
Learning Strategies for Mid-Level Robot Control:
Some Preliminary Considerations and Experiments

Nils J. Nilsson

Robotics Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

http://robotics.stanford.edu/users/nilsson/bio.html

nilsson@cs.stanford.edu

Draft of May 11, 2000

ABSTRACT

Versatile robots will need to be programmed, of course. But beyond explicit
programming by a programmer, they will need to be able to plan how to perform new
tasks and how to perform old tasks under new circumstances. They will also need to be
able to learn.

In this article, I concentrate on two types of learning, namely supervised learning and
reinforcement learning of robot control programs. I argue also that it would be useful for
all of these programs, those explicitly programmed, those planned, and those learned, to
be expressed in a common language. I propose what I think is a good candidate for such
a language, namely the formalism of teleo-reactive (T-R) programs. Most of the article
deals with the matter of learning T-R programs. I assert that such programs are PAC
learnable and then describe some techniques for learning them and the results of some
preliminary learning experiments. The work on learning T-R programs is in a very early
stage, but I think enough has been started to warrant further development and
experimentation. For that reason I make this article available on the web, but I caution
readers about the tentative nature of this work. I solicit comments and suggestions at:
nilsson@cs.stanford.edu.

I. Three-Level Robot Architectures

Architectures for the control of robots and other agents are often stratified into three
levels. Working up from the motors and sensors, the servo level is in direct sensory
control of effectors and uses various conventional and advanced control-theory
mechanisms---sometimes implemented directly in hardware circuitry. Next, what I call
the teleo-reactive level organizes the sequencing of servo-level actions so that they
robustly react to unforeseen and changing environmental conditions in a goal-directed
manner. Control at this level is usually implemented as computer programs that attempt
to satisfy sub-goals specified by the level above. The top level, the strategic level,
creates plans to satisfy user-specified goals. One of the earliest examples of this three-
level control architecture was that used in Shakey, the SRI robot (Nilsson, 1984). There
are several other examples as well (Connell, 1992).

 2

There are various ways of implementing control at these levels---some of which support
adaptive and learning abilities. I am concerned here primarily with the middle, teleo-
reactive, level and with techniques by which programs at this level can learn. Among the
proposals for teleo-reactive control are conventional computer programs with interrupt
and sensor-polling mechanisms, so-called “behavior-based” control programs, neural
networks (usually implemented on computers), finite-state machines using explicit state
tables, and production-rule-like systems, such as the so-called “teleo-reactive” programs
(Nilsson, 1994).

Some sort of adaptivity or machine learning seems desirable, possibly even required, for
robust performance in dynamic, unpredictable environments. Two major kinds of
learning regimes have been utilized. One is supervised learning, in which each datum in
a specially gathered collection of sensory input data is paired with an action response
known to be appropriate for that particular datum. This set of input/response pairs is
called the training set. Learning is accomplished by adjusting the control mechanism so
that it produces (either exactly or approximately) the correct action for each input in the
training set.

The other type, reinforcement learning, involves giving occasional positive or negative
“rewards” to the agent while it is actually performing a task. The learning process
attempts to modify the control system in such a way that long-term rewards are
maximized (without necessarily knowing for any input what is the guaranteed best
action).

In one kind of supervised learning, the controller attempts to mimic the input/output
behavior of a “teacher” who is skilled in the performance of the task being learned. This
type is sometimes called behavioral cloning (Michie, et al., 1990; Sammut, et al., 1992;
Urbancic & Bratko, 1994). A familiar example is the automobile-steering system called
ALVINN (Pomerleau, 1993). There, a neural network connected to a television camera
is trained to mimic the behavior of a human steering an automobile along various kinds
of roads.

Perhaps the most compelling examples of reinforcement learning are the various versions
of TD-Gammon, a program that learns to play backgammon (Tesauro, 1995). After
playing several hundred thousand backgammon games in which rewards related to
whether or not the game is won or lost are given, TD-gammon learns to play at or near
world-championship level. Another example of reinforcement learning applied to a
practical problem is a program for cell phone routing (Singh & Bertsekas, 1997).

II. The Programming, Teaching, Learning (PTL) Model

Although machine learning methods are important for adapting robot control programs to
their environments, they by themselves are probably not sufficient for synthesis of
effective programs from a blank slate. I believe that efforts by human programmers at
various stages of the process will continue to be important---initially to produce a

 3

preliminary program and later to improve or correct programs already modified by some
amount of learning. (Some of my ideas along these lines have been stimulated by
discussions with Sebastian Thrun.)

