LEARNING STATISTICALLY EFFICIENT FEATURES FOR SPEAKER RECOGNITION
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ABSTRACT

We apply independent component analysis (ICA) for
extracting an optimal basis to the problem of finding effi-
cient features for a speaker. The basis functions learned
by the algorithm are oriented and localized in both space
and frequency, bearing a resemblance to Gabor functions.
The speech segments are assumed to be generated by a lin-
ear combination of the basis functions, thus the distribu-
tion of speech segments of a speaker is modeled by a ba-
sis, which is calculated so that each component should be
independent upon others on the given training data. The
speaker distribution is modeled by the basis functions. To
asses the efficiency of the basis functions, we performed
speaker classification experiments and compared our results
with the conventional Fourier-basis. Our results show that
the proposed method is more efficient than the conventional
Fourier-based features, in that they can obtain a higher clas-
sification rate.

1. INTRODUCTION

Currently, one of the main focus in speaker recognition re-
search is based in finding efficient features for speech sig-
nals, and so far the standard Fourier basis has taken the lead-
ing role. In Fourier basis speech signals are decomposed
into a superposition of a finite number of sinusoids and their
coefficients are used for speaker recognition. However, it is
not necessarily able to express the domain’s statistical struc-
ture, but assumes that all the signals are infinitely stationary
and that the probabilities of the basis functions are all equal.
Independent component analysis (ICA) [1, 2] has suggested
statistical ways of constructing basis for encoding patterns,
including images [3, 4] and natural sounds [5]. ICA has

been also shown a highly effective in extracting the features
from the given set of observed speech signals [6], by reflect-
ing the statistical structure of the observed signals. Recent
work showed that the ICA features of speech signals are lo-
calized in both time and frequency [5, 6], while the conven-
tional Fourier basis is localized only in frequency. Although
the ICA features behave like short-time Fourier basis, they
are different in that they are asymmetric in time.

In this paper, we focus on the difference of the statistical
structures among the speakers. The ICA filters maximize
the amount of information in the transformed domain, so
that the adapted individual basis functions obtained by ICA
can model the distribution of the individual speaker. In es-
timating the probability density functions for the sources of
the speech basis, previous work adopted a Laplacian prior
[6]. However, since we do not want to impose a certain
density on the sources we employ the generalized form of
Gaussian functions or also called the generalized exponen-
tial power function [7], which can model the wide range
of distributions. We compare the ICA-based features with
the Fourier and PCA by the speaker classification experi-
ments on 20 speakers from the TIMIT database. The source
coefficients for each basis function are modeled by the gen-
eralized Gaussian density, then the speaker is classified by
the one which has the highest likelihood given the all the
basis functions for each class. From the results we prove
that the proposed features are more effective in describing
the statistical structures of speakers.

2. LEARNING THE ICA SPEAKER BASIS

For the observed speech segment with length IV, denoting
itas IV x 1 column vector x, we assume that it can be rep-



resented as a linear combination of the N unknown sources
s; such that

N
x=As= Zaisi, 1)
i=1

where s is the source vector constructed by s;’s, A a scalar
square matrix and the column vector a;’s of A are the basis
functions. Note that A have to be square and full rank to be
a complete basis. A represents the basis functions generat-
ing the observed segments of speech signal in the real world
whereas W = A ! refers to filters that transform the seg-
ments into activations or source coefficients s = Wx.

For Fourier basis, each a; is a complex sinusoid with its
own frequency and unit magnitude, resulting in mutual ex-
clusion —orthonormality— with the other sinusoids. ICA
basis is different in that the basis functions are real and not
necessarily orthonormal, and the sources are statistically in-
dependent. The ICA basis reflects the statistical information
of the short-time speech segments from the training data,
because ICA is formulated as one of density estimation of
the sources [1]. We use the infomax learning rule for updat-
ing the basis functions:

AA x A(T—p(s)sT). 2

where the vector ¢(s) is a function of the prior and is de-
fined by (s) = —m"gis”(s). For the density model for
sources, p(s;), We use a flexible prior known as general-
ized Gaussian [7] that can change the overall shape of the
density functions.

