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Abstract Methods have been described for both writer-dependent
(W D) and writer-independerii? I') signature verification.

Learning strategies and classification methods for verifi- W D models extract features from genuine signatures of a
cation of signatures from scanned documents are proposedspecific writer and are trained for that writer. The ques-
and evaluated. Learning strategies considered\arger- tioned signature is compared against the model for that
independent those that learn from a set of signature sam- writer. This is the standard approach to signature verifi-
ples(including forgeries) prior to enroliment of a writer, cation [14]. Based on a writer-independent approach to
and writer dependent those that learn only from a newly determining whether two handwritten documents— not just
enrolled individual. Classification methods considered in- signatures— were written by the same person or not [19], a
clude two distance based methods (one based on a threshwriter independenti? I) signature verification method was
old, which is the standard method of signature verification proposed in [9]. In théV I model the probability distribu-
and biometrics, and the other based on a distance prob-tions of within-writer and between-writer similarities, over
ability distribution), a Nave Bayes (NB) classifier based all writers, are computed in the training phase. These dis-
on pairs of feature bit values and a support vector ma- tributions are used to determine the likelihood of whether a
chine (SVM). Two scenarios are considered for the writer- questioned signature is authentic.
dependent scenario: (i) without forgeries (one-class prob-
lem) and (ii) with forgery samples being available (two-
class problem). The features used to characterize a signa-
ture capture local geometry, stroke and topology informa-
tion in the form of a binary vector. In the one-class scenario ~ Signature verification is a problem that can be ap-
distance methods are superior while in the two-class SVM Proached using machine learning techniques. A set of sam-

based method outperforms the other methods. ples of signatures), can be prepared with the help of sev-
eral individuals. The parameters derived from such a set can

be used in determining whether an arbitrary pair of signa-
tures, e.g., a questioned signature and a genuine signature,
match or not. One can also learn from samples of a spe-

] o ] cific individual and use only these parameters (or model) in
Automatic verification of signatures from scanned pa- matching for that individual.

per documents has many applications such as authentication Tpese two learning strategies are: writer-independent
of bank checks, questioned document examination, biomet-(W]) and writer-dependent¥ D), as shown in Fig. 1. In

rics, etc. On-line, or dynamic,.signature verification sys- yy7 7 learning D, and D; are the training data sets of gen-
tems have been reported with high success rates [15]. HOWy,ine and forged signatures from several writers. A model
ever, oﬁ-llne, or static resea_rch is relatively unexplored— g is trained from pairs of samples (genuine-genuine and
which difference can be attributed to the lack of tempo- genuine-forgery) fronD, andD;. Given a questioned sig-
ral information, the range of intra-personal variation in the natureQ and a sefs’ of genuine signatures for individual w
scanned image, etc. , S is used to determine whethéxis accepted as genuine.
1This work was supported in part by the U.S. Department of Justice, IN WD Iegrnlng, only the genuines for md'V'_dUE_‘l w, e,
National Institute of Justice grant 2002-LT-BX-K007 the setK, is used to determine the modg] which is then

2. Learning strategies

1. Introduction
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3. Test-Bed f | Bl l@,‘% ;ﬁ'ﬂf‘,

A database of off-line signatures was prepared as a tes| j i
bed. Each of 55 individuals contributed 24 signatures— | ““~—— [ 75 |7
thereby creating 1320 genuine signatures. Some were aske[ 7
to forge three other writers’ signatures, eight times per sub- |
ject, thus creating 1320 forgeries. One example of each of !
55 genuines are shown in Figure 2. Ten examples of gen-
uines of one subject (subject no. 21) and ten forgeries of Figure 2. Genuine signature samples.
that subject are shown in Fig. 3