The programming part of what I call the PTL model involves a human programmer
attempting to program the robot to perform its suite of tasks. The teaching part involves
another human, a teacher, who shows the robot what is required (perhaps by “driving” it
through various tasks). This showing produces a training set, which can then be used by
supervised learning methods to clone the behavior of the teacher. The learning part
shapes behavior during on-the-job reinforcement learning, guided by rewards given by a
human user, a human teacher, and/or by the environment itself. Although not dealt with
in this article, a complete system will also need, at the strategic level, a planning part to
create mid-level programs for achieving user-specified goals. [A system called TRAIL
was able to learn the preconditions and effects of low-level robot actions. It then used
these learned descriptions in a STRIPS-like automatic planning system to create mid-
level robot control programs (Benson, 1996).]

I envision that the four methods, programming, teaching, learning, and planning might be
interspersed in arbitrary orders. It will be important therefore for the language(s) in
which programs are constructed and modified to be languages in which programs are
easy for humans to write and understand and ones that are compatible with machine
learning and planning methods. I believe these requirements rule out, for example, C
code and neural networks, however useful they might be in other applications.

III. Perceptual Imperfections

Robot learning must cope with various perceptual imperfections. Before moving on to
discuss learning methods themselves, I first describe some perceptual difficulties.
Effective robot control at the teleo-reactive level requires perceptual processing of sensor
data in order to determine the state of the environment. Suppose, in so far as a given set
of specific robot tasks is concerned, the robot’s world can be in any one of a set of states
{ Si} . Suppose the robot’s perceptual apparatus transforms a world state, S, through a
mapping,

�
, to an input vector, x. That is, so far as the robot is concerned, its knowledge

of its world is given entirely by a vector of features, x = (x1, x2, . . ., xn). (I sometimes
abbreviate and call x the agent input even though the actual input is first processed by

�
.)

Two kinds of imperfections in the perceptual mapping,

�
, concern us. Because of random

noise,
�

 might be a one-to-many mapping, in which case a given world state might at
different times be transformed into different input vectors. Or, because of inadequate
sensory apparatus,

�
 might be a many-to-one mapping, in which case several different

world states might be transformed into the same input vector. This latter imperfection is
called perceptual aliasing.

(One way to mitigate against perceptual aliasing is to keep a record in memory of a string
of preceding input vectors; often, different world states are entered via different state
sequences, and these different sequences may give rise to different perceptual histories.)

 4

We can distinguish six interesting cases in which noise and perceptual aliasing influence
the relationship between the action desired in a given world state and the actual action
taken by an agent in the state it perceives. I describe these cases with the help of some
diagrams.

Case 1 (no noise; no perceptual aliasing):

Here, each world state is faithfully represented by a distinct input vector so that the actual
actions to be associated with inputs can match the desired actions. This is the ideal case.
Note that different world states can have the same desired actions. (Taken in different
world states, the same action may achieve different effects.)

Case 2 (minor noise; no perceptual aliasing):

Here, each state is nominally perceived as a distinct input (represented by the dark arrows
in the diagram), but noise sometimes causes the state to be perceived as an input only
slightly different from the nominal one. We assume in this case that the noise is not so
great as to cause the agent to mistake one world state for another. For such minor noise,
the actual agent action can be the same as the desired action.

x1

x2

x3

x4

…

S1

S2

S3

S4

a

b

a

c

…

desired
action

world state

a

b

a

c

actual
action

agent input

perception

x1a

…

S1

S2

a

b

…

desired
action

world state

a

a

b

b

actual
action

agent input

x1b

x2a

x2b
perception

 5

Cases 3 and 4 (perceptual aliasing; no noise):

In this example, perceptual aliasing conflates three different world states to produce the
same agent input. In case 3, S1 and S2 have different desired actions, but since the agent
cannot make this distinction it will sometimes execute an inappropriate action. In case 4,
although S1 and S3 are conflated, the same action is called for, which is the action the
agent correctly executes.

Cases 5 and 6 (major noise occasionally simulates perceptual aliasing):

Here, although each state is nominally differentiated by the agent’s perceptual system
(the dark arrows), major noise sometimes causes one world state to be mis-recognized as
another. Just as in the case of perceptual aliasing, there are two different outcomes: in one
(case 5), mis-recognition of S1 as S2 evokes an inappropriate action, and in the other
(case 6), mis-recognition of S1 as S3 leads to the correct action. Unlike case 3, however,

x1

…

S1

S2

S3

a

b

a

…

desired
action

world state

a

actual
action

agent input

perception

x1a

…

desired
action

world state

a

a

b

b

actual
action

agent input

x1b

x2a

x2b

perception

…

S1 a

S2 b

S3 a

x3a

x3b

a

a

 6

if mis-recognition is infrequent, case 5 will occur only occasionally, which might be
tolerable.

