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ABSTRACT 

 
Versatile robots will need to be programmed, of course. But beyond  explicit 
programming by a programmer, they will need to be able to plan how to perform new 
tasks and how to perform old tasks under new circumstances.  They will also need to be 
able to learn.   
 
In this article, I concentrate on two types of learning, namely supervised learning and 
reinforcement learning of robot control programs.  I  argue also that it would be useful for 
all of these programs, those explicitly programmed, those planned, and those learned, to 
be expressed in a common language.  I propose what I think is a good candidate for such 
a language, namely the formalism of teleo-reactive (T-R) programs.  Most of the article 
deals with the matter of learning T-R programs.  I assert that such programs are PAC 
learnable and then describe some techniques for learning them and the results of some 
preliminary learning experiments.  The work on learning T-R programs is in a very early 
stage, but I think enough has been started to warrant further development and 
experimentation.  For that reason I make this article available on the web, but I caution 
readers about the tentative nature of this work.  I solicit comments and suggestions at:  
nilsson@cs.stanford.edu. 

 
 
I. Three-Level Robot Architectures 
 
Architectures for the control of robots and other agents are often stratified into three 
levels.  Working up from the motors and sensors, the servo level is in direct sensory 
control of effectors and uses various conventional and advanced control-theory 
mechanisms---sometimes implemented directly in hardware circuitry.  Next, what I call 
the teleo-reactive level organizes the sequencing of servo-level actions so that they 
robustly react to unforeseen and changing environmental conditions in a goal-directed 
manner.  Control at this level is usually implemented as computer programs that attempt 
to satisfy sub-goals specified by the level above.  The top level, the strategic level, 
creates plans to satisfy user-specified goals. One of the earliest examples of this three-
level control architecture was that used in Shakey, the SRI robot (Nilsson, 1984).   There 
are several other examples as well  (Connell, 1992). 



 2

 
There are various ways of implementing control at these levels---some of which support 
adaptive and learning abilities.   I am concerned here primarily with the middle, teleo-
reactive, level and with techniques by which programs at this level can learn.  Among the 
proposals for teleo-reactive control are conventional computer programs with interrupt 
and sensor-polling mechanisms, so-called “behavior-based”  control programs, neural 
networks (usually implemented on computers), finite-state machines using explicit state 
tables, and production-rule-like systems, such as the so-called “teleo-reactive”  programs 
(Nilsson, 1994).   
 
Some sort of adaptivity or machine learning seems desirable, possibly even required, for 
robust performance in dynamic, unpredictable environments.  Two major kinds of 
learning regimes have been utilized.  One is supervised learning, in which each datum in 
a specially gathered collection of sensory input data is paired with an action response 
known to be appropriate for that particular datum. This set of input/response pairs is 
called the training set.  Learning is accomplished by adjusting the control mechanism so 
that it produces (either exactly or approximately) the correct action for each input in the 
training set.   
 
The other type, reinforcement learning, involves giving occasional positive or negative 
“rewards”  to the agent while it is actually performing a task.  The learning process 
attempts to modify the control system in such a way that long-term rewards are 
maximized (without necessarily knowing for any input what is the guaranteed best 
action). 
 
In one kind of supervised learning, the controller attempts to mimic the input/output 
behavior of a “teacher”  who is skilled in the performance of the task being learned.  This 
type is sometimes called behavioral cloning (Michie, et al., 1990; Sammut, et al., 1992; 
Urbancic & Bratko, 1994).  A familiar example is the automobile-steering system called 
ALVINN (Pomerleau, 1993).  There, a neural network connected to a television camera 
is trained to mimic the behavior of a human steering an automobile along various kinds 
of roads. 
 
Perhaps the most compelling examples of reinforcement learning are the various versions 
of TD-Gammon, a program that learns to play backgammon  (Tesauro, 1995).  After 
playing several hundred thousand backgammon games in which rewards related to 
whether or not the game is won or lost are given, TD-gammon learns to play at or near 
world-championship level.  Another example of reinforcement learning applied to a 
practical problem is a program for cell phone routing (Singh & Bertsekas, 1997). 
 
II.  The Programming, Teaching, Learning (PTL) Model 
 
Although machine learning methods are important for adapting robot control programs to 
their environments, they by themselves are probably not sufficient for synthesis of 
effective programs from a blank slate.  I believe that efforts by human programmers at 
various stages of the process will continue to be important---initially to produce a 
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preliminary program and later to improve or correct programs already modified by some 
amount of learning.  (Some of my ideas along these lines have been stimulated by 
discussions with Sebastian Thrun.) 
 
The programming part of what I call the PTL model  involves a human programmer 
attempting to program the robot to perform its suite of tasks.  The teaching part involves 
another human, a teacher, who shows the robot what is required  (perhaps by “driving”  it 
through various tasks).  This showing produces a training set, which can then be used by 
supervised learning methods to clone the behavior of the teacher. The  learning part 
shapes behavior during on-the-job reinforcement learning, guided by rewards given by a 
human user, a human teacher, and/or by the environment itself.   Although not dealt with 
in this article, a complete system will also need, at the strategic level, a planning part to 
create mid-level programs for achieving user-specified goals.  [A system called TRAIL 
was able to learn the preconditions and effects of low-level robot actions.  It then used 
these learned descriptions in a STRIPS-like automatic planning system to create mid-
level robot control programs (Benson, 1996).] 
 
I envision that the four methods, programming, teaching, learning, and planning might be 
interspersed in arbitrary orders.  It will be important therefore for the language(s) in 
which programs are constructed and modified to be languages in which programs are 
easy for humans to write and understand and ones that are compatible with machine 
learning and planning methods.  I believe these requirements rule out, for example, C 
code and neural networks, however useful they might be in other applications. 
 
III. Perceptual Imperfections 
 
Robot learning must cope with various perceptual imperfections.  Before moving on to 
discuss learning methods themselves, I first describe some perceptual difficulties.  
Effective robot control at the teleo-reactive level requires perceptual processing of sensor 
data in order to determine the state of the environment.  Suppose, in so far as a given set 
of specific robot tasks is concerned, the robot’s world can be in any one of a set of states 
{ Si} .  Suppose the robot’s perceptual apparatus transforms a world state, S, through a 
mapping, 

�
, to an input vector, x. That is, so far as the robot is concerned, its knowledge 

of its world is given entirely by a vector of features, x = (x1, x2, . . ., xn).  (I sometimes 
abbreviate and call x the agent input even though the actual input is first processed by 

�
.) 

