

of the dynamics learned with GMR. Here, in the narrow regions

around demonstrations, the trajectories converge to a spurious

attractor just next to the target. In other parts of the space, they

either converge to other spurious attractors far from the target or

completely diverge from it. Fig. 3(b) shows the obtained results

from LWPR. All trajectories inside the black boundaries con-

verge to a spurious attractor. Outside of these boundaries, the

velocity is always zero (a region of spurious attractors); hence,

a motion stops once it crosses these boundaries or it does not

move when it initializes there. Regarding Fig. 3(c), while for

GPR trajectories converge to the target in a narrow area close to

demonstrations, they are attracted to spurious attractors outside

that region.

In all these examples, regions of attractions are usually very

close to demonstrations and, thus, should be carefully avoided.

However, the critical concern is that there is no generic theoret-

ical solution to determine beforehand whether a trajectory will

lead to a spurious attractor, to infinity, or to the desired attractor.

Thus, it is necessary to conduct numerical stability analysis to
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locate the region of attraction of the desired target which may

never exist or may be very narrow.

The Dynamic Movement Primitives (DMP) [20] offer a

method by which a nonlinear DS can be estimated while en-

suring global stability at an attractor point. Global stability is

ensured through the use of linear DS that takes precedence over

the nonlinear modulation to ensure stability at the end of the

motion. The switch from nonlinear to linear dynamics proceeds

smoothly according to a phase variable that acts as an implicit

clock. Such an implicit time dependence requires a heuristics

to reset the phase variable in the face of temporal perturbations.

When learning from a single demonstration, DMP offers a ro-

bust and precise means of encoding a complex dynamics. Here,

we take a different approach in which we aim at learning a gen-

eralized dynamics from multiple demonstrations. We also aim

to ensure time independence, and hence robustness to temporal

perturbations. Learning also proceeds from extracting corre-

lation across several dimensions. While DMP learns a model

for each dimension separately, we here model a single multi-

dimensional model. The approach that we propose is, hence,

complementary to DMP. The choice between using DMP or

stable estimator of dynamical systems (SEDS) to model a mo-

tion is application dependent. For example, when the motion is

intrinsically time dependent and only a single demonstration is

available, one may use DMP to model the motion. In contrast,

when the motion is time independent and when learning from

multiple demonstrations, one may opt to use SEDS. For a more

detailed discussion of these issues and for quantitative compar-

isons across time-dependent and time-independent encoding of

motions using DS, see [5] and [21].

In our prior work [14], we developed a hybrid controller that

is composed of two DS working concurrently in end-effector

and joint angle spaces, resulting in a controller that has no

singularities. While this approach was able to adapt online to

sudden displacements of the target or unexpected movement of

the arm during the motion, the model remained time dependent

because, similarly to DMP, it relied on a stable linear DS with a

fixed internal clock.

We, then, considered an alternative DS approach that is based

on the hidden Markov model and GMR [22]. The method that

is presented here is time independent and, thus, robust to tem-

poral perturbations. Asymptotic stability could, however, not

be ensured. Sole a brief verification to avoid large instabilities

was done by evaluating the eigenvalues of each linear DS and

ensuring that they all have negative real parts. As stated in [22]

and as we will show in Section IV, asking that all eigenvalues

be negative is not a sufficient condition to ensure stability of the

complete system (see, e.g., Fig. 5).

In [21] and [23], we proposed a heuristics to build iteratively a

locally stable estimate of nonlinear DS. This heuristics requires

one to increase the number of Gaussians and retrain the mix-

ture using EM iteratively until stability can be ensured. Stability

was tested numerically. This approach suffered from the fact

that it was not ensured to find a (even locally) stable estimate

and that it gave no explicit constraint on the form of the Gaus-

sians to ensure stability. The model had a limited domain of

applicability because of its local stability, and it was also com-

putationally intensive, making it difficult to apply the method in

high dimensions.

In [18], we proposed an iterative method, which is called

Binary Merging (BM), to construct a mixture of Gaussians so

as to ensure local asymptotic stability at the target; hence, the

model can be only applied in a region close to demonstrations

[see Fig. 3(d)]. Although this study provided sufficient condi-

tions to make DS locally stable, similar to [23], it still relied on

determining numerically the stability region and had a limited

region of applicability.

In this paper, we develop a formal analysis of stability and

formulate explicit constraints on the parameters of the mixture

to ensure global asymptotic stability of DS. This approach pro-

vides a sound ground for the estimation of nonlinear DS which

is not heuristic driven and, thus, has the potential for much larger

sets of applications, such as the estimation of second-order dy-

namics and for control of multidegrees of freedom (multi-DOF)

robots as we demonstrate here. Fig. 3(e) represents results that

are obtained in this paper. Being globally asymptotically sta-

ble, all trajectories converge to the target. This ensures that the

task can be successfully accomplished starting from any point

in the operational space with no need to reindex or rescale. Note

that the stability analysis that we presented here was published

in a preliminary form in [5]. This paper largely extends this

work by 1) having a more depth discussion on stability; 2) by

proposing two objective functions to learn parameters of DS

and comparing their pros and cons; 3) by having a more de-

tailed comparison of the performance of the proposed method

with BM and three best regression methods to estimate motion

dynamics, namely GMR, LWPR, and GPR; and 4) by having

more robot experiments.

III. MULTIVARIATE REGRESSION

We use a probabilistic framework and model f̂ via a finite

mixture of Gaussian functions. Mixture modeling is a popular

approach for density approximation [24], and it allows a user to

define an appropriate model through a tradeoff between model

complexity and variations of the available training data. Mixture

modeling is a method that builds a coarse representation of the

data density through a fixed number (usually lower than 10) of

mixture components. An optimal number of components can be

found using various methods, such as the Bayesian information

criterion (BIC) [25], the Akaike information criterion (AIC)

[26], the deviance information criterion (DIC) [27], that penalize

a large increase in the number of parameters when it only offers

a small gain in the likelihood of the model.