In a dynamic world in which the agent takes a sequence of sensor readings, several
adjacent ones can be averaged to reduce the effects of noise. Some of the case 5 mis-
recognitions might then be eliminated but at the expense of reduced perceptual acuity.
We will see examples of the difficulties these various imperfections cause in some
learning experiments to be described later.

IV. Teleo-Reactive (T-R) Programs

A. The T-R Formalism

A teleo-reactive (T-R) program is an agent control program that robustly directs the agent
toward a goal in a manner that continuously takes into account changing perceptions of
the environment. T-R programs were introduced in two papers by Nilsson (Nilsson 1992,
Nilsson 1994). In its simplest form, a T-R program consists of an ordered list of
production rules:

K1 � a1
. . .
Ki � ai
. . .
Km � am

The K i are conditions on perceptual inputs (and possibly also on a stored model of the
world), and the ai are actions on the world (or that change the model). In typical usage,
the condition K1 is a goal condition, which is what the program is designed to achieve,
and the action a1 is the null action.

A T-R program is interpreted in a manner roughly similar to the way in which ordered
production systems are interpreted: the list of rules is scanned from the top for the first
rule whose condition part is satisfied, and the corresponding action is then executed. A
T-R program is usually designed so that for each rule Ki � ai, Ki is the regression,
through action ai, of some particular condition higher in the list. That is, Ki is the weakest
condition such that the execution of action ai under ordinary circumstances will achieve
some particular condition, say Kj, higher in the list (that is, with j < i). T-R programs
designed in this way are said to have the regression property.

We assume that the set of conditions Ki covers most of the situations that might arise in
the course of achieving the goal K1. (Note that we do not require that the program be a
universal plan, i.e. one covering all possible situations.) If an action fails, due to an
execution error, noise, or the interference of some outside agent, the program will
nevertheless typically continue working toward the goal in an efficient way. This
robustness of execution is one of the advantages of T-R programs.

 7

T-R programs differ substantively from conventional production systems, however, in
that actions in T-R programs can be durative rather than discrete. A durative action is one
that can continue indefinitely. For example, a mobile robot might be capable of executing
the durative action move, which propels the robot ahead (say at constant speed). Such an
action contrasts with a discrete one, such as move forward one meter. In a T-R program,
a durative action continues only so long as its corresponding condition remains the
highest true condition in the list. When the highest true condition changes, the current
executing action immediately changes correspondingly. Thus, unlike ordinary
production systems, the conditions must be continuously evaluated; the action associated
with the currently highest true condition is always the one being executed. An action
terminates when its associated condition ceases to be the highest true condition.

The regression condition for T-R programs must therefore be rephrased for durative
actions: For each rule K i � ai, Ki is the weakest condition such that continuous execution
of the action ai (under ordinary circumstances) eventually achieves some particular
condition, say Kj, with j < i . (The fact that Ki is the weakest such condition implies that,
under ordinary circumstances, it remains true until Kj is achieved.)

In a general T-R program, the conditions K i may have free variables that are bound when
the T-R program is called to achieve a particular ground instance of K1. These bindings
are then applied to all the free variables in the other conditions and actions in the
program. Actions in a T-R program may be primitive, they may be sets of actions
executed simultaneously, or they may themselves be T-R programs. Thus, recursive T-R
programs are possible. (See Nilsson, 1992 for examples.)

When an action in a T-R program is itself a T-R program, it is important to emphasize
that the usual computer science control structure does not apply. The conditions of all of
the nested T-R programs in the hierarchy are always continuously being evaluated! The
action associated with the highest true condition in the highest program in the stack of
“called” programs is the one that is evoked. Thus, any program can always regain
control from any of those that it causes to be called---essentially interrupting any durative
action in progress. This responsiveness to the current perceived state of the environment
is another one of the advantages of T-R programs.

Sometimes it is useful to represent a T-R program as a tree, called a T-R tree, as shown
below:

K1

K2 K3

. .

. .

. .

. .

 8

Suppose two rules in a T-R program are Ki � ai and Kj � aj with j < i and with Ki the
regression of Kj through action ai. Then we have nodes in the T-R tree corresponding to
Ki and Kj and an arc labeled by ai directed from Ki to Kj. That is, when Ki is the
shallowest true node in the tree, execution of its corresponding action, ai, should achieve
Kj. The root node is labeled with the goal condition and is called the goal node. When
two or more nodes have the same parent, there are correspondingly two or more ways in
which to achieve the parent's condition.

Continuous execution of a T-R tree would be achieved by a continuous computation of
the shallowest true node and execution of its corresponding action. (Ties among equally
shallow True nodes can be broken by some arbitrary but fixed tie-breaking rule.) We call
the shallowest true node in a T-R tree the active node.