 
Two kinds of imperfections in the perceptual mapping, 

�
, concern us. Because of random 

noise, 
�

 might be a one-to-many mapping, in which case a given world state might at 
different times be transformed into different input vectors.  Or, because of inadequate 
sensory apparatus, 

�
 might be a many-to-one mapping, in which case several different 

world states might be transformed into the same input vector. This latter imperfection is 
called perceptual aliasing.   
 
(One way to mitigate against perceptual aliasing is to keep a record in memory of a string 
of preceding input vectors; often, different world states are entered via different state 
sequences, and these different sequences may give rise to different perceptual histories.) 
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We can distinguish six interesting cases in which noise and perceptual aliasing influence 
the relationship between the action desired in a given world state and the actual action 
taken by an agent in the state it perceives.  I describe these cases with the help of some 
diagrams. 
 
Case 1 (no noise; no perceptual aliasing): 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, each world state is faithfully represented by a distinct input vector so that the actual 
actions to be associated with inputs can match the desired actions.  This is the ideal case.  
Note that different world states can have the same desired actions.  (Taken in different 
world states, the same action may achieve different effects.) 
 
Case 2 (minor noise; no perceptual aliasing): 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Here, each state is nominally perceived as a distinct input (represented by the dark arrows 
in the diagram), but noise sometimes causes the state to be perceived as an input only 
slightly different from the nominal one. We assume in this case that the noise is not so 
great as to cause the agent to mistake one world state for another.  For such minor noise, 
the actual agent action can be the same as the desired action.  
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Cases 3 and 4 (perceptual aliasing; no noise): 
 
 
 
 
 
 
 
 
 
 
 
 
In this example, perceptual aliasing conflates three different world states to produce the 
same agent input.  In case 3, S1 and S2 have different desired actions, but since the agent 
cannot make this distinction it will sometimes execute an inappropriate action.  In case 4, 
although S1 and S3 are conflated, the same action is called for, which is the action the 
agent correctly executes.  
 
Cases 5 and 6 (major noise occasionally simulates perceptual aliasing): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, although each state is nominally differentiated by the agent’s perceptual system 
(the dark arrows), major noise sometimes causes one world state to be mis-recognized as 
another. Just as in the case of perceptual aliasing, there are two different outcomes: in one 
(case 5), mis-recognition of S1 as S2 evokes an inappropriate action, and in the other 
(case 6), mis-recognition of S1 as S3 leads to the correct action.  Unlike case 3, however, 
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if  mis-recognition is infrequent, case 5 will occur only occasionally, which might be 
tolerable. 
 
In a dynamic world in which the agent takes a sequence of sensor readings, several 
adjacent ones can be averaged to reduce the effects of noise.  Some of the case 5 mis-
recognitions might then be eliminated but at the expense of reduced perceptual acuity. 
We will see examples of the difficulties these various imperfections cause in some 
learning experiments to be described later. 
 
IV.  Teleo-Reactive (T-R) Programs 
 
A.  The T-R Formalism 
 
A teleo-reactive (T-R) program is an agent control program that robustly directs the agent 
toward a goal in a manner that continuously takes into account changing perceptions of 
the environment. T-R programs were introduced in two papers by Nilsson (Nilsson 1992, 
Nilsson 1994). In its simplest form, a T-R program consists of an ordered list of 
production rules:  
 
K1 �  a1  
. . . 
Ki �  ai 
. . . 
Km �  am 
 
The K i are conditions on perceptual inputs (and possibly also on a stored model of the 
world), and the ai are actions on the world (or that change the model). In typical usage, 
the condition K1 is a goal condition, which is what the program is designed to achieve, 
and the action a1 is the null action.   
 
A T-R program is interpreted in a manner roughly similar to the way in which ordered 
production systems are interpreted: the list of rules is scanned from the top for the first 
rule whose condition part is satisfied, and the corresponding action is then executed.  A 
T-R program is usually designed so that for each rule Ki �  ai, Ki is the regression, 
through action ai, of some particular condition higher in the list. That is, Ki  is the weakest 
condition such that the execution of action ai under ordinary circumstances will achieve 
some particular condition, say Kj, higher in the list (that is, with j < i ). T-R programs 
designed in this way are said to have the regression property. 
 
We assume that the set of conditions Ki covers most of the situations that might arise in 
the course of achieving the goal K1. (Note that we do not require that the program be a 
universal plan, i.e. one covering all possible situations.) If an action fails, due to an 
execution error, noise, or the interference of some outside agent, the program will 
nevertheless typically continue working toward the goal in an efficient way. This 
robustness of execution is one of the advantages of T-R programs. 
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T-R programs differ substantively from conventional production systems, however, in 
that actions in T-R programs can be durative rather than discrete. A durative action is one 
that can continue indefinitely. For example, a mobile robot might be capable of executing 
the durative action move, which propels the robot ahead (say at constant speed). Such an 
action contrasts with a discrete one, such as move forward one meter. In a T-R program, 
a durative action continues only so long as its corresponding condition remains the 
highest true condition in the list. When the highest true condition changes, the current 
executing action  immediately changes correspondingly. Thus, unlike ordinary 
production systems, the conditions must be continuously evaluated; the action associated 
with the currently highest true condition is always the one being executed. An action 
terminates when its associated condition ceases to be the highest true condition.  
 
The regression condition for T-R programs must therefore be rephrased for durative 
actions: For each rule K i �  ai, Ki is the weakest condition such that continuous execution 
of the action ai (under ordinary circumstances) eventually achieves some particular 
condition, say Kj, with j < i . (The fact that Ki is the weakest such condition implies that, 
under ordinary circumstances, it remains true until Kj is achieved.)  
 
In a general T-R program, the conditions K i may have free variables that are bound when 
the T-R program is called to achieve a particular ground instance of K1. These bindings 
are then applied to all the free variables in the other conditions and actions in the 
program.  Actions in a T-R program may be primitive, they may be sets of actions 
executed simultaneously, or they may themselves be T-R programs. Thus, recursive T-R 
programs are possible.  (See Nilsson, 1992 for examples.)  
 