While nonparametric methods, such as Gaussian Process or

variants on these, offer optimal regression [15], [28], they suffer

from the curse of dimensionality. Indeed, computing the esti-

mate regressor f̂ grows linearly with the number of data points,

making such an estimation inadequate for on-the-fly recompu-

tation of the trajectory in the face of perturbations. There ex-

ists various sparse techniques to reduce the sensitivity of these

methods to the number of data points. However, these tech-

niques either become parametric by predetermining the optimal

number of data points [29], or they rely on a heuristic such as
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information gain to determine the optimal subset of data points

[30]. These heuristics resemble that offered by the BIC, DIC, or

AIC criteria.

Estimating f via a finite mixture of Gaussian functions, the

unknown parameters of f̂ become the prior πk , the mean μk

and the covariance matrices Σk of the k = 1 . . . K Gaussian

functions (i.e., θk = {πk , μk ,Σk} and θ = {θ1 . . . θK }). The

mean and the covariance matrices of a Gaussian k are defined

by

μk =

(
μk

ξ

μk
ξ̇

)

, Σk =

(
Σk

ξ Σk
ξ ξ̇

Σk
ξ̇ξ

Σk
ξ̇

)

. (4)

Given a set of N demonstrations {ξt,n , ξ̇t,n}T n ,N
t=0,n=1 , each

recorded point in the trajectories [ξt,n , ξ̇t,n ] is associated with a

probability density function P(ξt,n , ξ̇t,n ):

P(ξt,n , ξ̇t,n ;θ) =
K∑

k=1

P(k)P(ξt,n , ξ̇t,n |k)

{
∀n ∈ 1 . . . N

t ∈ 0 . . . T n

(5)

where P(k) = πk is the prior, and P(ξt,n , ξ̇t,n |k) is the condi-

tional probability density function that is given by

P(ξt,n , ξ̇t,n |k) = N (ξt,n , ξ̇t,n ;μk ,Σk )

=
1

√

(2π)2d |Σk |
e−

1
2 ([ξ t , n ,ξ̇ t , n ]−μk )T (Σk )−1 ([ξ t , n ,ξ̇ t , n ]−μk ) . (6)

Taking the posterior mean estimate of P(ξ̇|ξ) yields (as de-

scribed in [31])

ξ̇ =
K∑

k=1

P(k)P(ξ|k)
∑K

i=1 P(i)P(ξ|i)

(
μk

ξ̇
+ Σk

ξ̇ξ

(
Σk

ξ

)−1(
ξ − μk

ξ

))
. (7)

The notation of (7) can be simplified through a change of

variable. Let us define
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Ak = Σk
ξ̇ξ

(Σk
ξ )−1

bk = μk
ξ̇
− Akμk

ξ

hk (ξ) = P(k)P(ξ |k)
∑K

i = 1
P(i)P(ξ |i)

.

(8)

The substitution of (8) into (7) yields

ξ̇ = f̂(ξ) =

K∑

k=1

hk (ξ)(Akξ + bk ). (9)

First observe that f̂ is now expressed as a nonlinear sum of

linear DS. Fig. 4 illustrates the parameters of (8) and their effects

on (9) for a 1-D model constructed with three Gaussians. Here,

each linear dynamics Akξ + bk corresponds to a line that passes

through the centers μk with slope Ak . The nonlinear weighting

terms hk (ξ) in (9), where 0 < hk (ξ) ≤ 1, give a measure of the

relative influence of each Gaussian locally. Observe that due

to the nonlinear weighting terms hk (ξ), the resulting function

f̂(ξ) is nonlinear and flexible enough to model a wide variety

of motions. If one estimates this mixture using classical meth-

ods such as EM, one cannot guarantee that the system will be

Fig. 4. Parameters that are defined in (8) and their effects on f̂ (ξ) for a 1-D
model constructed with three Gaussians. See the text for further information.

asymptotically stable. The resulting nonlinear model f̂(ξ) usu-

ally contains several spurious attractors or limit cycles even for

a simple 2-D model (see Fig. 3). Next, we determine sufficient

conditions on the learning parameters θ to ensure asymptotic

stability of f̂(ξ).

IV. STABILITY ANALYSIS

The stability analysis of DS is a broad subject in the field

of dynamics and control, which can generally be divided into

linear and nonlinear systems. Stability of linear dynamics has

been studied extensively [19], where a linear DS can be written

as

ξ̇ = Aξ + b. (10)

Asymptotic stability of a linear DS that is defined by (10) can

be ensured by solely requiring that the eigenvalues of the matrix

A be negative. In contrast, the stability analysis of nonlinear

DS is still an open question, and theoretical solutions exist only

for particular cases. Beware that the intuition that the nonlinear

function f̂(ξ) should be stable if all eigenvalues of matrices Ak ,

k = 1 . . . K, have strictly negative real parts is not true. Here is

a simple example in 2-D that illustrates why this is not the case,

as well as why estimating stability of nonlinear DS, even in 2-D

is nontrivial.

Example: Consider the parameters of a model with two Gaus-

sian functions to be
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Σ1
ξ = Σ2

ξ =

[
3 0
0 3

]

Σ1
ξ̇ ξ

=

[
−3 −30
3 −3

]

, Σ2
ξ̇ ξ

=

[
−3 3
−30 −3

]

μ1
ξ = μ2

ξ = μ1
ξ̇

= μ2
ξ̇

= 0.

(11)

Using (8), we have

⎧

⎨

⎩

A1 =

[
−1 −10
1 −1

]

, A2 =

[
−1 1
−10 −1

]

b1 = b2 = 0.

