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Abstract

We report our new development of a hidden trajectory model for
co-articulated, time-varying patterns of speech. The model uses
bi-directional filtering of vocal tract resonance targets to jointly
represent contextual variation and phonetic reduction in speech
acoustics. A novel maximum-likelihood-based learning algo-
rithm is presented that accurately estimates the distributional
parameters of the resonance targets. The results of the estimates
are analyzed and shown to be consistent with all the relevant
acoustic-phonetic facts and intuitions. Phonetic recognition ex-
periments demonstrate that the model with more rigorous tar-
get training outperforms the most recent earlier version of the
model, producing 17.5% fewer errors in N-best rescoring.

1. Introduction
In recent years, we have been developing a version of the sta-
tistical hidden trajectory model (HTM) where temporal filter-
ing of vocal tract resonance targets is exploited as the basis for
joint characterization of coarticulation and phonetic reduction
in speech acoustics. As an extension of the stochastic segment
models [1], our HTM embodies not only cross-frame correla-
tion, but also cross-unit one, in the dynamic patterns of speech.
A unique character of the HTM is the use of a highly compact
set of context-independent parameters to capture the long-span
context-dependent properties in acoustic features.

The scientific basis of the HTM was presented in [2], and
a speech recognizer constructed using the HTM and its prelim-
inary evaluation were described in [3]. A central concept in
the HTM and the associated speech recognizer is the stochastic
vocal tract resonance (VTR) target, where a (multivariate) prob-
ability distribution of the phone-dependent target vector is used
to represent target variations across speakers and other factors
(as well as co-variations among the target components). The pa-
rameters of the VTR target distribution require automatic train-
ing from data. In the work of [3], such training was empirical
in that no clearly defined objective function is optimized. The
estimates of the target means and variances were the sample sta-
tistics derived from the results of a previously developed VTR
tracker [4]. In this paper, the training technique is improved by
rigorous maximum likelihood (ML) estimation. Superior pho-
netic recognition results are obtained over the results reported
in [3] based on more heuristic parameter estimation.

The organization of this paper is as follows. A complete and
concise outline of the two-stage HTM is provided in Section
2. Key issues on implementing the model learning algorithm
are discussed in Section 4, and experimental evaluation with
detailed results is provided in Section 5.
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2. Model Construction
Stochastic targets and their filtering

-I of the HTM represents the time-varying pattern of sto-
ic hidden VTR vectors zs, whose smooth temporal move-
is directed by statistically characterized target vectors ts

cript s denotes segmental phonetic unit). The generation
VTR trajectories from the segmental targets is by a bi-

ional finite impulse response (FIR) filtering:

zs(k) = hs(k) ∗ t(k) =

k+D�

τ=k−D

cγγ
|k−τ |
s(τ) ts(τ), (1)

cγ is the normalization factor, which is needed to produce
target undershooting, instead of overshooting, for casually
d speech. Parameter γs controls the spatial extent of coar-
tion and is correlated with speaking effort. The length of
ter’s impulse response hs(k), 2D +1, determines the tem-
extent of coarticulation.
he phone-dependent target vector ts in (1) is a random
r — hence stochastic targets — whose distribution is as-
d to be a (gender-dependent) multivariate Gaussian:

p(t|s) = N (t; µTs
,ΣTs ). (2)

, due to the linearity between z and t, the VTR vector z(k)
ch frame k) is also a Gaussian. Given a sampled target
nce ts(k) from the distribution of (2), the model generates
ndom VTR trajectory z(k) with the Gaussian distribution:

p(z(k)|s) = N [z(k); µz(k),Σz(k)] (3)

ean vector of this Gaussian can be derived as

µz(k) =

k+D�

τ=k−D

cγγ
|k−τ |
s(τ) µTs(τ)

= ak · µT , (4)

ach f -th component of µz(k) is

µz(k)(f) =

L�

l=1

ak(l)µT (l, f), (5)

L is the total number of phone-like HTM units as in-
by l (L = 58 in our experiments), f=1,..., 8 for 4 VTR

encies and 4 corresponding bandwidths.
he covariance matrix in (3) can be similarly derived to be

Σz(k) =

k+D�

τ=k−D

c2
γγ

2|k−τ |
s(τ) ΣTs(τ) .