When an action in a T-R program is itself a T-R program, it is important to emphasize 
that the usual computer science control structure does not apply.  The conditions of all of 
the nested T-R programs in the hierarchy are always continuously being evaluated!  The 
action associated with the highest true condition in the highest program in the stack of 
“called”  programs is the one that is evoked.  Thus, any program can always regain 
control from any of those that it causes to be called---essentially interrupting any durative 
action in progress.  This responsiveness to the current perceived state of the environment 
is another one of the advantages of T-R programs. 
 
Sometimes it is useful to represent a T-R program as a tree, called a T-R tree, as shown 
below: 
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Suppose two rules in a T-R program are Ki �  ai and Kj �  aj with j < i and with Ki the 
regression of Kj through action ai. Then we have nodes in the T-R tree corresponding to  
Ki and Kj and an arc labeled by ai directed from Ki to Kj. That is, when Ki is the 
shallowest true node in the tree, execution of its corresponding action, ai, should achieve 
Kj. The root node is labeled with the goal condition and is called the goal node. When 
two or more nodes have the same parent, there are correspondingly two or more ways in 
which to achieve the parent's condition.  
 
Continuous execution of a T-R tree would be achieved by a continuous computation of 
the shallowest true node and execution of its corresponding action. (Ties among equally 
shallow True nodes can be broken by some arbitrary but fixed tie-breaking rule.) We call 
the shallowest true node in a T-R tree the active node.  
 
The  “backward-from-the-goal”  approach to writing T-R programs makes them relatively 
easy to write and understand, as experience has shown.  
 
B.  T-R programs and Decision Lists 
 
Decision lists are a class of Boolean functions described by Rivest (Rivest, 1987).  In 
particular, the class k-DL(n) consists of those functions that can be written in the form: 
 
K1 �  v1  
. . . 
Ki �  vi 
. . . 
Km �  vm 
 
where:  
 
1)  each Ki (for i =1, . . ., m-1) is a Boolean term over n variables consisting of at most k 
literals, and Km = T (having value True).  (A term is a conjunction of literals, and a literal 
is a Boolean variable or its complement, having value True or False.)  
 
and 
 
2)  each vi is either True or False.  
 
The value of a k-DL(n) function represented in this fashion is that vi corresponding to the 
first Ki in the list having value True. Note that if none of the Ki up to and including Km-1 
has value True, the function itself will have value vm. 
 
T-R programs over n variables whose conditions are Boolean terms having at most k 
literals are thus a generalization of the class k-DL(n), a generalization in which the vi may 
have q > 2 different values.  Let us use the notation k-TR(n,q) to represent this class of T-
R programs.  Note that k-TR(n,2) = k-DL(n). 
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V.  Learnability of T-R Programs 
 
Since it appears that T-R programs are not difficult for humans to write and understand, I 
now come to the topic of machine-learning of T-R programs.  First I want to make some 
remarks stemming from the fact that T-R programs whose conditions operate on binary 
inputs are multi-output generalizations of decision lists. Rivest has shown that the class k-
DL(n) of decision lists is polynomially PAC learnable (Rivest, 1987).  To do so, it is 
sufficient to prove that: 
 

1)  the size of the class of k-DL(n) = O(2
tn ), where n is the dimensionality of the input 

and t is some constant,  
 
and, 
 
2) one can identify in polynomial time a member of the class k-DL(n) that is consistent 
with the training set. 
 
The first requirement was shown to be satisfied using a simple, worst-case counting 
argument, and the second was shown by construction using a greedy algorithm. 
 
It is straightforward to show by analogous arguments that both requirements are also met 
by the class k-TR(n, q). Therefore, this class is also polynomially PAC learnable. 
 
Even though much experimental evidence suggests that PAC learnability of a class of 
functions is not necessarily predictive of  whether or not that class can be usefully and 
practically learned, the fact that this subclass of T-R programs is polynomially PAC 
learnable is a point in their favor. 
 
VI.  The Squish Algorithm for Supervisory Learning of T-R Programs 
 
George John (John, 1994) proposed an algorithm he called Squish for learning a T-R 
program to mimic the performance of a teacher (behavioral cloning).  Some limited 
experimental  testing of this algorithm has been performed---some using simulated robots 
and some using a physical robot.  These experiments will be described shortly. 
 
Squish works as follows.  An agent is “steered”  by a teacher in the performance of some 
task.  By steering, I mean that the teacher, observing the agent and the agent’s 
environment, controls the agent’s actions until it achieves the goal (or one of the goals) 
defined by the task.  Squish collects the perceptual/action history of this experience.  To 
do so, the string of perceptual input vectors is sampled (at some rate appropriate to the 
task), and the action selected by the teacher at each sample point is noted.   Several such 
histories are collected.   
 
The result of this stage will be a collection of strings such as the following: 
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x11a11x12a12x13a13 . . . x1na1nxGn 
. . . 
xi1ai1xi2ai2xi3ai3 . . . ximaimxGi 
. . . 
 
Each xij is a vector of inputs (obtained by perceptual processing by the agent), and each 
akl is the action selected by the teacher for the input vector preceding that action in the 
string.  The vectors xGi are inputs that satisfy the goal condition for the task. 
 
Note that each such string can be thought of as a T-R program of the form: 
 
{ xGi } �  Nil 
{ xim } �  aim 
. . . 
{ xi1 } �  ai1 
 
where the singleton sets { xim }  represent conditions satisfied only if the input vector is, in 
fact, a member of the set.   
 
Since T-R programs can take the form of trees, we can combine all of the learning 
sequences into a T-R tree as shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{ xG1 . . . xGi   . . .}  

{ x1n}  { xim}  

{ x12}  

{ x11}  

{ xi2}  

{ xi1}  

. . . . . . . . . . . . 

a1n 

a11 

aim 

ai1 
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Of course the program represented by such a tree could evoke actions only for those 
exact inputs that occurred during the teaching process. That limitation (as well as the 
potentially large size of the tree) motivates the remaining stages of the Squish algorithm. 
First, we collapse (squish) chains of identical actions.  (For these, obviously, the same 
action endured through multiple samplings of the input.)  We illustrate this process by the 
diagram below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next, beginning with the top node and proceeding recursively, we look for any 
immediate successors of a node that evoke the same action.  These siblings are combined 
into a single node labeled by the union of the sets labeling the siblings.  We illustrate this 
process by the diagram below: 
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Finally, no more collapsing of these sorts can be done, and we are left with a tree whose 
nodes are labeled by sets of input vectors and whose arcs are labeled by actions. 
 