(12)

The eigenvalues of the two matrices A1 and A2 are complex

with values −1 ± 3.16i. Hence, each matrix determines a stable
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Fig. 5. While each of the subsystems (left) ξ̇ = A1 ξ and (center) ξ̇ = A2 ξ is
asymptotically stable at the origin, a nonlinear weighted sum of these systems

(right) ξ̇ = h1 (ξ)A1 ξ + h2 (ξ)A2 ξ may become unstable . Here, the system
remains stable only for points on the line ξ2 = ξ1 (drawn in black).

system. However, the nonlinear combination of the two matri-

ces, as per (9), is stable only when ξ2 = ξ1 and is unstable in

R
d \ {(ξ2 , ξ1)|ξ2 = ξ1} (see Fig. 5).

Next, we determine sufficient conditions to ensure global

asymptotic stability of a series of nonlinear DS given by (7).

Theorem 1: Assume that the state trajectory evolves according

to (9). Then, the function that is described by (9) is globally

asymptotically stable at the target ξ∗ in R
d if

{

(a) bk = −Akξ∗

(b) Ak + (Ak )T ≺ 0
∀k = 1 . . . K (13)

where (Ak )T is the transpose of Ak , and . ≺ 0 refers to the

negative definiteness of a matrix.5

Proof: We start the proof by recalling the Lyapunov con-

ditions for asymptotic stability of an arbitrary dynamical sys-

tem [19].

Lyapunov Stability Theorem: A dynamical system that is de-

termined by the function ξ̇ = f̂(ξ) is globally asymptotically

stable at the point ξ∗ if there exists a continuous and continu-

ously differentiable Lyapunov function V (ξ) : R
d → R such

that
⎧

⎪⎨

⎪⎩

(a) V (ξ) > 0 ∀ξ ∈ R
d , ξ 
= ξ∗

(b) V̇ (ξ) < 0 ∀ξ ∈ R
d , ξ 
= ξ∗

(c) V (ξ∗) = 0, V̇ (ξ∗) = 0.

(14)

Note that V̇ is a function of both ξ and ξ̇. However, since ξ̇
can be directly expressed in terms of ξ using (9), one can finally

infer that V̇ only depends on ξ.

Consider a Lyapunov function V (ξ) of the form

V (ξ) =
1

2
(ξ − ξ∗)T (ξ − ξ∗) ∀ξ ∈ R

d . (15)

Observe first that V (ξ) is a quadratic function and, hence,

satisfies condition (14a). Condition that is given by (14b) follows

from taking the first derivative of V (ξ) with respect to time; we

5A d × d real symmetric matrix A is positive definite if ξT Aξ > 0 for all
nonzero vectors ξ ∈ R

d , where ξT denotes the transpose of ξ. Conversely,
A is negative definite if ξT Aξ < 0. For a nonsymmetric matrix, A is positive

(negative) definite if and only if its symmetric part Ã = (A + AT )/2 is positive
(negative) definite.

have

V̇ (ξ) =
dV

dt
=

dV

dξ

dξ

dt

=
1

2

d

dξ

(
(ξ − ξ∗)T (ξ − ξ∗)

)
ξ̇

= (ξ − ξ∗)T ξ̇ = (ξ − ξ∗)T f̂(ξ)

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)(Akξ + bk )

︸ ︷︷ ︸

= ξ̇ (see(9))

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)(Ak (ξ − ξ∗) + Akξ∗ + bk

︸ ︷︷ ︸

=0 (see(13a))

)

= (ξ − ξ∗)T
K∑

k=1

hk (ξ)Ak (ξ − ξ∗)

=

K∑

k=1

hk (ξ)
︸ ︷︷ ︸

hk >0

(ξ − ξ∗)T Ak (ξ − ξ∗)
︸ ︷︷ ︸

<0 (see(13b))

< 0 ∀ξ ∈ R
d , ξ 
= ξ∗. (16)

Conditions that are given by (14c) are satisfied when substituting

ξ = ξ∗ into (15) and (16)

V (ξ∗) =
1

2
(ξ − ξ∗)T (ξ − ξ∗)

∣
∣
∣
∣
ξ=ξ ∗

= 0 (17)

V̇ (ξ∗) =

K∑

k=1

hk (ξ)(ξ − ξ∗)T Ak (ξ − ξ∗)

∣
∣
∣
∣
∣
ξ=ξ ∗

= 0. (18)

Therefore, an arbitrary ODE function ξ̇ = f̂(ξ) that is given

by (9) is globally asymptotically stable if conditions of (13) are

satisfied. �

Conditions (13a) and (13b) are sufficient to ensure that an ar-

bitrary nonlinear function that is given by (9) is globally asymp-

totically stable at the target ξ∗. Such a model is advantageous

in that it ensures that starting from any point in the space, the

trajectory (e.g., a robot arm’s end effector) always converges to

the target.

V. LEARNING GLOBALLY ASYMPTOTICALLY STABLE MODELS

Section IV provided us with sufficient conditions whereby

the estimate f̂(ξ) is globally asymptotically stable at the target.

It remains now to determine a procedure to compute unknown

parameters of (9), i.e., θ = {π1 . . . πK ;μ1 . . . μK ; Σ1 . . . ΣK }
such that the resulting model is globally asymptotically stable.