The “backward-from-the-goal” approach to writing T-R programs makes them relatively
easy to write and understand, as experience has shown.

B. T-R programs and Decision Lists

Decision lists are a class of Boolean functions described by Rivest (Rivest, 1987). In
particular, the class k-DL(n) consists of those functions that can be written in the form:

K1 � v1
. . .
Ki � vi
. . .
Km � vm

where:

1) each Ki (for i =1, . . ., m-1) is a Boolean term over n variables consisting of at most k
literals, and Km = T (having value True). (A term is a conjunction of literals, and a literal
is a Boolean variable or its complement, having value True or False.)

and

2) each vi is either True or False.

The value of a k-DL(n) function represented in this fashion is that vi corresponding to the
first Ki in the list having value True. Note that if none of the Ki up to and including Km-1
has value True, the function itself will have value vm.

T-R programs over n variables whose conditions are Boolean terms having at most k
literals are thus a generalization of the class k-DL(n), a generalization in which the vi may
have q > 2 different values. Let us use the notation k-TR(n,q) to represent this class of T-
R programs. Note that k-TR(n,2) = k-DL(n).

 9

V. Learnability of T-R Programs

Since it appears that T-R programs are not difficult for humans to write and understand, I
now come to the topic of machine-learning of T-R programs. First I want to make some
remarks stemming from the fact that T-R programs whose conditions operate on binary
inputs are multi-output generalizations of decision lists. Rivest has shown that the class k-
DL(n) of decision lists is polynomially PAC learnable (Rivest, 1987). To do so, it is
sufficient to prove that:

1) the size of the class of k-DL(n) = O(2
tn), where n is the dimensionality of the input

and t is some constant,

and,

2) one can identify in polynomial time a member of the class k-DL(n) that is consistent
with the training set.

The first requirement was shown to be satisfied using a simple, worst-case counting
argument, and the second was shown by construction using a greedy algorithm.

It is straightforward to show by analogous arguments that both requirements are also met
by the class k-TR(n, q). Therefore, this class is also polynomially PAC learnable.

Even though much experimental evidence suggests that PAC learnability of a class of
functions is not necessarily predictive of whether or not that class can be usefully and
practically learned, the fact that this subclass of T-R programs is polynomially PAC
learnable is a point in their favor.

VI. The Squish Algorithm for Supervisory Learning of T-R Programs

George John (John, 1994) proposed an algorithm he called Squish for learning a T-R
program to mimic the performance of a teacher (behavioral cloning). Some limited
experimental testing of this algorithm has been performed---some using simulated robots
and some using a physical robot. These experiments will be described shortly.

Squish works as follows. An agent is “steered” by a teacher in the performance of some
task. By steering, I mean that the teacher, observing the agent and the agent’s
environment, controls the agent’s actions until it achieves the goal (or one of the goals)
defined by the task. Squish collects the perceptual/action history of this experience. To
do so, the string of perceptual input vectors is sampled (at some rate appropriate to the
task), and the action selected by the teacher at each sample point is noted. Several such
histories are collected.

The result of this stage will be a collection of strings such as the following:

 10

x11a11x12a12x13a13 . . . x1na1nxGn
. . .
xi1ai1xi2ai2xi3ai3 . . . ximaimxGi
. . .

Each xij is a vector of inputs (obtained by perceptual processing by the agent), and each
akl is the action selected by the teacher for the input vector preceding that action in the
string. The vectors xGi are inputs that satisfy the goal condition for the task.

Note that each such string can be thought of as a T-R program of the form:

{ xGi } � Nil
{ xim } � aim
. . .
{ xi1 } � ai1

where the singleton sets { xim } represent conditions satisfied only if the input vector is, in
fact, a member of the set.

Since T-R programs can take the form of trees, we can combine all of the learning
sequences into a T-R tree as shown below:

{ xG1 . . . xGi . . .}

{ x1n} { xim}

{ x12}

{ x11}

{ xi2}

{ xi1}

.

a1n

a11

aim

ai1

 11

Of course the program represented by such a tree could evoke actions only for those
exact inputs that occurred during the teaching process. That limitation (as well as the
potentially large size of the tree) motivates the remaining stages of the Squish algorithm.
First, we collapse (squish) chains of identical actions. (For these, obviously, the same
action endured through multiple samplings of the input.) We illustrate this process by the
diagram below:

Next, beginning with the top node and proceeding recursively, we look for any
immediate successors of a node that evoke the same action. These siblings are combined
into a single node labeled by the union of the sets labeling the siblings. We illustrate this
process by the diagram below:

�

�
i.

ai

�
j

ai

�

�
i ∪

�
j

ai

�

�
i

u
.

ai

�
j

ai

aj

ak

�

.

ai

aj

ak

�
i ∪

�
j

 12

Finally, no more collapsing of these sorts can be done, and we are left with a tree whose
nodes are labeled by sets of input vectors and whose arcs are labeled by actions.