Still, the conditions at the nodes are satisfied only by the members of the sets labeling 
those nodes; there is no generalization to similar inputs.  To deal with this defect, we use 
machine learning methods to replace each set by a more general condition that is satisfied 
by all (or most) members of the set.  (Perhaps it would be appropriate to relax “all”  to 
“most”  in the presence of noise.)   
 
There are at least three ways in which this generalization might be accomplished.  In the 
first, a connected region of multi-dimensional space slightly bigger, say, (or perhaps 
smaller in the case of noise) than the convex hull of the members of the set is defined by 
bounding surfaces---perhaps hyperplanes parallel to the coordinate axes.  If such 
hyperplanes are used, the condition of being in the region can be given by a conjunction 
of expressions defining intervals on the input components.  Such a condition would 
presumably be easy to understand by a human programmer inspecting the result of the 
learning process. A two-dimensional example might be illuminating.  Suppose the inputs 
in a certain set are: 
 
(3,5), (3,6), (5,7), and (4,4) 
 
Each input lies within the box illustrated below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The conditions associated with this set of four inputs would be: 
 
2 �  x1 �  6, and 
3 �  x2 �  8 

x1 

x2 
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In this manner a T-R program consisting of interval-based conditions with their 
associated actions is the final output of the teacher-guided learning process. 
 
In another method of generalizing the condition at a node, the inputs labeling a node of 
the tree are identified as positive instances, and the inputs at all those nodes not ancestral 
to that node are labeled as negative instances.  Then, one of a variety of machine learning 
methods can be used to build a classifier that discriminates between positive and negative 
instances for each node in the T-R tree.  If the conditions are to be easily understood by 
human programmers, one might learn a decision tree whose nodes are intervals on the 
various input parameters.  The condition implemented by a decision tree can readily be 
put in the form of a conjunction of interval tests.  Alternatively, one could use a neural-
net-based classifier.  (John’s original suggestion was to use a maximum-likelihood 
classifier.) 
 
Another method for generalization uses a “nearest-neighbor”  calculation.  First, in each 
node any repeated vectors are eliminated. A new input vector triggers that node having a 
vector that is closest to the new input vector (in a squared-difference sense)---giving 
preference to nodes higher in the tree in case of a tie. 
 
VII.  Experiments with Squish 
 
A. Experiments with Simulated Robots 
 
1. The task and experimental set-up 
 
John used Squish (with a maximum-likelihood classifier) to have a robot learn how to 
grab an object in a simulated two-dimensional world called Botworld (Benson, 1993).  In 
this simulated world, there was no perceptual aliasing. 
 
The Botworld environment has had several instantiations.  In John's experiments, 
Botworld appeared as in the screen shot below: 
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The round objects are simulated robots, called “bots,”  which can move forward, turn, and 
grab and hold a “bar”  with their “arms”  as shown in the figure.  Using the buttons on the 
graphical interface, a teacher could drive the bot during training sessions. 
 
For the learning experiments to be described, John endowed the bot with the following 
perceptual predicates: 
 
Grabbing:  Has value True if and only if the bot is holding the bar) 
 
At-bar:  Has value True if and only if the bot is in the right position to grab a bar (it must 
be at just the right distance from the bar) 
 
Facing-bar:  Has value True if and only if the bot is facing the bar) 
 
On-midline:  Has value True if and only if the bot is on the imaginary line that is the 
perpendicular bisector of the bar) 
 
Facing-midline:  Has value True if and only if the bot is facing a certain "preparatory 
area" segment of the midline) 
 
Because a bot's heading and position were represented by real numbers, all of these 
predicates (except Grabbing) involved tolerance intervals. 
 
The bot had two durative actions, namely turn and move and one “ballistic”  action, 
namely grab-bar. A T-R tree for bar grabbing using these actions and these perceptual 
predicates is shown below: 
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2. Learning experiments 
 
The bot was “driven”  to grab a bar a few times in order to generate a training set.  The 
input vectors were composed of the values of the five perceptual predicates as the bot 
was driven.  Squish was used to generate a T-R tree, and a maximum-likelihood classifier 
was established at each node. The vectors at a node were the positive instances for that 
node, and all of the vectors at nodes lower in the tree were the negative instances for that 
node. 
 
According to John (unpublished private communication):  “. . . it did work most of the 
time, meaning that afterwards it could drive itself (to grab the bar), but this was only if I 
drove the bot using my knowledge of which features it (the lisp code) could observe, and 
only if I was pretty careful to drive it well.  It would break if the driver wasn't very good.  
This is a common problem in programming by demonstration---how to get the driver or 
demonstrator to  understand the features that the learning algorithm can observe, so that 
the instruction can be productive.”  
 
B.  Experiments with a Nomad Robot 
 
1. The task and experimental set-up 
 
In the next set of experiments, Thomas Willeke (Willeke, 1998) wrote a T-R program for 
a real robot to enable it to perform the simple task of  “corner-finding.”   The task 
involved moving forward perpendicular to one of the walls of a rectangular enclosure, 
turning 90 degrees to the right whenever the robot’s motion was impeded by a wall or an 
obstacle.  The robot continued these actions until it sensed that it was in one of the 
corners of its enclosure.  
 
The robot used was a Nomad 150 from Nomadic Technologies, Inc.  (See 
http://www.robots.com/n150.htm for full technical details.)  The Nomad 150 is a wheeled 
cylindrical base whose only external sensors are sixteen sonar transceivers evenly 
positioned around its circumference.  Thus, the input vector, x, is a 16-dimensional vector 
whose components are sonar-measured distances to objects and walls.  These vectors 
have different typical forms that can be used to distinguish situations such as:  I am in 
(relatively) free space, there is a wall or obstacle in front of me, there is a wall on my left 
(or right) side, and I am in a corner.  The experimental set-up and desired behaviors are 
shown below: 
 
 
 
 
 
 
 
 
 

12
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When starting from position 1, for example, the robot moves forward until it comes close 
to a wall. It then turns to the right and proceeds to a corner.  When starting in position 2, 
it moves until it comes close to the object, turns right, proceeds to the other object, turns 
right, proceeds to the wall, turns right and proceeds to a corner. 
 