2.1. The Generalized Gaussian Distributions

The generalized Gaussian models density functions that are
peaked and symmetric at the mean, with the varying degree
of normality in the following general form [7, 8]:

p(z|p,0,q) = @ exp [—C(q) R ] ; @)
where p = E[z], 0 = \/E[(z — p)?], ¢(q) = [?ﬁfg”qm

1/2
and w(q) = % 1. The exponent ¢ controls the

distribution’s deviation from normality. The Gaussian, Lapla-
cian, and strong Laplacian —speech signals— distributions
are modeled by putting g = 2, ¢ = 1, and ¢ < 1 respec-
tively. Note that the distribution approaches delta function
as q goes to 0. Parameter ¢ can also be converted to the
standard kurtosis measure K = E[(z — u)*/o?] — 3:

L[5/qT[1/q]
I3/qP
LFor notational compactness, we define the parameters ¢ and w in the
different forms with [7, 8].

K= 3. 4

As K increases the distribution gets sparser because in
the highly peaked distribution almost all the datapoints are
close to zero and the few non-zero coefficients are scattered
sparsely.

2.2. The Generalized Gaussian |CA

For the purposes of finding the basis functions in ICA, zero
mean and unit variance is assumed. Because the compo-
nents are statistically independent, the likelihood of the source
vector is factorized in the generalized Gaussian form as

N

p(slq) = HW((H) exp [—c(g;)|s:|%] (5)

2

where q = [q1¢2 - - - qn]7T, and {g;}’s are the exponents of
the source distributions. In equation 2, each component of
the gradient vector (s) is derived from p(s|q) as

i(si) = —nlsi|""'qea; 7, (6)
where n = sign(s;), ¢ and o are defined in equation 3. De-
tailed derivations of the density function and the learning
rule are given in [7]. Varying the parameters ¢; by updat-
ing them periodically during the adaptation process enables
p(s;) to match the distribution of the estimated sources ex-
actly. Gradient ascent is used to estimate the parameters that
maximize the log Likelihood. Figure 1 shows the obtained
bases of 4 speakers —2 male and 2 female— by generalized
Gaussian learning rule. The data are from TIMIT database.
They have quite different shape in the locality of time and
frequency.

3. SUPERVISED CLASSIFICATION OF SPEAKERS

The performance of the proposed features of speakers, we
performed an experiment of supervised classification of speak-
ers. We use the generalized mixture model [9] on estimating
the density functions of the coefficients of each basis.

3.1. TheGeneralized MixtureModel Using ICA

The likelihood of the speech data for a given model is calcu-
lated by a generalized Gaussian mixture model. A mixture
density is defined as [10]:

K
P(xa|0) = D p(x4|Chk, 64)p(Cr), (1)
k=1
where © = (04, - - -, 0k ) are the unknown parameters (A,

by, qx) for the component densities p(x,|Cy,6r). For the
present model, the class log likelihood is given by the log
likelihood for the standard ICA model:

log p(xn |0k, Ck) = log p(sk) —log|det Ag|, (8)
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Fig. 1. Example plots of learned ICA basis functions. (a),
(b): male speakers, (c), (d): female speakers. Each basis
function is up-sampled by 5 to remove artifacts from sample
aliasing. Only 8 basis functions are shown among the 64.
They are obtained by the generalized Gaussian ICA learning
algorithm from the 64-sample speech segments from TIMIT
database.

where s, = A,;l(xn — by), the coefficients of the basis,
and by, is the mean vector of the coefficients. For Fourier
basis, the linear transformation A, is an orthonormal set
of sinusoidal functions. Thus log | det A| is zero because
A AT =1

The classification is done by processing each data in-
stance with the learned parameters qi, Ay and by. The
probability of the class p(Cy|x,,8r) is computed and the
corresponding instance label is compared to the highest class
probability. The priori probabilities of speakers are assumed
to be equal, that is, in equation 7, p(C) = 1 for all k, be-
cause the models are trained in a supervised manner. The
speaker is classified by the maximum likelihood.

