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Abstract

Learning strategies and classification methods for verifi-
cation of signatures from scanned documents are proposed
and evaluated. Learning strategies considered arewriter-
independent– those that learn from a set of signature sam-
ples(including forgeries) prior to enrollment of a writer,
and writer dependent– those that learn only from a newly
enrolled individual. Classification methods considered in-
clude two distance based methods (one based on a thresh-
old, which is the standard method of signature verification
and biometrics, and the other based on a distance prob-
ability distribution), a Nave Bayes (NB) classifier based
on pairs of feature bit values and a support vector ma-
chine (SVM). Two scenarios are considered for the writer-
dependent scenario: (i) without forgeries (one-class prob-
lem) and (ii) with forgery samples being available (two-
class problem). The features used to characterize a signa-
ture capture local geometry, stroke and topology informa-
tion in the form of a binary vector. In the one-class scenario
distance methods are superior while in the two-class SVM
based method outperforms the other methods.

1. Introduction

Automatic verification of signatures from scanned pa-
per documents has many applications such as authentication
of bank checks, questioned document examination, biomet-
rics, etc. On-line, or dynamic, signature verification sys-
tems have been reported with high success rates [15]. How-
ever, off-line, or static research is relatively unexplored–
which difference can be attributed to the lack of tempo-
ral information, the range of intra-personal variation in the
scanned image, etc.

1This work was supported in part by the U.S. Department of Justice,
National Institute of Justice grant 2002-LT-BX-K007

Methods have been described for both writer-dependent
(WD) and writer-independent(WI) signature verification.
WD models extract features from genuine signatures of a
specific writer and are trained for that writer. The ques-
tioned signature is compared against the model for that
writer. This is the standard approach to signature verifi-
cation [14]. Based on a writer-independent approach to
determining whether two handwritten documents– not just
signatures– were written by the same person or not [19], a
writer independent(WI) signature verification method was
proposed in [9]. In theWI model the probability distribu-
tions of within-writer and between-writer similarities, over
all writers, are computed in the training phase. These dis-
tributions are used to determine the likelihood of whether a
questioned signature is authentic.

2. Learning strategies

Signature verification is a problem that can be ap-
proached using machine learning techniques. A set of sam-
ples of signatures,D, can be prepared with the help of sev-
eral individuals. The parameters derived from such a set can
be used in determining whether an arbitrary pair of signa-
tures, e.g., a questioned signature and a genuine signature,
match or not. One can also learn from samples of a spe-
cific individual and use only these parameters (or model) in
matching for that individual.

These two learning strategies are: writer-independent
(WI) and writer-dependent (WD), as shown in Fig. 1. In
WI learningDg andDf are the training data sets of gen-
uine and forged signatures from several writers. A model
S is trained from pairs of samples (genuine-genuine and
genuine-forgery) fromDg andDf . Given a questioned sig-
natureQ and a setK of genuine signatures for individual w
, S is used to determine whetherQ is accepted as genuine.
In WD learning, only the genuines for individual w, i e.,
the setK, is used to determine the modelS, which is then
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Figure 1. Verification Models: (a) writer in-
dependent: a questioned (Q) is matched
against a set of genuines K using a model S

derived from genuines and forgeries of other
writers, and (b) writer dependent: a model for
an individual is determined using only K.

used to determine whetherQ is accepted as genuine.

3. Test-Bed

A database of off-line signatures was prepared as a test
bed. Each of 55 individuals contributed 24 signatures–
thereby creating 1320 genuine signatures. Some were asked
to forge three other writers’ signatures, eight times per sub-
ject, thus creating 1320 forgeries. One example of each of
55 genuines are shown in Figure 2. Ten examples of gen-
uines of one subject (subject no. 21) and ten forgeries of
that subject are shown in Fig. 3

3.1. Image Preprocessing

Each signature was scanned at 300 dpi gray-scale and
binarized using a gray-scale histogram. Salt-and-pepper
noise was removed by median filtering. Slant normaliza-
tion was performed by extracting the axis of least iner-
tia and rotating the curve until this axis coincides with
the horizontal axis [7]. Given anM × N image,G =
(uk, vk) = (x(i,j), y(i,j)|x(i,j) 6= 0, y(i,j) 6= 0). Let S be
the size ofG, and letu = 1

S

∑

k

uk andv = 1
S

∑

k

vk be the

coordinates of the center of mass of the signature. The ori-
entation of the axis of least inertia is given by the orientation

of the least eigenvector of the 2x2 matrixI =

(

u2 uv

uv v2

)
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S
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(uk − u)(vk − v) are the second order moments

Figure 2. Genuine signature samples.