3.1. Image Preprocessing

o
w | o
. ) _31'!"' # ; %
Each signature was scanned at 300 dpi gray-scale anc ﬂi/f/ ff"’ 'gfﬂ*;” %I/// ﬁ{*/,/

binarized using a gray-scale histogram. Salt-and-peppel ,#ﬁf ﬁ; ff:-"r" ,&y
noise was removed by median filtering. Slant normaliza- 'Efﬂ/’,;—' _f’_..-A ffﬁ‘__,-——' ;@ﬂ ﬁgﬁﬁ

tion was performed by extracting the axis of least iner-

- . oo . . ol (a}

tia and rotating the curve until this axis coincides with , _

the horizontal axis [7]. Given a/ x N image,G = f&,q,héﬁ]‘“ JIE% o ‘E;,»ff‘ ,,%Jﬂ.‘i‘!r‘—‘*t E‘,ﬂ‘kﬁ;
' I

(u, v&) = (21,5 7J)|x(w # 0,y #0). LetSbe [ —7"" "~ f-’”ﬂ ol
the size ofG, and Ietu = £> u, andv = L3 vy, be the ﬂ.gri‘#*“" .pﬁ&""’ f’f““*'ﬂ ﬁf"ﬂ%w %Eiﬂ!«pr’;r
' T

\f

coordinates of the center of mass of the signature. The ori- - — =
entation of the axis of least inertia is given by the orientation | (b
_2 JR—
of the least eigenvector of the 2x2 matfix= u_ u . . .
uv v? Figure 3. Samples for one writer: (a) genuines
wherew? = L3 (u, —1)? , v2 = £3 (v, — )% and and (b) forgeries.
k k

uv = + > (u — u)(vy — D) are the second order moments
k
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3.2. Feature Extraction O

Features for static signature verification can be one of
three types [5, 10]: (iglobal extracted from every pixel Figure 5. Features: (a) variable grid, and (b)
that lie within a rectangle circumscribing the signature, feature vector.
including image gradient analysis [16] , series expan-
sions [11], etc., (iiptatistical derived from the distribution
of pixels of a signature, e.g., statistics of high gray-level pinary features [22]which is defined for two binary vectors
pixels to identify pseudo-dynamic characteristics [1], (i) x and Y, as follows:
geometrical and topologicale.g., local correspondence of dX,Y)=1— 511800—810501 -
stroke segments to trace signatures [6], feature tracks and 2 2(s10+s11)(s01+500) (s11+501)(s00+510))/

stroke positions [5], etc. A combination of all three types  \heres,; represent the number of corresponding bits of
of features were used in a writer independ@iit/) signa- X and Y that have values i and j. Both th&7 — DS and

ture verification system [9]— which were previously used /) — DT methods described below ugéx,Y) as the
in character recognition [20], word recognition [21] and {istance measure.

writer identification [19]. These features, known as gradi-
ent, structural and concavity (or GSC) features were used o
here. 4. Writer
The aver ize of all referen ignature im w T .
€ average size of all reference sig gtu € Images was The objective is to determine whether péik, Q) be-
chosen as the reference size to which all signatures were rel-on s to the same individual, whe@is a questioned sig-
sized. The image is divided into a 4x8 grid from which a 9 ' d 9

. . ) . . nature ands is a set of known signatures for that individual.
ith?Gk;Itf;l?liggarl::er;s\lljergt?r:;Sn?:;rimlgstif(?r?énz)é ic:]rgdé XTwo W classification methods, distance statistics [19]and
3 neighborhood of each pixel. For each grid cell, by count- haive Bayes, are presented below.
ing statistics of 12 gradients, there are 4x8x12 = 384 gradi- . _
ent features. Structural (S) features capture certain patternsfl'l' Distance Statistics (DS) Method
i.e., mini-strokes, embedded in the gradient map. A set of
12 rules is applied to each pixel- to capture lines, diagonal
rising and corners— yielding 384 structural features. Con-
cavity (C) features, which capture global and topological
features, e.g., bays and holes, are 4x8x8 = 256 in number.

independent Verification

The verification approach of [19]is based on two
distributions of distanced(X,Y): genuine-genuine and
genuine-forgery pairs. The distributions are denoted as
P, and P; respectively. The means and variances of of
d(X,Y)whereX andY are both genuine andl is genuine
. andY is a forgery are shown in Figure 6— where the the
3.3. Distance Measure number of writers varies from 10 to 55. Here 16 genuines

are 16 forgeries were randomly chosen from each subject.