Still, the conditions at the nodes are satisfied only by the members of the sets labeling
those nodes; there is no generalization to similar inputs. To deal with this defect, we use
machine learning methods to replace each set by a more general condition that is satisfied
by all (or most) members of the set. (Perhaps it would be appropriate to relax “all” to
“most” in the presence of noise.)

There are at least three ways in which this generalization might be accomplished. In the
first, a connected region of multi-dimensional space slightly bigger, say, (or perhaps
smaller in the case of noise) than the convex hull of the members of the set is defined by
bounding surfaces---perhaps hyperplanes parallel to the coordinate axes. If such
hyperplanes are used, the condition of being in the region can be given by a conjunction
of expressions defining intervals on the input components. Such a condition would
presumably be easy to understand by a human programmer inspecting the result of the
learning process. A two-dimensional example might be illuminating. Suppose the inputs
in a certain set are:

(3,5), (3,6), (5,7), and (4,4)

Each input lies within the box illustrated below:

The conditions associated with this set of four inputs would be:

2 � x1 � 6, and
3 � x2 � 8

x1

x2

 13

In this manner a T-R program consisting of interval-based conditions with their
associated actions is the final output of the teacher-guided learning process.

In another method of generalizing the condition at a node, the inputs labeling a node of
the tree are identified as positive instances, and the inputs at all those nodes not ancestral
to that node are labeled as negative instances. Then, one of a variety of machine learning
methods can be used to build a classifier that discriminates between positive and negative
instances for each node in the T-R tree. If the conditions are to be easily understood by
human programmers, one might learn a decision tree whose nodes are intervals on the
various input parameters. The condition implemented by a decision tree can readily be
put in the form of a conjunction of interval tests. Alternatively, one could use a neural-
net-based classifier. (John’s original suggestion was to use a maximum-likelihood
classifier.)

Another method for generalization uses a “nearest-neighbor” calculation. First, in each
node any repeated vectors are eliminated. A new input vector triggers that node having a
vector that is closest to the new input vector (in a squared-difference sense)---giving
preference to nodes higher in the tree in case of a tie.

VII. Experiments with Squish

A. Experiments with Simulated Robots

1. The task and experimental set-up

John used Squish (with a maximum-likelihood classifier) to have a robot learn how to
grab an object in a simulated two-dimensional world called Botworld (Benson, 1993). In
this simulated world, there was no perceptual aliasing.

The Botworld environment has had several instantiations. In John's experiments,
Botworld appeared as in the screen shot below:

 14

The round objects are simulated robots, called “bots,” which can move forward, turn, and
grab and hold a “bar” with their “arms” as shown in the figure. Using the buttons on the
graphical interface, a teacher could drive the bot during training sessions.

For the learning experiments to be described, John endowed the bot with the following
perceptual predicates:

Grabbing: Has value True if and only if the bot is holding the bar)

At-bar: Has value True if and only if the bot is in the right position to grab a bar (it must
be at just the right distance from the bar)

Facing-bar: Has value True if and only if the bot is facing the bar)

On-midline: Has value True if and only if the bot is on the imaginary line that is the
perpendicular bisector of the bar)

Facing-midline: Has value True if and only if the bot is facing a certain "preparatory
area" segment of the midline)

Because a bot's heading and position were represented by real numbers, all of these
predicates (except Grabbing) involved tolerance intervals.

The bot had two durative actions, namely turn and move and one “ballistic” action,
namely grab-bar. A T-R tree for bar grabbing using these actions and these perceptual
predicates is shown below:

Grabbing

At-bar � Facing-bar

Facing-bar

On-midline

Facing-midline

T

grab-bar

move

turn

move

turn

 15

2. Learning experiments

The bot was “driven” to grab a bar a few times in order to generate a training set. The
input vectors were composed of the values of the five perceptual predicates as the bot
was driven. Squish was used to generate a T-R tree, and a maximum-likelihood classifier
was established at each node. The vectors at a node were the positive instances for that
node, and all of the vectors at nodes lower in the tree were the negative instances for that
node.

According to John (unpublished private communication): “. . . it did work most of the
time, meaning that afterwards it could drive itself (to grab the bar), but this was only if I
drove the bot using my knowledge of which features it (the lisp code) could observe, and
only if I was pretty careful to drive it well. It would break if the driver wasn't very good.
This is a common problem in programming by demonstration---how to get the driver or
demonstrator to understand the features that the learning algorithm can observe, so that
the instruction can be productive.”