Approximating the covariance matrix by a diagonal one for each
phone unit l, we represent its diagonal elements as a vector:

σ2
z(k) = vk · σ2

T . (6)

where the target covariance matrix is also approximated as di-
agonal:

ΣT (l) ≈

����
�

σ2
T (l, 1) 0 · · · 0

0 σ2
T (l, 2) · · · 0

...
...

. . .
...

0 0 · · · σ2
T (l, 8)

� ���
�

The f -th element of the vector in (6) is

σ2
z(k)(f) =

L�

l=1

vk(l)σ2
T (l, f). (7)

In (5) and (6), ak and vk are frame (k)-dependent vectors.
They are constructed for any given phone sequence and phone
boundaries within the coarticulation range (2D + 1 frames)
centered at frame k. (Any phone beyond the 2D + 1 win-
dow contributes a zero value to the vectors’ elements.) ak(l)

is a function of c(γs(k))γ
|k−τ |
s(τ)

, and vk(l) is a function of

c2(γs(k))γ
2|k−τ |
s(τ) . They are both a function of the phones’ iden-

tities and temporal orders in the utterance, and are independent
of the VTR dimension f .

2.2. Nonlinear cepstral prediction and its linearization

Stage-II of the HTM provides a probabilistic mapping or predic-
tion from the stochastic VTR trajectory z(k) (output of model
Stage-I) to the stochastic observation trajectory o(k). The ob-
servation takes the form of LPC cepstra in this paper. An an-
alytical form of the nonlinear prediction function F [z(k)] was
presented in [3], and given this function, we represent the pre-
diction residual cepstral vector as a multivariate Gaussian:

p(o(k)|z(k), s) = N � o(k);F [z(k)] + µrs(k)
,Σrs(k) � . (8)

For computational tractability in marginalization over the
VTR uncertainty (next section), it is desirable to linearize the
nonlinear mean function of F [z(k)] in (8). To accomplish this,
we use the first-order Taylor series approximation to the nonlin-
ear mean function:

F [z(k)] ≈ F [z0(k)] + F ′[z0(k)](z(k) − z0(k)), (9)

where the components of the Jacobian matrix can be computed
in a closed form.

Substituting (9) into (8), we obtain the approximate condi-
tional acoustic observation probability where the mean µos is
expressed as a linear function of the VTR variable z:

p(o(k)|z(k), s) ≈ N (o(k); µos(k),Σrs(k)), (10)

where
µos(k)

= F ′[z0(k)]z(k) + bk,

with

bk = F [z0(k)] −F ′[z0(k)]z0(k) + µrs(k)
.
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Computing observation likelihood

the results above, we can now compute the likelihood
acoustic observations (cepstra). This computation is es-

l because the likelihood provides a natural scoring mech-
comparing different linguistic hypotheses as needed in

h recognition. A closed-form computation is derived by
nalizing over hidden trajectories marginalization over the
astic VTR vector z(k) as follows:

p(o(k)|s) = � p[o(k)|z(k), s]p[z(k)|s]dz

� N [o(k); µos(k)
,Σrs(k) ] N [z(k); µz(k),Σz(k)]dz

N 	 o(k); µ̄os(k), Σ̄os(k) 
 (11)

the time-varying mean can be shown to be

(k) = F [z0(k)] + F ′[z0(k)][akµT − z0(k)] + µrs(k)

e time-varying covariance matrix can be shown to be

os(k) = Σrs(k) + F ′[z0(k)]Σz(k)(F ′[z0(k)])Tr (12)

3. Model Learning
oal of model learning presented in this section is to au-
ically estimate the model parameters, based on the cep-
observation data (no VTR data) in the training set, so as
ximize the observation likelihood in (11). The parameters
ncern in this paper include all elements of the mean vec-
nd covariance matrices for both VTR targets and cepstral
als.