Figure 3. Samples for one writer: (a) genuines
and (b) forgeries.
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Figure 4. Pre-processing: (a) original (b) final.

of the signature [12]. The result of binarization and slant
normalization of a gray-scale image is shown in Fig. 4.

3.2. Feature Extraction

Features for static signature verification can be one of
three types [5, 10]: (i)global: extracted from every pixel
that lie within a rectangle circumscribing the signature,
including image gradient analysis [16] , series expan-
sions [11], etc., (ii)statistical: derived from the distribution
of pixels of a signature, e.g., statistics of high gray-level
pixels to identify pseudo-dynamic characteristics [1], (iii)
geometrical and topological: e.g., local correspondence of
stroke segments to trace signatures [6], feature tracks and
stroke positions [5], etc. A combination of all three types
of features were used in a writer independent(WI) signa-
ture verification system [9]– which were previously used
in character recognition [20], word recognition [21] and
writer identification [19]. These features, known as gradi-
ent, structural and concavity (or GSC) features were used
here.

The average size of all reference signature images was
chosen as the reference size to which all signatures were re-
sized. The image is divided into a 4x8 grid from which a
1024-bit GSC feature vector is determined (Fig. 5). Gradi-
ent (G) features measure the magnitude of change in a 3 x
3 neighborhood of each pixel. For each grid cell, by count-
ing statistics of 12 gradients, there are 4x8x12 = 384 gradi-
ent features. Structural (S) features capture certain patterns,
i.e., mini-strokes, embedded in the gradient map. A set of
12 rules is applied to each pixel– to capture lines, diagonal
rising and corners– yielding 384 structural features. Con-
cavity (C) features, which capture global and topological
features, e.g., bays and holes, are 4x8x8 = 256 in number.

3.3. Distance Measure

A method of measuring the similarity or distance be-
tween two signatures in feature space is essential for clas-
sification. The correlation distance performed best for GSC

Figure 5. Features: (a) variable grid, and (b)
feature vector.

binary features [22]which is defined for two binary vectors
X and Y, as follows:

d(X,Y ) = 1
2 −

s11s00−s10s01

2((s10+s11)(s01+s00)(s11+s01)(s00+s10))1/2

wheresij represent the number of corresponding bits of
X and Y that have values i and j. Both theWI − DS and
WD − DT methods described below used(X,Y ) as the
distance measure.

4. Writer-independent Verification

The objective is to determine whether pair(K,Q) be-
longs to the same individual, whereQ is a questioned sig-
nature andK is a set of known signatures for that individual.
Two WI classification methods, distance statistics [19]and
naive Bayes, are presented below.

4.1. Distance Statistics (DS) Method

The verification approach of [19]is based on two
distributions of distancesd(X,Y ): genuine-genuine and
genuine-forgery pairs. The distributions are denoted as
Pg and Pf respectively. The means and variances of of
d(X,Y ) whereX andY are both genuine andX is genuine
andY is a forgery are shown in Figure 6– where the the
number of writers varies from 10 to 55. Here 16 genuines
are 16 forgeries were randomly chosen from each subject.
For each n, there are two values corresponding to the mean
and variance ofn x C16

2 pairs of same writer (or genuine-
genuine pair) distances andn x 162 pairs of different writer
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Figure 6. Statistics of genuine-genuine and
genuine-forgery distances.

(or genuine-forgery pair) distances. The values are close to
constant withµg = 0.24 andµf = 0.28 with corresponding
variancesσg = 0.055 andσf = 0.05 . Given a questioned
signatureQ and a single known signatureK the probabili-
ties ofd(K,Q) are:P (genuine|Q) = Pg(d(K,Q))
andP (forged|Q) = Pf (d(K,Q)). Q is accepted as gen-
uine if the genuine probability exceeds the forgery probabil-
ity. Normal distributions are assumed for genuine-genuine
distances and genuine-forgery distances.