B. Experiments with a Nomad Robot

1. The task and experimental set-up

In the next set of experiments, Thomas Willeke (Willeke, 1998) wrote a T-R program for
a real robot to enable it to perform the simple task of “corner-finding.” The task
involved moving forward perpendicular to one of the walls of a rectangular enclosure,
turning 90 degrees to the right whenever the robot’s motion was impeded by a wall or an
obstacle. The robot continued these actions until it sensed that it was in one of the
corners of its enclosure.

The robot used was a Nomad 150 from Nomadic Technologies, Inc. (See
http://www.robots.com/n150.htm for full technical details.) The Nomad 150 is a wheeled
cylindrical base whose only external sensors are sixteen sonar transceivers evenly
positioned around its circumference. Thus, the input vector, x, is a 16-dimensional vector
whose components are sonar-measured distances to objects and walls. These vectors
have different typical forms that can be used to distinguish situations such as: I am in
(relatively) free space, there is a wall or obstacle in front of me, there is a wall on my left
(or right) side, and I am in a corner. The experimental set-up and desired behaviors are
shown below:

12

 16

When starting from position 1, for example, the robot moves forward until it comes close
to a wall. It then turns to the right and proceeds to a corner. When starting in position 2,
it moves until it comes close to the object, turns right, proceeds to the other object, turns
right, proceeds to the wall, turns right and proceeds to a corner.

It may be argued that, since the desired action (turn right) when blocked by an obstacle is
the same as the desired action when blocked by a wall, these two states (although
different in the world) are the same so far as the robot is concerned. For some classes of
control programs it does no harm to conflate these states (as the Nomad robot does). But
since, in general, we would like T-R programs to have the regression property, these
states ought to be treated differently since the actions taken in them have different effects.

Corner-finding T-R programs are not difficult to write. Sonar noise can create some
problems, however. In Willeke’s words: “There comes a point in the turn when, due to
sonars bouncing at steep angles off the wall, the perceptual input is exactly similar to that
of the robot following along a wall. (See case 5 mentioned above.) So the T-R program
changes state and the robot tends to leap forward (thinking that it has already completed
the turn), slamming itself into the wall.” Willeke’s solution to this problem: “. . . we
simply hand wrote in code so that the turns became ballistic actions. So, after
determining that a turn was in order, the robot simply turned 90 degrees.”

As mentioned previously, another way of dealing with sonar (or any) noise is to do some
averaging. As Willeke suggests: “One simple solution to the turning bug would be to
simply require that three sonar readings in a row be different before switching states.
This, of course, makes the robot less reactive to sudden changes in the environment.
And, of course, if the robot still ends up in the wrong state it will be even slower to
recover. We did implement this idea and it clearly helped. The robot made turns that
were much closer to the 90 degrees we wanted. It no longer slammed into the wall part
way through the turn. But it still had an exit condition problem. Because the end of a turn
and normal forward motion look very much the same, the robot didn't usually make it
exactly 90 degrees around before restarting forward motion. This caused it to drift into
the wall later, or drift off away from the wall if it over-turned.”

2. Learning experiments

The training data was collected by driving the robot around with a joystick and recording
the sensor values and joystick commands. Different runs were performed with different
starting positions and configurations of obstacles but always ending in a corner. Willeke
used the Squish algorithm to collapse the data, and in one set of experiments he trained a
simple threshold logic unit (TLU) at each node of the T-R tree to generalize the input
vectors at that node.

In training the TLU, Willeke used a modification of the procedure in which the inputs
labeling a node of the tree are identified as positive instances and the inputs at all those
nodes not ancestral to that node are labeled as negative instances. The requirement for
the modification results from an instance of the case 4 situation mentioned above. The

 17

robot sometimes makes more than one right turn in a single data run, and the situation
just before each turn produces identical (or very similar) input vectors. In these runs,
positive input vectors associated with one node in the tree will be identical (or very
similar) to negative input vectors at a lower node in the tree. The diagram below
illustrates this problem and our modification:

In learning a condition to use at the node marked * , we take the vectors in { x1, x1, . . .} as
the positive instances and those in

�
1 and

�
2 as the only negative instances. In particular,

we exclude the vectors in { x1, x2, . . .} and those in
�

3 from the set of negative instances
because the action, a, at those nodes is identical to the action at the node marked * .

In general then, the modification involves throwing out all input vectors at the non-
ancestral nodes that are associated with the same action as that at the node for which we
are learning a condition. (Willeke points out some possible difficulties that this
modification entails if it is used in conjunction with procedures that use memorized state
information in addition to sensory inputs, but these need not concern us here.)