Mean vectors in stochastic targets

tain a closed-form estimation solution, we assume diag-
y of the prediction cepstral residual’s covariance matrix
Denoting its j-th component by σ2

r(j) (j = 1, 2, ..., J),
compose the multivariate Gaussian of (11) element-by-
nt into

)|s(k)) =
J�

j=1

1�
2πσ2

os(k)
(j)

exp 	 − (ok(j) − µ̄os(k)(j))
2

2σ2
os(k)

(j)

 ,

(13)
ok(j) denotes the j-th component (i.e., j-th order) of the

ral observation vector at frame k.
he log-likelihood function for a training data sequence
1, 2, ..., K) relevant to the VTR mean vector µTs becomes

P =
K�

k=1

J�

j=1

	 − (ok(j) − µ̄os(k)(j))
2

σ2
os(k)

(j)

 (14)

K�

k=1

J�

j=1

	 [  f F ′[z0(k), j, f ]  l ak(l)µT (l, f) − dk(j)]2

σ2
os(k)

(j)



l and f are indeces to phone and to VTR component,
ctively, and

= ok(j) − bk(j) = ok(j) −
− F [z0(k), j] +

�

f

F ′[z0(k), j, f ]z0(k, f) − µrs(k) (j).

hile the acoustic feature’s distribution is Gaussian for
TM and HMM given the state s, the key difference is that



the mean and variance in HTM as in (14) are both time vary-
ing functions (hence trajectory model). These functions provide
context dependency (and possible target undershooting) via the
smoothing of targets across phonetic units in the utterance. This
smoothing is explicitly represented in the weighted sum over all
phones in the utterance (i.e., � l) in (14).

Setting
∂P

∂µT (l0, f0)
= 0,

and grouping terms involving unknown µT (l, f) on the left and
the remaining terms on the right, we obtain

�

f

�

l

A(l, f ; l0, f0)µT (l, f)

=
�

k

� �

j

F ′[z0(k), j, f0]

σ2
os(k)

(j)
dk(j) � ak(l0) (15)

with f0 = 1, 2, ..., 8 for each VTR dimension, and with l0 =
1, 2, ...58 for each phone unit. In (15),

A(l, f ; l0, f0) =
�

k,j

F ′[z0(k), j, f ]F ′[z0(k), j, f0]

σ2
os(k)

(j)
ak(l0)ak(l).

(16)
Eq. (15) is a 464×464 full-rank linear system of equations.

Matrix inversion gives a ML estimate of the complete set of
target distribution parameters: a 464-dimensional vector formed
by concatenating all eight VTR components (four frequencies
and four bandwidths)of the 58 units.

In implementing (15) for the ML solution to target mean
vectors, we kept other model parameters constant. The estima-
tion of the target and residual parameters was carried out in an
iterative manner. Initialization of the parameters µT (l, f) was
provided by the values in [5], which determines the initial Tay-
lor series expansion points z0(k) in (15) and (16) for updating
these target mean parameters.

3.2. Variances in statistical targets

Likewise, the log likelihood Eq.(11) for the cepstral observa-
tion sequences can be expressed as an explicit function of the
stochastic targets’ variances σ2

T (l0, f0). However, setting the
gradient of this function to zero does not render a simple so-
lution as for the target means above. We resort to the gradient
ascent technique to optimize σ2

T (l0, f0). Details of the gradient
computation are omitted here due to the space limit.