In this section, we propose a learning algorithm, which is called

SEDS, that computes optimal values of θ by solving an opti-

mization problem under the constraint of ensuring the model’s

global asymptotic stability. We consider two different candi-

dates for the optimization objective function: 1) log-likelihood

and 2) MSE. The results from both approaches will be evaluated

and compared in Section VI-A.
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SEDS-Likelihood: Using log-likelihood as a means to con-

struct a model

min
θ

J(θ) = −
1

T

N∑

n=1

T n
∑

t=0

logP(ξt,n , ξ̇t,n |θ) (19)

subject to

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(a) bk = −Akξ∗

(b) Ak + (Ak )T ≺ 0

(c) Σk ≻ 0

(d) 0 < πk ≤ 1

(e)
∑K

k=1 πk = 1

∀k ∈ 1 . . . K (20)

where P(ξt,n , ξ̇t,n |θ) is given by (5), and T =
∑N

n=1 T n is the

total number of training data points. The first two constraints

in (20) are stability conditions from Section IV. The last three

constraints are imposed by the nature of the Gaussian mixture

model to ensure that Σk are positive-definite matrices, priors

πk are positive scalars smaller than or equal to one, and sum of

all priors is equal to one (because the probability value of (5)

should not exceed 1).

SEDS-MSE: Using MSE as a means to quantify the accuracy

of estimations that are based on demonstrations6

min
θ

J(θ) =
1

2T

N∑

n=1

T n
∑

t=0

‖ ˆ̇
ξt,n − ξ̇t,n‖2 (21)

subject to the same constraints as given by (20). In (21),
ˆ̇
ξt,n =

f̂(ξt,n ) are computed directly from (9).

Both SEDS-Likelihood and SEDS-MSE can be formulated

as a Nonlinear Programming (NLP) problem [32] and can be

solved using standard constrained optimization techniques. We

use a Successive Quadratic Programming (SQP) approach that

relies on a quasi-Newton method7 to solve the constrained opti-

mization problem [32]. SQP minimizes a quadratic approxima-

tion of the Lagrangian function over a linear approximation of

the constraints.8

Our implementation of SQP has several advantages over gen-

eral purpose solvers. First, we have an analytic expression of

6In our previous work [5], we used a different MSE cost function, which
balanced the effect of following the trajectory and the speed. See Appendix A
for a comparison of results using both cost functions and further discussion.

7Quasi-Newton methods differ from classical Newton methods in that they
compute an estimate of the Hessian function H (ξ) and, thus, do not require a
user to provide it explicitly. The estimate of the Hessian function progressively
approaches to its real value as optimization proceeds. Among quasi-Newton
methods, we use Broyden–Fletcher–Goldfard–Shanno [32].

8Given the derivative of the constraints and an estimate of the Hessian and
the derivatives of the cost function with respect to the optimization parameters,
the SQP method finds a proper descent direction (if it exists) that minimizes the
cost function while not violating the constraints. To satisfy equality constraints,
SQP finds a descent direction that minimizes the cost function by varying
the parameters on the hypersurface that satisfies the equality constraints. For
inequality constraints, SQP follows the gradient direction of the cost function
whenever the inequality holds (inactive constraints). Only at the hypersurface
where the inequality constraint becomes active does SQP look for a descent
direction that minimizes the cost function by varying the parameters on the
hypersurface or toward the inactive constraint domain.

the derivatives, improving significantly the performances. Sec-

ond, our code is tailored to solve the specific problem at hand.

For example, a reformulation guarantees that the optimization

constraints (20a), (20c), (20d), and (20e) are satisfied. There

is, thus, no longer the need to explicitly enforce them during

the optimization. The analytical formulation of derivatives and

the mathematical reformulation to satisfy the optimization con-

straints are explained in detail in [33].

Note that a feasible solution to these NLP problems always

exists. Algorithm 1 provides a simple and efficient way to com-

pute a feasible initial guess for the optimization parameters.

Starting from an initial value, the solver tries to optimize the

value of θ such that the cost function J is minimized. How-

ever, since the proposed NLP problem is nonconvex, one cannot

ensure to find the globally optimal solution. Solvers are usu-

ally very sensitive to initialization of the parameters and will

often converge to some local minima of the objective function.

Based on our experiments, running the optimization with the

initial guess that is obtained from Algorithm 1 usually results in

a good local minimum. In all experiments that are reported in

Section VI, we ran the initialization three to four times, and use

the result from the best run for the performance analysis.

We use the BIC to choose the optimal set K of Gaussians.

The BIC determines a tradeoff between optimizing the model’s

likelihood and the number of parameters that are needed to

encode the data

BIC = T J(θ) +
np

2
log(T ) (22)

where J(θ) is the normalized log-likelihood of the model that

is computed using (19), and np is the total number of free

parameters. The SEDS-Likelihood approach requires the esti-

mation of K(1 + 3d + 2d2) parameters (the priors πk , mean

μk , and covariance Σk are of size 1, 2d, and d(2d + 1),
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Fig. 6. Performance comparison of SEDS-Likelihood and SEDS-MSE through a library of 20 human handwriting motions.

respectively). However, the number of parameters can be re-

duced since the constraints given by (20a) provide an explicit

formulation to compute μk
ξ̇

from other parameters (i.e., μk
ξ , Σk

ξ ,

and Σk
ξ̇ξ

). Thus, the total number of parameters to construct a

GMM with K Gaussians is K(1 + 2d(d + 1)). As for SEDS-

MSE, the number of parameters is even more reduced since

when constructing f̂ , the term Σk
ξ̇

is not used and, thus, can be

omitted during the optimization. Taking this into account, the

total number of learning parameters for the SEDS-MSE reduces

to K(1 + 3
2 d(d + 1)). For both approaches, learning grows lin-

early with the number of Gaussians and quadratically with the

dimension. In comparison, the number of parameters in the pro-

posed method is fewer than GMM and LWPR.9 The retrieval

time of the proposed method is low and in the same order of

GMR and LWPR.

The source code of SEDS can be downloaded from

http://lasa.epfl.ch/sourcecode/.