It may be argued that, since the desired action (turn right) when blocked by an obstacle is 
the same as the desired action when blocked by a wall, these two states (although 
different in the world) are the same so far as the robot is concerned.  For some classes of 
control programs it does no harm to conflate these states (as the Nomad robot does).  But 
since, in general, we would like T-R programs to have the regression property, these 
states ought to be treated differently since the actions taken in them have different effects.   
 
Corner-finding T-R programs are not difficult to write.  Sonar noise can create some 
problems, however.  In Willeke’s words:  “There comes a point in the turn when, due to 
sonars bouncing at steep angles off the wall, the perceptual input is exactly similar to that 
of the robot following along a wall. (See case 5 mentioned above.)  So the T-R program 
changes state and the robot tends to leap forward (thinking that it has already completed 
the turn), slamming itself into the wall.”  Willeke’s solution to this problem: “. . . we 
simply hand wrote in code so that the turns became ballistic actions.  So, after 
determining that a turn was in order, the robot simply turned 90 degrees.”   
 
As mentioned previously, another way of dealing with sonar (or any) noise is to do some 
averaging.  As Willeke suggests:  “One simple solution to the turning bug would be to 
simply require that three sonar readings in a row be different before switching states.  
This, of course, makes the robot less reactive to sudden changes in the environment.  
And, of course, if the robot still ends up in the wrong state it will be even slower to 
recover.  We did implement this idea and it clearly helped.  The robot made turns that 
were much closer to the 90 degrees we wanted.  It no longer slammed into the wall part 
way through the turn. But it still had an exit condition problem.  Because the end of a turn 
and normal forward motion look very much the same, the robot didn't usually make it 
exactly 90 degrees around before restarting forward motion.  This caused it to drift into 
the wall later, or drift off away from the wall if it over-turned.”  
 
2.  Learning experiments 
 
The training data was collected by driving the robot around with a joystick and recording 
the sensor values and joystick commands.  Different runs were performed with different 
starting positions and configurations of obstacles but always ending in a corner.  Willeke 
used the Squish algorithm to collapse the data, and in one set of experiments he trained a 
simple threshold logic unit (TLU) at each node of the T-R tree to generalize the input 
vectors at that node.   
 
In training the TLU, Willeke used a modification of the procedure in which the inputs 
labeling a node of the tree are identified as positive instances and the inputs at all those 
nodes not ancestral to that node are labeled as negative instances.  The requirement for 
the modification results from an instance of the case 4 situation mentioned above.  The  
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robot sometimes makes more than one right turn in a single data run, and the situation 
just before each turn produces identical (or very similar) input vectors. In these runs,  
positive input vectors associated with one node in the tree will be identical (or very 
similar) to negative input vectors at a lower node in the tree.  The diagram below 
illustrates this problem and our modification: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In learning a condition to use at the node marked * , we take the vectors in { x1, x1, . . .}  as 
the positive instances and those in 

�
1 and 

�
2 as the only negative instances.  In particular, 

we exclude the vectors in { x1, x2, . . .}  and those in 
�

3 from the set of negative instances 
because the action, a, at those nodes is identical to the action at the node marked * .   
 
In general then, the modification involves throwing out all input vectors at the non-
ancestral nodes that are associated with the same action as that at the node for which we 
are learning a condition.  (Willeke points out some possible difficulties that this 
modification entails if it is used in conjunction with procedures that use memorized state 
information in addition to sensory inputs, but these need not concern us here.) 
 
In several experiments of this sort for learning a corner-finding T-R program, Willeke 
states that the (modified) algorithm worked “surprising well.”   
 
In another set of experiments, Willeke used a nearest-neighbor generalization scheme.  
Since this method does not involve separating inputs into positive and negative classes,  
no special consideration need be given to case 4 repeated action situations.  These 
experiments were as successful as those in which TLUs were trained at each node.   The 
robot was able to learn corner-finding behaviors from complex training runs that repeated 
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perceptual states. The method does require remembering all of the inputs accumulated 
during training and extensive computation at run time, but recent work of A. J. Moore 
(Moore, 2000) appears to enable nearest-neighbor methods to scale well to large 
problems. 
 
The “ interval-box”  method for generalizing the nodal conditions was not tried, but, just 
as in the nearest-neighbor method, it would not have required separating inputs into 
positive and negative classes. 
 
The success of these preliminary experiments suggests that it would be reasonable to try 
these methods on more complex tasks performed by more complex robots. 
 
VIII.  Proposals for Reinforcement Learning of T-R Programs 
 
A. Neural Network Q-Learning  
 
In reinforcement learning, “reward”  amounts are given by a teacher (or by the 
environment itself) when a robot takes actions and thereby enters certain states.  The 
rewards can be positive or negative.  The rewards are used to change the “action policy”  
of the robot.  One seeks a training method that results in an action policy that maximizes 
some function of the future expected reward. (Sutton & Barto, 1998) is a text on 
reinforcement learning.) 
 
In a version of reinforcement learning called Q-learning, first proposed by Watkins 
(Watkins, 1989), the action policy is based on a function over perceived states and 
actions, Q(x,a), where x is the perceived state (say an input vector), and a is a robot 
action.  For any state x, the robot takes that action a which maximizes Q(x,a) over  all 
possible actions.  
 
In reinforcement learning, one seeks to learn an optimal policy by making adjustments to 
a trial policy in response to rewards for actions taken. Learning a policy can be 

accomplished by learning an estimate, Q̂ , of the optimal Q function. 
 