3.2. Learning Data and Testing Data

From the TIMIT databast, 20 speakers are randomly se-
lected. 7 sentences for each speaker are selected from the
SX (phonetically-compact) and the SA (dialect) set, 4 of
them used for training the each basis, 3 of them for testing.
Training and testing sets have no intersection. Because each

Fig. 2. Distributions of basis function coefficients for ICA,
PCA, and Fourier basis. The solid line is ICA, dotted PCA,
and the dash-dotted Fourier coefficients. The data are from
the male speaker ‘mgrl0” in TIMIT. Note that the y-axis is
log scale.

data are labeled with a speaker ID, we learn each speaker ba-
sis with only that speaker’s data, in supervised manner. We
down-sampled the originally 16kHz-sampled data to 8kHz
and applied pre-emphasis with 1 —0.952~1, to complement
the energy decrease in the high bands of human speech.
Those processes reduce the redundancy and prevent low-
frequency component from dominating the gradient. The
learning data x were constructed from the speech data seg-
mented in 64 samples (8ms) blocks. The adaptation started
from the random 64 x 64 square matrix A, and the gra-
dient of basis functions was computed on a block of 1000
waveform segments. The parameter ¢; for each p(s;) was
updated every 10 gradient steps, and the learning rate was
gradually decreased from 0.001 to 0.0001 as the iterations
went on. The parameters g; are updated periodically during
the adaptation process.

To compare the performance of the proposed features
with conventional method, we trained the generalized Gaus-
sian mixture model by the real part of the Fourier transfor-
mation of the given training data. Figure 2 compares the
log-scaled histograms of each Fourier, PCA, ICA coeffi-
cients. ICA coefficients have higher kurtosis than the other
PCA and Fourier basis. In figure 3 the dependency of the
coefficients decreases significantly from Fourier and PCA
bases.

4. EXPERIMENTAL RESULTS

We report and compare the rate of correct classification rate
and the average kurtosis of each basis in table 1. The kur-
tosis is derived from the estimated exponent ¢; by equation
4 and averaged by geometric mean, because large value of
kurtosis possibly dominates the small values. In the speaker
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Fig. 3. 2-dimensional plots for the coefficients of each basis,
first versus second coefficient: (a), (b) Fourier [2, 3] and [2,
20]; (c) PCA[1, 2]; (d) ICA[1, 2]. (a) shows that Fourier
basis has high correlation between adjacent coefficients.

recognition experiments, the individual ICA basis is the most
effective, both in sparseness (kurtosis) and the classification
rate. Using ICA basis the sparseness increased and thus
the distributions of the coefficients became more apparent
to classify as the increased classification showed.

5. CONCLUSION

We applied ICA to speech signals from individual speak-
ers to extract a set of optimal basis functions. The basis
functions were adapted using the generalized Gaussian ICA
model resulting in basis functions and source coefficient
statistics that were characteristical features for the individ-
ual speaker. Most basis functions were localized in time and
frequency resembling Gabor-like wavelet filters. The corre-
sponding source coefficients were extremely sparse result-
ing in efficient codes. The generalized Gaussian ICA model
is embedded into a mixture model allowing classification of
the individual speakers based on the basis functions models

Table 1. Correct Classification Rates and the mean value of
Kurtosis for each basis

| | Fourier  PCA ICA |
Classification Rate || 82.2% 84.1% 87.5%
Kurtosis 181.2 239.1  248.7

for each speaker class. Our initial recognition rates sug-
gest superior performance compared to the Fourier or PCA
based method. This can now serve as a baseline to further
investigate and optimize the classification procedure. Then,
we plan to compare our results to state of the art speaker
recognition systems.
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