3.3. Cepstral residual means and variances

Estimation of the cepstral residual means and variances is iden-
tical to that outlined in [3] and omitted here. We note that these
residual parameters provide an important mechanism for dis-
tinguishing speech sounds that belong to different manners of
articulation. This is attributed to the fact that nonlinear cepstral
prediction from VTRs has different accuracy for these differ-
ent classes of sounds. Within the same manner class, the pho-
netic separation is largely accomplished by distinct VTR tar-
gets, which typically induce significantly different cepstral pre-
diction values via a “amplification” mechanism provided by the
Jacobian matrix F ′[z].

4. Learning-Algorithm Implementation
The major computation in the model training is the joint esti-
mation of target mean vectors for all phones, with the rigor-
ous solution derived in this paper and shown in Eq.(15). While
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the optimality is achieved only via joint processing of all

ng data, with simultaneous updating of parameters of all
s. This is in contrast to ML estimation for HMM that
not require joint processing of the data. The difference
from the nature of the HTM that models long-span pho-

context.
he implementation of the target mean vector estimation
on provided in Eq.(15) requires the computation of a
464 matrix, whose elements are provided in Eq.(16), and

verse of the matrix. The computational cost lies mainly in
ed for accumulation over time frames in the training data
ch element in the matrix; i.e., summation k in Eq.(16). We
devised two ways to reduce the computational cost. First,
-organized the computation so that the computation of the
mation in Eq.(16) is cached for re-use whenever possi-

This effectively reduced the computation by about 70%
ared with brute-force implementation of Eq.(16). Second,
sumed block diagonality of the matrix, one block for each
with dimensions of 8×8. (We have empirically observed
e elements outside the blocks are typically more than one
of magnitude smaller than those within the blocks.) This
a total of 58 separate small matrices to accumulate and
ert. However, under most conditions, the convergence

ch an approximate algorithm was not achieved and poor
nition results were obtained. The results presented in this
n are therefore based on the large, full matrix solution
.(15). Without the block diagonality approximation, the
us training over the full 4620 TIMIT training utterances
2.5 hours for each iteration when implemented in Mat-
d run on a Pentium-IV machine. Convergence is reached
lly within 4 iterations.

5. Experimental Evaluation
Experiment setup

ave carried out phonetic recognition experiments to evalu-
e HTM with the new learning technique presented in this
. The standard TIMIT database is used for the evalua-
A “flat” language model (i.e., bi-phone probabilities are
iformly to one) is used in all experiments reported here.
tandard TIMIT phone set with 48 labels is expanded to 58
scribed in [5]) in training the HTM parameters using the

ard 4620 training utterances. Phonetic recognition errors
bulated using the commonly adopted 39 labels after the
g. The results are reported on the standard core test set
total of 192 utterances by 24 speakers.

he N-best rescoring paradigm is used to evaluate the
. For each of the core test utterances, a standard decision-
ased triphone HMM, built in our lab with the bi-gram lan-
model and MFCCs, is used to generate a large N-best list
N = 1000.

Results on phonetic recognition and analysis

baseline with the use of identical language models and
oustic features, an HTK-implemented triphone HMM is
with a flat phone language model and LPC cepstral fea-
Rescoring of the N-best list, with (N=1001) and without
000) including reference hypotheses, gives the same accu-
f 64%. (Adding a bi-gram language model and replacing

CP cepstra by Mel-cepstra improve the accuracy to 73%.)
he two HTM systems dramatically increase both phone
entence recognition accuracies over the HMM system, as



shown in Table 1. “Old-trn” refers to the system reported in
[3] where the VTR target mean and variance parameters were
trained based on sample statistics computed from 4620 sets of
gender-dependent and speaker-adapted VTR target values de-
rived by a VTR tracker of [4]. “New-trn” refers to the system
trained with the method described in Section 3 of this paper in
a gender-dependent manner and making no use of VTR track-
ing results. The new HTM training consistently outperforms
the old training, especially for the N-best list with references
included where an upper bound of performance is shown. For
the N = 1001 list rescoring, the upper bound performance is
improved by 17.5% in relative phone error rate reduction. Our
analysis has identified a key factor accounting for the less sig-
nificant performance improvement (1.9%) when no reference
hypothesis is present in the N-best list shown in Table 1. That
is, the high oracle error rate (18% error in our 1000-best list)
has created many “holes” (incorrect phones) in the evaluated
hypotheses. These “holes” are associated with incorrect VTR
targets which undesirably reduce the acoustic scores of not only
the incorrect phones where the “holes” are located but also the
adjacent correct phones. Such an “error spreading” effect is a
consequence of the long-contextual-span property of the HTM.