A method of measuring the similarity or distance be- For each n, there are two values corresponding to the mean
tween two signatures in feature space is essential for clasand variance ofi x C3° pairs of same writer (or genuine-
sification. The correlation distance performed best for GSC genuine pair) distances andk 162 pairs of different writer
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Table 1. Writer-independent methods with 1

0.4 and 16 training samples
0.3 -
§ 0.2 Trotereetieesteseeeseee
= 0 —e— Same Wiriter Methods(n) FRR(%) | FAR(%) | AER(%)
' Different Viriters Distance Stats(1) 27.6 27.8 27.7
0 ‘ ' ' ‘ Naive Bayes(1) 27.2 26.0 26.6
10 20 30 9 50 60 Distance Stats(16 21.3 221 217
(a) Naive Bayes(16) 22.9 24.1 23.5
0.06 —
8 0.04 A
kS :
$ 0.02 A & Same Writer P _ (XY) ey XY ED,|
Different Writers $TiFYe = T [(X,Y)[X,Y €D,
0 ‘ I ‘ ‘ P _ X\Y)|zi=y:,XEDy,YEDy]|
10 20 30 40 50 60 dxi=y; = [(X,Y)[X€EDy,YED;]
Number of writers
© _I(X,Y)|ziAyi, XED,, Y €Dy

Paa, 2y, = [(X,Y)[X€ED,,YED;]

Figure 6. Statistics of genuine-genuine and o )
genuine-forgery distances. where ,D, and D, are the training sets of genuine and

forged signatures. Knowing the probabilities of the values
of the bit pair for each feature, give[i, @), the overall
genuine-genuine and genuine-forgery probabilities are cal-

(or genuine-forgery pair) distances. The values are close tcylated as the product of the probabilities for all feature
constant withy,, = 0.24 andu; = 0.28 with corresponding pairs, i.e.,

variancesr, = 0.055 andoy = 0.05 . Given a questioned . 024 e

signatureQ) and a single known signatug€ the probabili- P(genuine|Q) = Ps(K,Q) = [ Pyt Poiis,

ties ofd(K, Q) are: P(genuine|Q) = P,(d(K, Q)) oot

and P(forged|Q) = P;(d(K,Q)). Q is accepted as gen- P(forged|Q) = Py(K,Q) = ] PC’Z",C(?EZI_P;@;"%

uine if the genuine probability exceeds the forgery probabil- =1

ity. Normal distributions are assumed for genuine-genuine  They are compared to determine whether they are from

distances and genuine-forgery distances. the same writer or not. Generalization to n genuines is as
_ Generalizatipn to n genuineWh_en there aren genui_ne follows: P(genuine|Q) = ﬁ Py(K;, Q)

signatures available, i.¢k| > 1, given a questioned sig- j=1

natureQ. P(genuine|Q) = 11 P,(d(K;, @) P(forged|Q) = 11 Pa(K;, Q)
J= J=1

P(forgedQ) = 1 P(d(K;,Q))
=t 4.3. Performance

4.2. Naive Bayes (NB) Method The two writer independent methods were evaluated us-

ing the test bed. False reject rate (FRR), false accept rate
Rather than determining the distributions of distances (FAR) and average error rate (AER = (FRR + FAR) / 2)
between two feature vectors, each pair of correspondingywere determined. To calculate probabilities 16 genuines and
bits in the questioned and known feature vectors can be1g forgeries from each subject were randomly chosen as the
treated as random variables. The pairs corresponding tQraining set and the rest are used as test set. FRR, FAR and
different positions in the feature vector are considered to AER of two methods are shown in Table 1. The proba-
be independent and identically distributed-which is the pjlities in WI-DS and feature probabilities in WI-NB, the

naive BayesVB) assumption. Let feature vectod =  product of 16 distance probabilities in WI-DS or the prod-
{z1,22,...,2n} andY = {y1,92,...,y,} . The probabili-  yct of feature p. The WI-DS and WI-NB were evaluated
ties of i same-value bits in a genuine-genuine pair and awith 16 genuines in training compared to one in Section
genuine-forgery pair are computed using: 4.1. Instead of original distance probabilities in WI-DS and

Py gimy, = KX[Q%T;QEZD“ feature probabilities in WI-NB, the product of 16 distance

YF]',F.