Neural network methods have been proposed for implementing a policy and for learning 
a Q function (Lin, 1992, Tesauro 1995). Consider the neural network shown below: 
 
 
 
 
 
 
 
 
 
The network computes estimates of the Q function for each possible action  and evokes 
that action, a, corresponding to the largest of these estimates. Reinforcement learning of 
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Q-values uses a temporal difference method, such as TD(0) (Sutton, 1988), for changing 
the estimates. Suppose action a is taken (by a partially trained network) in response to 

input vector x, and that the corresponding Q-value estimate is ),(ˆ aQ x . (That is, ),(ˆ aQ x  

= ),(ˆmax ii aQ x .)  Suppose that the durative execution of this action ultimately leads to 

an input vector y which evokes some other action, b. TD learning assumes that the 

quantity ),(ˆ bQr yγ+  is a more accurate estimate of ),( aQ x than is ),(ˆ aQ x and 

updates ),(ˆ aQ x  to make it more closely equal )b,(ˆ yQr γ+ .  
 
0< γ <1 is the “temporal discount factor,” and r is the immediate reward for executing a 
in that circumstance. Just that single ),(ˆ

iaQ x which is the largest of the estimates is 

updated, and all others are left unchanged.  The updating formula for that ),(ˆ
iaQ x  is: 

 
)),(ˆ)]b,(ˆ([),(ˆ),(ˆ aQQraQaQ i xyxx −++← γβ  

 
(That is, we move “β  of the way”  from ),(ˆ aQ x  to )b,(ˆ yQr γ+ , where 0 < β < 1.) 
 
Several researchers have used the standard backpropagation algorithm (Rumelhart et al.,  
1986) to effect these changes in the Q̂  function implemented by neural networks.    
 
B. Representing a T-R Program by a Neural Network 
 
In order to use neural network Q-learning methods for learning T-R programs, we first 
have to be able to represent a T-R program by a neural network. There are several ways 
in which this might be done.  We illustrate one method by the network below: 
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This network implements a T-R program whose m conditions (in order) are K1, K2, . . ., 
Ki, . . ., Km.  Assuming that the conditions are conjunctions of components of the input 
vector, x, these can all be implemented by the first layer of TLUs, as shown. 
Corresponding to each condition unit in the first layer is an AND unit in the second layer. 
These can also be implemented by TLUs. Each AND unit is wired up with appropriate 
inhibitory connections from the condition units so that the AND unit responds if and only 
if its associated condition unit (in the first layer) is the “highest”  condition unit 
responding.  That is, one and only one AND unit responds, and the one that does respond 
corresponds to the highest true condition among the Ki. 
 
Now, we have only to associate the appropriate action with the highest true condition.  
This is done by a layer of OR associator units implemented, again, by TLUs.  We have 
one such unit for each of the (let us say) k actions, a1, a2, . . ., ai, . . ., ak.  An AND unit is  
wired up to an associator unit if and only if that associator unit corresponds to an action 
that is called for by the AND unit.  Thus, an AND unit can be wired up to only one 
associator unit, but each associator unit might be wired up to more than one AND unit. 
 
Thus, we have shown that a specific three-layer, feed-forward neural network can 
implement any T-R program.  I will call such a neural network a T-R net. 
 
C. Training a T-R Net by Q-learning 
 
In order to use back-propagation to train a T-R net, we replace the TLUs by differentiable 
functions as usual.  We replace the condition units and the AND units by sigmoids, and 
we replace the associator units by a simple summing device.  We show the resulting 
network below:  
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The outputs of the summation unit associators are taken to be the Q values, Q(x,ai).  In 
the case in which TLUs are used instead of sigmoids for the condition and AND units, 
one and only one of these Q values would have value 1; the others would have value 0.  
Selecting the action corresponding to the highest Q value would give us the appropriate 
action.  We can regard the new network as implementing a “softened”  version of this 
decision process---one that is amenable to backpropagation training.   
 
In training the network only the weights in the first layer and the third layer are modified 
during the process of updating Q values.  The weights in the second layer are left fixed.  
(These are the weights that implement the rule that the highest true condition evokes an 
action.) The training process thus creates the appropriate conditions and associates them 
with appropriate actions.  Again, training can be accomplished by a standard 
backpropagation rule, constrained to leave the second-layer weights fixed.  The 
conditions used by the resulting T-R program will now be linearly separable functions of 
the input components rather than simple conjunctions. 
 
To date, no experiments have been conducted to test this technique.  We note that even if 
training such a network succeeds, we are not guaranteed that the corresponding T-R 
program will satisfy the regression property.  Perhaps some modification of the training 
process could be found that would achieve that restriction.  
 
D.  Learning a T-R Program by Reinforcement Learning of Prototype Points 
 
I conducted some preliminary experiments at the Santa Fe Institute in 1991 on learning 
T-R programs using a method that combined cluster seeking with reinforcement learning.  
The experiments were with a simulated robot in “botworld,”  and the learning program 
was written in Lisp. (I still have the Lisp program, dated February 22, 1991.)  The 
experiments were modestly successful and are described  here with the hope that the 
method can serve as a starting point for further work. 
 
The method learns regions and associated actions in the space of input vectors, x. Before 
discussing how the regions and actions are learned, I describe how they can be 
interpreted as T-R programs. 
 
1.  Region graphs 
 
We define a set of regions in the space of input vectors by a set of prototype points ���
{ P1, P2, … , Pi, … ,Pm} . The prototype points can be imagined as being at the centers of 
clusters of input vectors. The prototype points induce a set of m regions � ; Each region, 
Ri,  contains all those input vectors that are closer to Pi than to any other Pj , j ≠ i. 
 
We suppose that the Pi can be chosen in such a way that:  
 
a) if an action can be executed at one point in a region, it can be executed at any point in 
that region, and  
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b) for every pair Ri and Rj, if continued execution of an action, a, at one point in Ri results 
in the input vector next moving to Rj , then for all points in Ri, continued execution of a 
results in the input vector next moving to Rj.  
 
Thus, certain pairs of regions, Ri and Rj, are linked by actions, and we can define a 
directed graph whose nodes correspond to the regions (or, equivalently, to the prototype 
points defining the regions) and whose arcs correspond to actions. We shall call such a 
graph a region graph. Typically, only regions that are adjacent in the input space will 
have an action arc connecting them, although adjacency is neither necessary nor 
sufficient for linkage in the graph. Note also that the same action may label several 
different arcs in the graph and several arcs may emanate and converge on a single region 
node. 
 