VI. EXPERIMENTAL EVALUATIONS

Performance of the proposed method is first evaluated against

a library of 20 human handwriting motions. These were chosen

as they provide realistic human motions while ensuring that

imprecision in both recording and generating motion is minimal.

Precisely, in Section VI-A, we compare the performance of

the SEDS method when using either the likelihood or MSE.

In Section VI-B, we validate SEDS to estimate the dynamics

of motion of two robot platforms: 1) the 7-DOF right arm of

9The number of learning parameter in GMR and LWPR is K (1 + 3d + 2d2 )

and 7
2 K (d + d2 ), respectively.

the humanoid robot iCub and 2) the six DOF industrial robot

Katana-T arm. In Sections VI-C and VI-D, we show that the

method can learn second- and higher order dynamics that allows

us to embed different local dynamics in the same model. Finally,

in Section VI-E, we compare our method with those of four

alternative methods GMR, LWPR, GPR, and BM.

A. Stable Estimator of Dynamical Systems: Likelihood Versus

Mean Square Error

In Section V, we proposed two objective functions: likelihood

and MSE for training the SEDS model. We compare the results

that are obtained with each method for modeling 20 handwriting

motions. The demonstrations are collected from pen input using

a Tablet-PC. Fig. 6 shows a qualitative comparison of the esti-

mate of handwriting motions. All reproductions were generated

in simulation to exclude the error due to the robot controller

from the modeling error. The accuracy of the estimate is mea-

sured according to (23), with which the method accuracy in

estimating the overall dynamics of the underlying model f̂ is

quantified by measuring the discrepancy between the direction

and magnitude of the estimated and observed velocity vectors

for all training data points10

10Equation (23) measures the error in our estimation of both the direction
and magnitude of the velocity. It is, hence, a better estimate of how well our
model encapsulates the dynamics of the motion, in contrast with an MSE on the
velocity magnitude alone.
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TABLE I
PERFORMANCE COMPARISON OF SEDS-LIKELIHOOD AND SEDS-MSE IN

LEARNING 20 HUMAN HANDWRITING MOTIONS

ē =
1

T

N∑

n=1

T n
∑

t=0

(

r

(

1 −
(ξ̇t,n )T ˆ̇

ξt,n

‖ξ̇t,n‖‖ ˆ̇
ξt,n‖ + ǫ

)2

+ q
(ξ̇t,n − ˆ̇

ξt,n )T (ξ̇t,n − ˆ̇
ξt,n )

‖ξ̇t,n‖‖ξ̇t,n‖ + ǫ

) 1
2

(23)

where r and q are positive scalars that weigh the relative influ-

ence of each factor,11 and ǫ is a very small positive scalar.

The quantitative comparison between the two methods is

represented in Table I. SEDS-Likelihood slightly outperforms

SEDS-MSE in accuracy of the estimate, as seen in Fig. 6 and

Table I. Optimization with MSE results in a higher value of the

error. This could be due to the fact that (21) only considers the

norm of ξ̇ during the optimization, while when computing ē,

the direction of ξ̇ is also taken into account [see (23)]. Although

one could improve the performance of SEDS-MSE by consider-

ing the direction of ξ̇ in (21), this would make the optimization

problem more difficult to solve by changing a convex objective

function into a nonconvex one.

SEDS-MSE is advantageous over SEDS-Likelihood in that it

requires fewer parameters (this number is reduced by a factor

of 1
2 Kd(d + 1)). On the other hand, SEDS-MSE has a more

complex cost function that requires computing GMR at each

iteration over all training data points. As a result, the use of

MSE makes the algorithm computationally more expensive, and

it has a slightly longer training time (see Table I).

Following the previous observations that SEDS-Likelihood

outperforms SEDS-MSE in terms of accuracy of the recon-

struction and the training time, in the rest of the experiments,

we will use only SEDS-Likelihood to train the globally stable

model.12

B. Learning Point-to-Point Motions in the Operational Space

We report on five robot experiments to teach the Katana-T

and the iCub robots to perform nonlinear point-to-point motions.

In all our experiments, the origin of the reference coordinates

system is attached to the target. The motion is, hence, controlled

with respect to this frame of reference. Such representation

makes the parameters of a DS invariant to changes in the target

position.

11Suitable values for r and q must be set to satisfy the user’s design criteria
that may be task dependent. In this paper, we consider r = 0.6 and q = 0.4.

12Note that in our experiments, the difference between the two algorithms in
terms of the number of parameters is small and, thus, is not a decisive factor.

In the first experiment, we teach a 6-DOF industrial Katana-

T arm how to put small blocks into a container13 (see Fig. 7).

We use the Cartesian coordinates system to represent the mo-

tions. In order to have human-like motions, the learned model

should be able to generate trajectories with both similar position

and velocity profiles to the demonstrations. In this experiment,

the task was shown to the robot six times and was learned us-

ing K = 6 Gaussian functions. Fig. 7(a) illustrates the obtained

results for generated trajectories starting from different points

in the task space. The direction of motion is indicated by ar-

rows. All reproduced trajectories are able to follow the same

dynamics (i.e., having similar position and velocity profile) as

the demonstrations.

Immediate adaptation: Fig. 7(b) shows the robustness of the

model to the change in the environment. In this graph, the orig-

inal trajectory is plotted in thin blue line. The thick black line

represents the generated trajectory for the case where the target

is displaced at t = 1.5 s. Having defined the motion as au-

tonomous DS, the adaptation to the new target’s position can be

done instantly.