Generalization to n genuines: When there are n genuine
signatures available, i.e.,|K| > 1, given a questioned sig-

natureQ, P (genuine|Q) =
n
∏

j=1

Pg(d(Kj , Q))

P (forged|Q) =
n
∏

j=1

Pf (d(Kj , Q))

4.2. Naïve Bayes (NB) Method

Rather than determining the distributions of distances
between two feature vectors, each pair of corresponding
bits in the questioned and known feature vectors can be
treated as random variables. The pairs corresponding to
different positions in the feature vector are considered to
be independent and identically distributed-which is the
naive Bayes(NB) assumption. Let feature vectorsX =
{x1, x2, ..., xn} andY = {y1, y2, ..., yn} . The probabili-
ties of ith same-value bits in a genuine-genuine pair and a
genuine-forgery pair are computed using:

Ps,xi=yi
=

|(X,Y )|xi=yi,X,Y ∈Dg|
|(X,Y )|X,Y ∈Dg|

Table 1. Writer-independent methods with 1
and 16 training samples

Methods(n) FRR(%) FAR(%) AER(%)
Distance Stats(1) 27.6 27.8 27.7
Naive Bayes(1) 27.2 26.0 26.6
Distance Stats(16) 21.3 22.1 21.7
Naive Bayes(16) 22.9 24.1 23.5

Ps,xi 6=yi
=

|(X,Y )|xi 6=yi,X,Y ∈Dg|
|(X,Y )|X,Y ∈Dg|

Pd,xi=yi
=

|(X,Y )|xi=yi,X∈Dg,Y ∈Df |
|(X,Y )|X∈Dg,Y ∈Df |

Pd,xi 6=yi
=

|(X,Y )|xi 6=yi,X∈Dg,Y ∈Df |
|(X,Y )|X∈Dg,Y ∈Df |

where ,Dg andDf are the training sets of genuine and
forged signatures. Knowing the probabilities of the values
of the bit pair for each feature, given(K,Q), the overall
genuine-genuine and genuine-forgery probabilities are cal-
culated as the product of the probabilities for all feature
pairs, i.e.,

P (genuine|Q) = Ps(K,Q) =
1024
∏

i=1

P
ki⊗qi

s,ki=qi
P

ki⊕qi

s,ki 6=qi

P (forged|Q) = Pd(K,Q) =
1024
∏

i=1

P
ki⊗qi

d,ki=qi
P

ki⊕qi

d,ki 6=qi

They are compared to determine whether they are from
the same writer or not. Generalization to n genuines is as

follows: P (genuine|Q) =
n
∏

j=1

Ps(Kj , Q)

P (forged|Q) =
n
∏

j=1

Pd(Kj , Q)

4.3. Performance

The two writer independent methods were evaluated us-
ing the test bed. False reject rate (FRR), false accept rate
(FAR) and average error rate (AER = (FRR + FAR) / 2)
were determined. To calculate probabilities 16 genuines and
16 forgeries from each subject were randomly chosen as the
training set and the rest are used as test set. FRR, FAR and
AER of two methods are shown in Table 1. The proba-
bilities in WI-DS and feature probabilities in WI-NB, the
product of 16 distance probabilities in WI-DS or the prod-
uct of feature p. The WI-DS and WI-NB were evaluated
with 16 genuines in training compared to one in Section
4.1. Instead of original distance probabilities in WI-DS and
feature probabilities in WI-NB, the product of 16 distance
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Figure 7. Average Error Rate of Writer Inde-
pendent Distance Statistics method.

probabilities in WI-DS or the product of feature probabili-
ties in WI-NB were used.

With both methods performance increases with more
training genuines. For training,n genuines were randomly
chosen. The test set consisted of 8 genuines from the rest
and 24 forgeries. WI-DS has the best performance– Fig. 7
shows performance improvement of WI-DS withn.

5. Writer-dependent Verification

Assuming that there exist sufficient training genuines, a
machine ofS is learned only from the training data for a
specific individual. Four classification methods were con-
sidered: distance threshold (which is the standard method
used of biometrics), distance statistics, naive Bayes and
SVM. Two sub-formulations are considered: one-class
where forgeries for the individual are unavailable, and two-
class where genuines and forgeries are available.