Proceedings of the 9th Int'l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004) COMPUTER
0-7695-2187-8/04 $20.00 © 2004 IEEE SOCIETY



28
Table 2. One -class writer-dependent methods
% (trained with genuines only).
S -
@ n Methods(n) FRR(%) | FAR(%) | AER(%)
Distance Threshold 22.5 195 215
20 | Distance Statistics 23.0 21.7 22.4
Naive Bayes 25.9 241 25.0
18 ! One-Class SVM 47.6 44.4 46.0
0 5 10 15 20

Nunber of Training Sanpl es
Naive Bayes (NB)Let X = {z1,zs,...,x,} Where

X € K. Two distributions are computed fronk':

Figure 7. Average Error Rate of Writer Inde- Given a test Signatur® — {q1, s, ..., g}, the likelihood,

pendent Distance Statistics method. n
P(genuine|@) = [] Ps,z;=q;,- A common optimal thresh-

=1
old thres for the likelihoods is trained for all writersy is
probabilities in WI-DS or the product of feature probabili- accepted as a genuineRfgenuine|Q) > thres.
ties in WI-NB were used. Support Vector Machine (SVIMVhile SVM classifica-

With both methods performance increases with more tion is popular in applications [8, 13] , its use in signature
training genuines. For training, genuines were randomly  verification is unknown. SVMs match the requirements of
chosen. The test set consisted of 8 genuines from the ressignature verification: high dimensionality and sparse in-
and 24 forgeries. WI-DS has the best performance— Fig. 7stance spaces. The GSC feature space is high-dimensional

shows performance improvement of WI-DS with (1024) and very sparse. One-class SVMs [18] attempt to
distinguish genuines from the rest given only genuine data—
5. Writer-dependent Verification by drawing the class boundary of the genuine data set in

feature space.

Assuming that there exist sufficient training genuines, a  EXPerimental results for four methods, with a training
machine ofS is learned only from the training data for a Set Size of 16, are shown in Table 2. Here the distance
specific individual. Four classification methods were con- thréshold performs best with SVM being very poor.
sidered: distance threshold (which is the standard method
used of biometrics), distance statistics, naive Bayes andd.2. Training with Genuines and Forgeries
SVM. Two sub-formulations are considered: one-class
where forgeries for the individual are unavailable, and two-  Forgeries were included in training in the following ex-

class where genuines and forgeries are available. periments. IV D — DT, since the threshold is determined
only by genuines, it is unchanged. HoweveiiD — DS,
5.1. Training with Genuines only instead of gathering genuine-forgery distance distribution

from all writers, such distribution is generated directly from
Distance Threshold (DT)The DT method is the com- the genuine-forgery pairs for the individual. Similarly in
mon signature verification model. The first step is to enroll WD — N B, 0 and 1 distributions of each feature in forg-

genuinesK as reference signatures. The distadc&,Y) eries are generated from the feature vectors in the forgery
is computed for each paitX,Y) in K to determine the  set.

thresholdthres = maxz{d(X,Y)|X,Y € K}. Given a In an SVM, hyperplanes are determined by support vec-
questioned signatur®, the average ofd(Q,Y)|Y € K} tors instead of training samples. Due to unbalanced train-
, denoted adist, is computed. flist < thres, then@ is ing datasets, instead of finding equal size maximal margin
accepted as a genuine; and rejected otherwise. on both sizes of optimal hyperplanes, margins are dynam-

Distance Statistics (DSHere the genuine-genuine dis- ically adjusted according to sample sizes. With more pos-
tance distribution is obtained only froift, i.e., the mean itive samples than negative samples, different penalty pa-

and variance of?, are determined fronjd(X,Y)|X,Y € rameters are used to balance weights. Given training vectors
K}. The genuine-forgery distance distributiéh is from r; € R"i = 1,...,1, in two classes, and a vectgrc R'
Dy andDy asinWi — DS. such thaty; € {1, —1}, the formation in [2] solves the clas-
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