Increasing accuracy of generalization: While convergence to

the target is always ensured from conditions that are given by

(13), due to the lack of information for points far from demon-

strations, the model may reproduce some trajectories that are not

consistent with the usual way of doing the task. For example,

consider Fig. 8(a), i.e., when the robot starts the motion from

the left side of the target, it first turns around the container and

then approaches the target from its right side. This behavior may

not be optimal as one expects the robot to follow the shortest

path to the target and reach it from the same side as the one it

started from. However, such a result is inevitable since the infor-

mation that is given by the teacher is incomplete, and thus, the

inference for points that are far from the demonstrations are not

reliable. In order to improve the task execution, it is necessary

to provide the robot with more demonstrations (information)

over regions that are not covered before. By showing the robot

more demonstrations and retraining the model with the new

data, the robot is able to successfully accomplish the task [see

Fig. 8(b)].

The second and third experiments consisted of having Katana-

T robot place a saucer at the center of the tray and putting a cup

on the top of the saucer. Both tasks were shown four times and

were learned using K = 4 Gaussians. The experiments and the

generalization of the tasks starting from different points in the

space are shown in Figs. 9 and 10. Fig. 11 shows the adaptation

of both models in the face of perturbations. Note that in this

experiment, the cup task is executed after finishing the saucer

task; however, for convenience, we superimpose both tasks in

the same graph. In both tasks, the target (i.e., the saucer for the

cup task and the tray for the saucer task) is displaced during the

execution of the task at the time t = 2 s. In both experiments,

the adaptation to the perturbation is handled successfully.

13The robot is only taught how to move blocks. The problem of grasping the
blocks is out of the scope of this paper. Throughout the experiments, we pose
the blocks such that they can be easily grasped by the robot.
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Fig. 7. Katana-T arm that performs the experiment of putting small blocks
into a container. See the text for further information. (a) Ability of the model
to reproduce similar trajectories starting from different points in the space.
(b) Ability of the model to adapt its trajectory on the fly to a change in the
target’s position.

The fourth and fifth experiments consisted of having the

7-DOF right arm of the humanoid robot iCub perform com-

plex motions, containing several nonlinearities (i.e., successive

curvatures) in both position and velocity profiles. Similar to

earlier, we use the Cartesian coordinates system to represent

these motions. The tasks are shown to the robot by teleoper-

ating it using motion sensors (see Fig. 1). Fig. 12 illustrates

the result for the first task where the iCub starts the motion in

front of its face. Then, it does a semispiral motion toward its

right side, and finally at the bottom of the spiral, it stretches

forward its hand completely. In the second task, the iCub starts

the motion close to its left forehand. Then, it does a semicircular

motion upward and finally brings its arm completely down (see

Fig. 13). The two experiments were learned using five and four

Gaussian functions, respectively. In both experiments, the robot

is able to successfully follow the demonstrations and to gener-

Fig. 8. Improving the task execution by adding more data for regions that are
far from the demonstrations. (a) Generalization based on the original model. (b)
Generalization after retraining the model with the new data.

Fig. 9. Katana-T arm that performs the experiment of putting a saucer on a
tray.

Fig. 10. Katana-T arm that performs the experiment of putting a cup on a
saucer.
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Fig. 11. Ability of the model to on-the-fly adapt its trajectory to a change in
the target’s position. (a) Trajectory of reproductions. (b) Velocity profile for the
saucer task. (c) Velocity profile for the cup task.

Fig. 12. First experiment with the iCub. The robot does a semispiral motion
toward its right side, and at the bottom of the spiral, it stretches forward its hand
completely.

alize the motion for several trajectories with different starting

points. Similar to what was observed in the three experiments

with the Katana-T robot, the models that are obtained for the

iCub’s experiments are robust to perturbations.

C. Learning Second-Order Dynamics

So far, we have shown how DS can be used to model/learn

a demonstrated motion when modeled as a first-order time-

invariant ODE. Although this class of ODE functions are generic

enough to represent a wide variety of robot motions, they fail

to accurately define motions that rely on second-order dynam-

ics such as a self-intersecting trajectory or motions for which

the starting and final points coincide with each other (e.g., a

triangular motion). Critical to these kinds of motion is the am-

biguity in the correct direction of velocity at the intersection

point if the model’s variable ξ considered to be only the carte-

sian position (i.e., ξ = x ⇒ ξ̇ = ẋ). This ambiguity usually re-

sults in skipping the loop part of the motion. However, in this

Fig. 13. Second experiment with the iCub. The robot does a semicircle motion
upward and brings its arm completely down.

example, this problem can be solved if one defines the motion in

terms of position, velocity, and acceleration, i.e., second-order

dynamics:

ẍ = g(x, ẋ) (24)

where g is an arbitrary function. Observe that any second-order

dynamics in the form of (24) can be easily transformed into a

first-order ODE through a change of variable, i.e.,
{

ẋ = v

v̇ = g(x, v)
⇒ [ẋ; v̇] = f(x, v) (25)

Having defined ξ = [x; v] and, thus, ξ̇ = [ẋ; v̇], (25) reduces

to ξ̇ = f(ξ) and, therefore, can be learned with the methods that

are presented in this paper. We verify the performance of our

method in learning a second-order motion via a robot task. In

this experiment, the iCub performs a loop motion with its right

hand, where the motion lies in a vertical plane and, thus, contains

a self-intersection point (see Fig. 14). Here, the task is shown to

the robot five times. The motion is learned with seven Gaussian

functions with SEDS-Likelihood. The results demonstrate the

ability of SEDS to learn second-order dynamics.