The simplest (but artificial) way to remove the “error
spreading” effect is to include the reference hypothesis into the
N-best list, as reported in Table 1. However, the number of com-
petitive hypotheses (N=1000) in N-best rescoring paradigms is
undesirably limited. This issue has been resolved by the work
reported in the companion paper [6], which significantly ex-
tends the success of the HTM shown in Table 1 to billions of
competitive hypotheses via efficient search over lattices.

Table 1: Phonetic recognition performance comparison of the
HTM with two training methods. Performance is measured by
percent sentence and phone recognition accuracies (%) in the
core test set of TIMIT. The same “Flat” language model is used
for both types of HTM and for the HMM system. The acoustic
features for all three systems are the same LPC cepstral vectors.

101-Best 1001-Best 1000-Best
Models (with ref.) (with ref.) (no ref.)

sent phn sent phn sent phn

HMM 0.0 64.0 0.0 64.0 0.0 64.0
HTM (old-trn) 83.3 95.6 78.1 94.3 0.5 73.0
HTM (new-trn) 85.9 96.4 81.8 95.3 0.5 73.5

5.3. Results on model learning

We show in this section typical results demonstrating the effec-
tiveness of the training algorithm presented in Section 3. Se-
lected VTR target mean (sub)-vectors before and after training
are listed in Table 2. We note that whereas male and female
gender-dependent VTR target mean vectors are initialized with
the same values (pp. 364 in [5]), they become well separated
after the training. And the estimated female’s resonance fre-
quencies are higher than the male’s counterpart by an amount
consistent with acoustic-phonetic intuition. Detailed analysis
has been carried out to assess acoustic-phonetic reality of the
training results and overwhelming consistency has been found.

6. Discussion and Conclusions
The goal of the research presented in this paper is to develop
a parsimonious speech model that captures the structure of un-
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[6]
2: VTR target frequency mean values before (B) and after
L training (4 itr)

F1 (Hz) F2 (Hz) F3 (Hz)
nes Male Female Male Female Male Female

) 490 490 1350 1350 1690 1690
) 486 559 1382 1397 1750 1832
) 350 350 770 770 2340 2340
) 156 213 835 874 2275 2276

) 360 360 2270 2270 2920 2920
) 261 285 2142 2240 2897 3038

B) 500 500 1500 1500 2500 2500
A) 378 436 1559 1681 2482 2579

ing speech generation mechanisms and that performs bet-
an the HMM for speech recognition, especially for free-
speech with strong coarticulation and phonetic reduction.
ave recently extended the work of [3], which reported the
l development and evaluation of the HTM, in two signifi-

ays. First, empirical target parameter learning used in [3]
proved by using rigorous ML learning based on the like-
d of the cepstral data, requiring no VTR trajectory data.
mproved learning is presented in this paper, and is shown
e reduced phonetic recognition errors by 17.5% in N-best

ring experiments. Second, the evaluation of the HTM is
ced from a relatively small-scale N-best rescoring (with N
order of 1000) to a large-scale lattice search (equivalent

in the order of billions in N-best lists). Details of this lat-
rk is contained in the companion paper [6], which reports

fectiveness of the HTM and of the associated learning al-
m presented in this paper. Our future research involves
r improving the quality of the current HTM as well as im-

ng the efficiency of the HTM-specific search technique.
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