5.1. Training with Genuines only

Distance Threshold (DT): The DT method is the com-
mon signature verification model. The first step is to enroll
genuinesK as reference signatures. The distanced(X,Y )
is computed for each pair(X,Y ) in K to determine the
thresholdthres = max{d(X,Y )|X,Y ∈ K}. Given a
questioned signatureQ, the average of{d(Q,Y )|Y ∈ K}
, denoted asdist, is computed. Ifdist < thres, thenQ is
accepted as a genuine; and rejected otherwise.

Distance Statistics (DS): Here the genuine-genuine dis-
tance distribution is obtained only fromK, i.e., the mean
and variance ofPg are determined from{d(X,Y )|X,Y ∈
K}. The genuine-forgery distance distributionPf is from
Dg andDf as inWI − DS.

Table 2. One -class writer-dependent methods
(trained with genuines only).

Methods(n) FRR(%) FAR(%) AER(%)
Distance Threshold 22.5 19.5 21.5
Distance Statistics 23.0 21.7 22.4
Naive Bayes 25.9 24.1 25.0
One-Class SVM 47.6 44.4 46.0

Naive Bayes (NB): Let X = {x1, x2, ..., xn} where
X ∈ K. Two distributions are computed fromK:
Given a test signatureQ = {q1, q2, ..., qn}, the likelihood,

P (genuine|Q) =
n
∏

i=1

Ps,xi=qi
. A common optimal thresh-

old thres for the likelihoods is trained for all writers.Q is
accepted as a genuine ifP (genuine|Q) ≥ thres.

Support Vector Machine (SVM): While SVM classifica-
tion is popular in applications [8, 13] , its use in signature
verification is unknown. SVMs match the requirements of
signature verification: high dimensionality and sparse in-
stance spaces. The GSC feature space is high-dimensional
(1024) and very sparse. One-class SVMs [18] attempt to
distinguish genuines from the rest given only genuine data–
by drawing the class boundary of the genuine data set in
feature space.

Experimental results for four methods, with a training
set size of 16, are shown in Table 2. Here the distance
threshold performs best with SVM being very poor.

5.2. Training with Genuines and Forgeries

Forgeries were included in training in the following ex-
periments. InWD−DT , since the threshold is determined
only by genuines, it is unchanged. However inWD − DS,
instead of gathering genuine-forgery distance distribution
from all writers, such distribution is generated directly from
the genuine-forgery pairs for the individual. Similarly in
WD − NB, 0 and 1 distributions of each feature in forg-
eries are generated from the feature vectors in the forgery
set.

In an SVM, hyperplanes are determined by support vec-
tors instead of training samples. Due to unbalanced train-
ing datasets, instead of finding equal size maximal margin
on both sizes of optimal hyperplanes, margins are dynam-
ically adjusted according to sample sizes. With more pos-
itive samples than negative samples, different penalty pa-
rameters are used to balance weights. Given training vectors
xi ∈ Rn, i = 1, ..., l, in two classes, and a vectory ∈ Rl

such thatyi ∈ {1,−1}, the formation in [2] solves the clas-
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Table 3. Two-class writer-dependent meth-
ods(trained with 16 genuines and 5 forgeries)

Methods(n) FRR(%) FAR(%) AER(%)
Distance Statistics 17.6 20.7 19.2
Naive Bayes 9.95 13.0 11.45
SVM 8.5 10.1 9.3

sification problem for unbalanced data.
For each writer, 16 genuines were randomly selected

from the genuine set and 5 forgeries selected from the
forgery set by one forger. The other 8 genuines and 16
forgeries by other forgers constitute the test set. Table 3
presents the classification results showing that SVM out-
performs others.

6. Conclusions

Several learning strategies for signature verification were
evaluated using a high-dimensional feature space that cap-
tures both local geometric information as well as stroke in-
formation. In the writer-independent case, the newly intro-
duced distance statistics method outperformed classical dis-
tance threshold and naive Bayes approaches. In the writer
dependent case distance threhold performed best with dis-
tance statistics being close. The distance statistics method
has the advantage that it can be used when few training ex-
amples, even one, are available, and it generates a match
likelihood rather than a distance score.
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