By extension, since any nth-order autonomous ODE can be

transformed into a first-order autonomous ODE, the proposed

methods can also be used to learn higher order dynamics, how-

ever, at the cost of increasing the dimensionality of the system. If

the dimensionality of an nth-order DS is d, the dimensionality of

the transformed dynamics into a first-order DS is n × d. Hence,

increasing the order of the DS is equivalent to increasing the di-

mension of the data. As the dimension increases, the number of

optimization parameters also increases. If one optimizes the val-

ues of these parameters that are based on using a quasi-Newton

method, the learning problem indeed becomes intractable as

the number of dimensions increases. As an alternative solution,

one can define the loop motion in terms of both the Cartesian

position x and a phase variable. The phase-dependent DS has

lower dimension (i.e., dimensionality of d + 1) compared with

the second-order DS and is more tractable to learn. However, as

it is already discussed in Section II, the use of the phase variable
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Fig. 14. Learning a self-intersecting motion with a second-order dynamics.

makes the system time dependent. Depending on the applica-

tion, one may prefer to choose the system of (25) and learn a

more complex DS, or to use its phase variable form, which is

time dependent but easier to learn.

D. Encoding Several Motions Into One Single Model

We have so far assumed that a single dynamical system drives

a motion; however, sometimes it may be necessary to execute

a single task in different manners starting from different areas

in the space, mainly to avoid joint limits, task constraints, etc.

We have shown an example of such an application in an exper-

iment with the Katana-T robot (see Fig. 8). Now, we show a

more complex example and use SEDS-Likelihood to integrate

different motions into one single model (see Fig. 15). In this ex-

periment, the task is learned using K = 7 Gaussian functions,

and the 2-D demonstrations are collected from pen input using

a Tablet-PC. The model is learned using SEDS-Likelihood, and

it is provided with all demonstration data points at the same

time without specifying the dynamics they belong to. Looking

at Fig. 15, we see that all the three dynamics are learned success-

fully with a single model, and the robot is able to approach the

target following an arc, a sine function, or a straight line path,

respectively, starting from the left, right, or top side of the task

space. While reproductions follow locally the desired motion

around each set of demonstrations, they smoothly switch from

one motion to another in areas between demonstrations.

E. Comparison With Alternative Methods

The proposed method is also compared with three of the best

performing regression methods to date (GPR, GMR with EM,

Fig. 15. Embedding different ways of performing a task in one single model.
The robot follow an arc, a sine, or a straight line starting from different points
in the workspace. All reproductions were generated in simulation.

and LWPR14) and our previous work BM on the same library

of handwriting motions that are represented in Section VI-A

(see Table II) and the robot experiments that are described in

Sections VI-B–D (see Table III). All reproductions were gener-

ated in simulation to exclude the error due to the robot controller

from the modeling error. Fig. 3 illustrates the difference between

these five methods on the estimation of a 2-D motion. To ensure

fairer comparison across techniques, GMR was trained with the

same number of Gaussians as that found with BIC on SEDS.

As expected, GPR is the most accurate method. GPR per-

forms a very precise nonparametric density estimation and is,

thus, bound to give optimal results when using all of the training

examples for inference (i.e., we did not use a sparse method).

However, this comes at the cost of increasing the computa-

tion complexity and storing all demonstration data points (i.e.,

higher number of parameters). GMR outperforms LWPR by

being more accurate and requiring fewer parameters.

Both BM and SEDS-Likelihood are comparatively as accu-

rate as GMR and LWPR. To recall, neither GPR, GMR nor

LWPR ensure stability of the system (neither local nor global

stability), and BM only ensures local stability (see Section II

and Fig. 3). SEDS outperforms BM in that it ensures global

asymptotic stability and can better generalize the motion for

trajectories far from the demonstrations. In most cases, BM is

more accurate (although marginally so). BM offers more flex-

ibility since it unfolds a motion into a set of discrete jointwise

partitions and ensures that the motion is locally stable within

each partition. SEDS is more constraining since it tries to fit a

motion with a single globally stable dynamics. Finally, in con-

trast with BM, SEDS also enables to encode stable models of

several motions into one single model (e.g., see Section VI-D).

VII. DISCUSSION AND FUTURE WORK

In this paper, we presented a method to learn arbitrary discrete

motions by modeling them as nonlinear autonomous DS. We

proposed a method that is called SEDS to learn the parameters

of a GMM by solving an optimization problem under strict

stability constraint. We proposed two objective functions that are

SEDS-MSE and SEDS-Likelihood for this optimization problem.

14The source code of all the three is downloaded from the website of their
authors.
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TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH ALTERNATIVE APPROACHES IN LEARNING 20 HUMAN HANDWRITING MOTIONS

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED METHODS WITH ALTERNATIVE APPROACHES IN LEARNING ROBOT EXPERIMENTS PRESENTED

IN SECTIONS VI-B AND C

The models result from optimizing both objective functions

benefit from the inherent characteristics of autonomous DS,

i.e., online adaptation to both temporal and spatial perturbation.

However, each objective function has its own advantages and

disadvantages. Using log-likelihood is advantageous in that it is

more accurate and smoother than MSE. Furthermore, the MSE

cost function is slightly more time consuming since it requires

computing GMR at each iteration for all training data points.

However, the MSE objective function requires fewer parameters

than the likelihood one which may make the algorithm faster

in higher dimensions or when higher number of components is

used.

None of the two methods are globally optimal as they deal

with a nonconvex objective function. However, in practice, in

the 20 handwriting examples and the six robot tasks, which we

reported here, we found that SEDS approximation was quite

accurate. An assumption made throughout this paper is that

represented motions can be modeled with a first-order time-

invariant ODE. While the nonlinear function that is given by (9)

is able to model a wide variety of motions, the method cannot be

used for some special cases that violate this assumption. Most

of the time, this limitation can be tackled through a change of

variable (as presented in our experiments; see Fig. 14).

The stability conditions at the basis of SEDS are sufficient

conditions to ensure global asymptotic stability of nonlinear

motions when modeled with a mixture of Gaussian functions.

Although our experiments showed that a large library of robot

motions can be modeled while satisfying these conditions, these

global stability conditions might be too stringent to accurately

model some complex motions. For these cases, the user could

choose local approaches such as BM to accurately model desired

motions.