In several experiments of this sort for learning a corner-finding T-R program, Willeke
states that the (modified) algorithm worked “surprising well.”

In another set of experiments, Willeke used a nearest-neighbor generalization scheme.
Since this method does not involve separating inputs into positive and negative classes,
no special consideration need be given to case 4 repeated action situations. These
experiments were as successful as those in which TLUs were trained at each node. The
robot was able to learn corner-finding behaviors from complex training runs that repeated

�
G

{ x1, x1, . .} �
2

�
1

{ x1, x2, . .}

�
3

a c

b

a

a

*

 18

perceptual states. The method does require remembering all of the inputs accumulated
during training and extensive computation at run time, but recent work of A. J. Moore
(Moore, 2000) appears to enable nearest-neighbor methods to scale well to large
problems.

The “ interval-box” method for generalizing the nodal conditions was not tried, but, just
as in the nearest-neighbor method, it would not have required separating inputs into
positive and negative classes.

The success of these preliminary experiments suggests that it would be reasonable to try
these methods on more complex tasks performed by more complex robots.

VIII. Proposals for Reinforcement Learning of T-R Programs

A. Neural Network Q-Learning

In reinforcement learning, “reward” amounts are given by a teacher (or by the
environment itself) when a robot takes actions and thereby enters certain states. The
rewards can be positive or negative. The rewards are used to change the “action policy”
of the robot. One seeks a training method that results in an action policy that maximizes
some function of the future expected reward. (Sutton & Barto, 1998) is a text on
reinforcement learning.)

In a version of reinforcement learning called Q-learning, first proposed by Watkins
(Watkins, 1989), the action policy is based on a function over perceived states and
actions, Q(x,a), where x is the perceived state (say an input vector), and a is a robot
action. For any state x, the robot takes that action a which maximizes Q(x,a) over all
possible actions.

In reinforcement learning, one seeks to learn an optimal policy by making adjustments to
a trial policy in response to rewards for actions taken. Learning a policy can be

accomplished by learning an estimate, Q̂ , of the optimal Q function.

Neural network methods have been proposed for implementing a policy and for learning
a Q function (Lin, 1992, Tesauro 1995). Consider the neural network shown below:

The network computes estimates of the Q function for each possible action and evokes
that action, a, corresponding to the largest of these estimates. Reinforcement learning of

),(ˆ
2aQ x

),(ˆ
1aQ x

),(ˆ
iaQ x

),(ˆ
maQ x

W x),(ˆmaxarg ii aQa x=

 19

Q-values uses a temporal difference method, such as TD(0) (Sutton, 1988), for changing
the estimates. Suppose action a is taken (by a partially trained network) in response to

input vector x, and that the corresponding Q-value estimate is),(ˆ aQ x . (That is,),(ˆ aQ x

=),(ˆmax ii aQ x .) Suppose that the durative execution of this action ultimately leads to

an input vector y which evokes some other action, b. TD learning assumes that the

quantity),(ˆ bQr yγ+ is a more accurate estimate of),(aQ x than is),(ˆ aQ x and

updates),(ˆ aQ x to make it more closely equal)b,(ˆ yQr γ+ .

0< γ <1 is the “temporal discount factor,” and r is the immediate reward for executing a
in that circumstance. Just that single),(ˆ

iaQ x which is the largest of the estimates is

updated, and all others are left unchanged. The updating formula for that),(ˆ
iaQ x is:

)),(ˆ)]b,(ˆ([),(ˆ),(ˆ aQQraQaQ i xyxx −++← γβ

(That is, we move “β of the way” from),(ˆ aQ x to)b,(ˆ yQr γ+ , where 0 < β < 1.)

Several researchers have used the standard backpropagation algorithm (Rumelhart et al.,
1986) to effect these changes in the Q̂ function implemented by neural networks.

B. Representing a T-R Program by a Neural Network

In order to use neural network Q-learning methods for learning T-R programs, we first
have to be able to represent a T-R program by a neural network. There are several ways
in which this might be done. We illustrate one method by the network below:

 20

This network implements a T-R program whose m conditions (in order) are K1, K2, . . .,
Ki, . . ., Km. Assuming that the conditions are conjunctions of components of the input
vector, x, these can all be implemented by the first layer of TLUs, as shown.
Corresponding to each condition unit in the first layer is an AND unit in the second layer.
These can also be implemented by TLUs. Each AND unit is wired up with appropriate
inhibitory connections from the condition units so that the AND unit responds if and only
if its associated condition unit (in the first layer) is the “highest” condition unit
responding. That is, one and only one AND unit responds, and the one that does respond
corresponds to the highest true condition among the Ki.