We use the region graph to describe the nominal preconditions and effects of the actions 
of the robot. An action, ai,  can be executed by the robot if and only if it labels an arc 
whose tail emanates from a region containing the current input vector. The result of 
continued execution of such an action is that the input vector traverses the region at the 
tail of the arc until it enters the region at the head of the arc. Thence, the control system 
of the robot must select an action corresponding to one of the outgoing arcs from that 
new region.  
 
In the figure below, we show a two-dimensional example to illustrate these ideas.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are five prototype points and corresponding regions. We illustrate the actions by 
arrows directed from one region to another. For example, action a1 can be used either to 
go from R4 to R3 or from R2 to R1. Suppose the robot's task is to have the input vector in 
R3. The heavy action arrows constitute a spanning tree of the region graph for this 
problem; regardless of the region of the initial input vector, executing an action 
corresponding to an outgoing heavy arrow will result ultimately in the input vector 
landing in R3. 
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In terms of the region graph then, a robot's control strategy to achieve a given goal can be 
implemented by selecting that prototype point that is closest to the input vector and 
executing the action that labels the corresponding outgoing arc of the spanning tree for 
that goal. The spanning tree can be thought of as a T-R program:  the conditions are 
membership in the regions, and the actions are the arcs of the spanning tree.   
 
An alternative way of implementing the same strategy is to assign each region a value 
corresponding to its distance (counting action arcs) from the goal region. Then in any 
region, that action is selected that will next take the input vector to the accessible region 
having the smallest value. If the values of the regions are negated (so that larger values 
are preferred instead of smaller ones), then this strategy implements a version of a 
“policy function”  for achieving maximum reward, suggesting that Q-learning techniques 
might be capable of learning the prototype points. 
 
2.  Reinforcement learning of prototype points and actions 
 
Our learning algorithm starts with a set of prototype points, � � { P1, P2, … , Pi, … ,Pm} , 
that are initially set to random values. Each prototype point is arbitrarily assigned one of 
the actions in the set of possible actions.   To account for the possibility that the same 
action might be executed in different circumstances, multiple prototype points might be 
assigned the same action.  As the robot executes actions during learning trials to achieve 
a particular goal, these points (and their corresponding regions) individually migrate 
through the input space (according to rules we shall describe) until they stabilize at 
positions defining an acceptable spanning tree of the region graph.  Except when actions 
are selected by a teacher, soon to be discussed, that action is executed that is associated 
with the prototype point that is closest to the input vector.  
 
Each prototype point is also assigned a scalar mass and a scalar rank, each initially set to 
zero, that are changed during learning and are used by the procedure that migrates the 
prototype points. The mass is supposed to represent how many times the action 
associated with its prototype point has been “successful,”  and the rank is supposed to 
represent something similar to the “Q-value”  of its corresponding region-action pair in 
terms of its proximity to the goal.  In accord with the temporal-difference learning 
literature, the larger the rank or value of a region the closer it is to the goal.  In the 
version of the algorithm described here, we assume we know a particular region of the 
input space that corresponds to achieving the goal.  This region is assigned a large and 
unchangeable rank, say 100. 
 
A learning run terminates whenever the robot enters the goal region. Learning can then 
continue by re-positioning the robot and beginning another run---using the prototypes, 
ranks, and masses learned in previous runs. Whenever the robot is not in the goal region 
and the closest prototype point has zero rank, as it will initially, the robot attempts to 
execute one of its actions, chosen randomly, for a random amount of time.  Otherwise, 
the action corresponding to the prototype point that is closest to the input vector is 
executed.    Whenever the rank of the prototype point of an executing action is above 
zero, the rank decays to zero at some constant rate during the execution of that action.   
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Learning takes place as follows: Suppose for some input, x, not in the goal region, the 
closest prototype point and its corresponding action is denoted by the pair (P,a).  
Suppose that continued execution of a results in a continuous stream of inputs for which 
P is still the closest prototype point, but that ultimately for some x' either the closest 
prototype point becomes P' or x' is in the goal region. 
 
At that time, if P' is of higher rank than P (or if x' is in the goal region): 
 
1.  The rank of P is increased to an amount  between its old rank (at that time)  and the 
rank of P' (or of the goal region if x' is in the goal region), say to the average of the 
before and after ranks. 
 
2. The mass of P  is increased by 1. 
 
3. P is changed to: 
 

P 
�

 (m P + xavg)/(m+1) 
 
where m is the (old) mass of P, and xavg is the average value of the input vector during 
the time  a was being executed until the input vector became closer to P'  than to P (or 
entered the goal region). 
 
If P' is of lower rank than P: 
 
1.  The rank of P is decreased to an amount  between its old rank (at that time) and the 
rank of P', say to the average of the two. 
 
2. The mass of P is left unchanged. 
 
3. P is changed to: 
 

P 
�

 (m P - xavg)/(m+1) 
 

In all cases, whenever the rank of a prototype point falls to zero (or, alternatively, below 
some low threshold value), the mass of that region is reset to zero. 
 
The algorithm is a temporal-difference procedure (Sutton, 1988) because the rank of a 
prototype point is changed to make it closer to the rank of a temporally next region.  It is 
a delayed reinforcement learning procedure because reward comes only when the input 
vector enters the goal region. We could make the algorithm more closely resemble 
classical reinforcement learning procedures by selecting actions according to a 
probability distribution that favors that action associated with the closest prototype point.  
 
The algorithm is also a cluster-seeking procedure because the prototype points will tend 
to end up in the centers of clusters of frequently occurring input vectors for which the 
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same action was successful in moving the input vector toward the goal.  It is this latter 
property which gives the resulting action selection policy a capability to generalize over 
similar inputs (for which the same action ought to be selected).  Experiments with a 
similar cluster-seeking, reinforcement procedure were conducted by (Mahadevan & 
Connell, 1992). 
 