While, in Section VI-C, we showed how higher order dy-

namics can be used to model more complicated movements,

determining the model order is definitely not a trivial task. It

relies on having a good idea of what matters for the task at

hand. For instance, higher order derivatives are useful to control

for smoothness, jerkiness, and energy consumption and, hence,

may be used if the task requires optimizing for such criteria.

Incremental learning is often crucial to allow the user to refine

the model in an interactive manner. At this point in time, the

SEDS training algorithm does not allow for incremental retrain-

ing of the model. If one was to add new demonstrations after

training the model, one would have to either retrain entirely the

model that is based on the combined set of old and new demon-

strations or build a new model from the new demonstrations

and merge it with the previous model.15 For a fixed number of

Gaussians, the former usually results in having a more accurate

model, while the latter is faster to train (because it only uses the

new set of demonstrations in the training).

Ongoing work is directed at designing an online learning ver-

sion of SEDS whereby the algorithm optimizes the parameters

of the model incrementally as the robot explores the space of

motion. This algorithm would also allow for the user to provide

corrections and, hence, to refine the model locally, along the

lines that we followed in [34].

Furthermore, we are currently endowing the method with

the on-the-fly ability to avoid possible obstacle(s) during the

15Two GMM with K 1 and K 2 number of Gaussian functions can be merged
into a single model with K = K 1 + K 2 Gaussian functions by concatenating

their parameters, i.e., θ = {θ1 . . . θK 1
. . . θK }, where θk = {πk , μk , Σk }.

The resulting model is no longer (locally) optimal; however, it could be an
accurate estimation of both models, especially when there is no overlapping
between the two models.
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execution of a task. We will also focus on integrating physical

constraints of the system (e.g., robot’s joints limit, the task’s

constraint, etc.) into the model to solve for this during our global

optimization. Finally, while we have shown that the system

could embed more than one motion and, hence, account for

different ways to approach the same target, depending on where

the motion starts in the workspace, we have still yet to determine

how many different dynamics can be embedded in the same

system.

VIII. SUMMARY

DS offer a framework that allows for fast learning of robot

motions from a small set of demonstrations. They are also ad-

vantageous in that they can be easily modulated to produce

trajectories with similar dynamics in areas of the workspace

that is not covered during training. However, their application

to robot control has been given little attention so far, mainly

because of the difficulty of ensuring stability. In this paper, we

presented an optimization approach for statistically encoding a

dynamical motion as a first-order autonomous nonlinear ODE

with Gaussian Mixtures. We addressed the stability problem of

autonomous nonlinear DS and formulated sufficient conditions

to ensure global asymptotic stability of such a system. Then,

we proposed two optimization problems to construct a globally

stable estimate of a motion from demonstrations.

We compared performance of the proposed method with cur-

rent widely used regression techniques via a library of 20 hand-

writing motions. Furthermore, we validated the methods in dif-

ferent point-to-point robot tasks that are performed with two

different robots. In all experiments, the proposed method was

able to successfully accomplish the experiments in terms of high

accuracy during reproduction, the ability to generalize motions

to unseen contexts, and the ability to adapt on the fly to spatial

and temporal perturbations.

APPENDIX A

COMPARISON WITH THE COST FUNCTION DESCRIBED IN [5]

In our previous work [5], we had used a different MSE cost

function from that proposed in this paper that balanced the error

in both position and velocity

min
θ

J(θ) =
1

N

N∑

n=1

T n
∑

t=0

(

ωξ‖ξ̂
n (t) − ξt,n‖2

+ ωξ̇‖
ˆ̇
ξn (t) − ξ̇t,n‖2

)

. (26)

ˆ̇
ξn (t) = f̂(ξ̂n (t)) are computed directly from (9). ξ̂n (t) =
∑t

i=0
ˆ̇
ξn (i)dt generate an estimate of the corresponding demon-

strated trajectory ξn by starting from the same initial points as

that demonstrated, i.e., ξ̂n (0) = ξ0,n ∀n ∈ 1 . . . N . ωξ and ωξ̇

are positive scalars weighing the influence of the position and

velocity terms in the cost function.

In contrast with the cost function that is proposed in this pa-

per that assumes independence across data points [see (21)], the

aforementioned cost function propagates the effect of the esti-

TABLE IV
EVALUATION OF THE EFFECT OF WEIGHTING TERMS ON THE MSE COST

FUNCTION PRESENTED IN [5]

mation error at each time step along each trajectory. Considering

only the error in speed removes these effects (i.e., less complex

optimization) while yielding nearly similar performance. For

example, when learning the 20 human handwriting motions that

are described in Section VI-A, using the cost function given in

(26) has yielded an average error of 0.23 (against an error of

0.25 when using only speed in the cost function; see Table I).

Another difficulty that we avoid when considering solely one

term in our cost function is related to determining adequate

values for the weighting terms (in [5], their value were pre-

set to 1). To illustrate this issue, we ran the optimization on

four different handwriting motions by varying the weighting

terms given to the velocity and position, respectively. We report

on the accuracy as defined in (23) for each of these runs in

Table IV. The weighting terms in the fourth column of Table IV

are obtained by normalizing the effect of the position and ve-

locity terms. One sees that the advantage of using either of the

velocity or position term is not clear cut. For instance, when

modeling motion 1, using only the velocity term provides the

best result. For motions 2 and 4, the model that is obtained from

the normalized weighting terms is more accurate, and the mo-

tion 3 is more accurate when the both weights are set equal. In

general, it is difficult to say, a priori, which weights will result

in a more accurate model. This effect is due to the fact that when

the weights are changed, the shape of the cost function changes

as well in a nonlinear manner.
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