3. Preliminary experiments 
 
Some preliminary experiments with this algorithm were conducted in 1991 in the 
botworld domain.  The goal was to have a bot grab a bar.  All reinforcement learning 
procedures work best when the task to be learned is learned “backwards”  from large 
rewards. For our migrating prototype-point algorithm, backwards learning involves 
placing the robot near the goal or near prototype points already having been assigned 
high rank (such that random actions rather quickly get it close to the goal or to those 
prototype points). The high values of the prototype points previously learned are thus 
propagated backward to points associated with actions that move the robot toward these 
points learned earlier. With these facts in mind, I used a “teacher”  to force backwards 
learning of a solution and then checked to see whether or not continued learning 
destroyed the solution.  Solutions seemed to be stable; once achieved, further learning did 
not destroy them.  It remains to be seen under what circumstances the algorithm can be 
used in a less guided fashion to obtain a solution in the first place. 
 
There are some parameters, such as the rate of decay of a prototype point's rank, the 
increments by which the ranks and masses are changed, and the amount by which a 
prototype point is moved, whose adjustments would undoubtedly affect the performance 
of the algorithm.  
 
The botworld domain in which the learning experiments were performed and the 
components of the input vector, x, are illustrated and defined in the figure below.  The 
reader will note that I chose the components of the input vector, x = (x1, x2, x3, x4, x5, x6, 
x7, x8, x9), to be those that I knew were particularly relevant to performing the task.  A 
more severe learning task would be one in which the input vector consisted of more 
primitive components.   
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The goal region consists of all of those inputs for which x1 = 1.  The usual domain 
“physics”  applies; the robot can grab the bar only if x2 = 1 and x3 = 1. 
 
I used seven prototype points.  These and their associated actions were: 
 
B, move 
C, turn ccw 
D, turn cw 
BB, move 
CC, turn ccw 
DD, turn cw 
E, grab 
 
The initial value of each point was the vector (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2).  
The initial ranks and masses were all 0. 
 
A teacher can insert himself into the learning process by selecting a prototype point and 
its action (instead of letting the robot select it by the usual nearest-distance calculation). 
After a teacher-selected action, the learning process already described is then allowed to 
take place as usual. I used this teaching adjustment to the learning process in the 
following way: 
 
1. The robot was first positioned so that x2 and x3 were both equal to 1, and I (the 

teacher) selected point E.  The robot performed the associated grab action (which, of 
course succeeded), and the position, mass, and rank of E were changed accordingly.  I 
did this initial “priming”  several times. 

x1 = 1 iff bot is grabbing
bar

x2 = 1 iff bot’s center is within this
box (same asAt-bar defined
earlier)

x3 = 1 iff bot’s heading is normal to
bar, within some tolerance (same as
Facing-bar defined earlier)

x4 = 1 iff bot’s center is within this
strip (same asOn-midline defined
earlier)

x5 = 1 iff bot’s center is within this
box

ccwg = 1 iff bot should turn ccw to
face this box

cwg = 1 iff bot should turn cw to
face this box

x6 = ¬x4 ^ ccwg

x7 = ¬x4 ^ cwg

ccwb = 1 iff bot should turn ccw to
face in same direction as the normal
to the bar

cwb = 1 iff bot should turn cw to face
in same direction as the normal to the
bar

x8 = x4 ^ ccwb

x9 = x4 ^ cwb
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2. Then, the robot was positioned so that x3 and x5 were both equal to 1, and I selected 

B.  The robot performed the associated move action until the robot got closest to E, 
and the position, mass, and rank of B were changed accordingly.  Again, this step was 
performed several times. 

 
3. The robot was positioned so that x5 was equal to 1, and I selected either C or D, as 

appropriate, etc. 
 
4. And so on. 
 
After priming in this way, I ceased teaching and allowed the robot to continue on its own 
for several more learning trials.  The main result of this experiment was not that the robot 
could learn to grab the bar on its own without teaching, but that once it had been primed, 
continued learning was “stable”  in the sense that the skill was not unlearned. 
 
After priming and after several subsequent learning trials without the teacher, the 
prototype points, their masses and ranks had the following values: 
 
 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 mass rank 
B  0 0.006 0.85 0.84 0.29 0 0.17 0.08 0.03 33 92 
C  0 0 0.01 0.94 0.33 0 0.05 0.88 0.06 18 63 
D  0 0 0.02 0.83 0.28 0 0.16 0 0.8 18 66 

BB  0 0 0 0 0.125 0 0 0 0 2 47 
CC  0 0 0.02 0 0 1 0 0 0 3 23 
DD  0 0 0.02 0 0 0 1 0 0 3 34 
E  0 0.97 0.82 0.71 0 0 0.29 0.03 0 35 99 

 
 
By way of comparison, we might note that the following values of the prototype points 
would yield ideal bar-grabbing behavior: 
 

  x1 x2 x3 x4 x5 x6 x7 x8 x9 
B  0 0 1.0 1.0 0.5 0 0 0 0 
C  0 0 0 1.0 0.5 0 0 1.0 0 
D  0 0 0 1.0 0.5 0 0 0 1.0 

BB  0 0 0 0 0 0 0 0 0 
CC  0 0 0 0 0 1 0 0 0 
DD  0 0 0 0 0 0 1 0 0 
E  0 1.0 1.0 1.0 0 0 0 0 0 

 
 
These initial experiments suggest that the migrating prototype algorithm has potential for 
the reinforcement learning of T-R programs.  Further development and experimentation 
thus seems justified. 
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IX. Conclusions 
 
Versatile robots will need to be programmed, of course. But beyond  explicit 
programming by a programmer, they will need to be able to plan how to perform new 
tasks and how to perform old tasks under new circumstances.  They will also need to be 
able to learn.  In addition to learning about their environments by making maps, they will 
need to learn under what conditions various actions have what effects. [See, for example, 
(Benson, 1996).]    
 
In this article, I concentrated on two other types of learning, namely supervised learning 
and reinforcement learning of robot control programs.  I argued also that it would be 
useful for all of these programs, those explicitly programmed, those planned, and those 
learned, to be expressed in a common language.  I proposed what I think is a good 
candidate for such a language, namely the formalism of teleo-reactive (T-R) programs.  
Most of the article dealt with the matter of learning T-R programs.  I asserted that such 
programs are PAC learnable and then described some techniques for learning them and 
the results of some preliminary learning experiments.  The work on learning T-R 
programs is in a very early stage, but I think enough has been started to warrant further 
development and experimentation.  For that reason I make this article available on the 
web, but I caution readers about the tentative nature of this work.  I solicit comments and 
suggestions at:  nilsson@cs.stanford.edu. 
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