Now, we have only to associate the appropriate action with the highest true condition.
This is done by a layer of OR associator units implemented, again, by TLUs. We have
one such unit for each of the (let us say) k actions, a1, a2, . . ., ai, . . ., ak. An AND unit is
wired up to an associator unit if and only if that associator unit corresponds to an action
that is called for by the AND unit. Thus, an AND unit can be wired up to only one
associator unit, but each associator unit might be wired up to more than one AND unit.

Thus, we have shown that a specific three-layer, feed-forward neural network can
implement any T-R program. I will call such a neural network a T-R net.

C. Training a T-R Net by Q-learning

In order to use back-propagation to train a T-R net, we replace the TLUs by differentiable
functions as usual. We replace the condition units and the AND units by sigmoids, and
we replace the associator units by a simple summing device. We show the resulting
network below:

Σ

Σ

Σ

Q(x,ai) Σ

m condition
sigmoids

m “AND”
sigmoids

k associators

trainable
weights

fixed
weights

x

 21

The outputs of the summation unit associators are taken to be the Q values, Q(x,ai). In
the case in which TLUs are used instead of sigmoids for the condition and AND units,
one and only one of these Q values would have value 1; the others would have value 0.
Selecting the action corresponding to the highest Q value would give us the appropriate
action. We can regard the new network as implementing a “softened” version of this
decision process---one that is amenable to backpropagation training.

In training the network only the weights in the first layer and the third layer are modified
during the process of updating Q values. The weights in the second layer are left fixed.
(These are the weights that implement the rule that the highest true condition evokes an
action.) The training process thus creates the appropriate conditions and associates them
with appropriate actions. Again, training can be accomplished by a standard
backpropagation rule, constrained to leave the second-layer weights fixed. The
conditions used by the resulting T-R program will now be linearly separable functions of
the input components rather than simple conjunctions.

To date, no experiments have been conducted to test this technique. We note that even if
training such a network succeeds, we are not guaranteed that the corresponding T-R
program will satisfy the regression property. Perhaps some modification of the training
process could be found that would achieve that restriction.

D. Learning a T-R Program by Reinforcement Learning of Prototype Points

I conducted some preliminary experiments at the Santa Fe Institute in 1991 on learning
T-R programs using a method that combined cluster seeking with reinforcement learning.
The experiments were with a simulated robot in “botworld,” and the learning program
was written in Lisp. (I still have the Lisp program, dated February 22, 1991.) The
experiments were modestly successful and are described here with the hope that the
method can serve as a starting point for further work.

The method learns regions and associated actions in the space of input vectors, x. Before
discussing how the regions and actions are learned, I describe how they can be
interpreted as T-R programs.

1. Region graphs

We define a set of regions in the space of input vectors by a set of prototype points ���
{ P1, P2, … , Pi, … ,Pm} . The prototype points can be imagined as being at the centers of
clusters of input vectors. The prototype points induce a set of m regions � ; Each region,
Ri, contains all those input vectors that are closer to Pi than to any other Pj , j ≠ i.

We suppose that the Pi can be chosen in such a way that:

a) if an action can be executed at one point in a region, it can be executed at any point in
that region, and

 22

b) for every pair Ri and Rj, if continued execution of an action, a, at one point in Ri results
in the input vector next moving to Rj , then for all points in Ri, continued execution of a
results in the input vector next moving to Rj.

Thus, certain pairs of regions, Ri and Rj, are linked by actions, and we can define a
directed graph whose nodes correspond to the regions (or, equivalently, to the prototype
points defining the regions) and whose arcs correspond to actions. We shall call such a
graph a region graph. Typically, only regions that are adjacent in the input space will
have an action arc connecting them, although adjacency is neither necessary nor
sufficient for linkage in the graph. Note also that the same action may label several
different arcs in the graph and several arcs may emanate and converge on a single region
node.

We use the region graph to describe the nominal preconditions and effects of the actions
of the robot. An action, ai, can be executed by the robot if and only if it labels an arc
whose tail emanates from a region containing the current input vector. The result of
continued execution of such an action is that the input vector traverses the region at the
tail of the arc until it enters the region at the head of the arc. Thence, the control system
of the robot must select an action corresponding to one of the outgoing arcs from that
new region.

In the figure below, we show a two-dimensional example to illustrate these ideas.

There are five prototype points and corresponding regions. We illustrate the actions by
arrows directed from one region to another. For example, action a1 can be used either to
go from R4 to R3 or from R2 to R1. Suppose the robot's task is to have the input vector in
R3. The heavy action arrows constitute a spanning tree of the region graph for this
problem; regardless of the region of the initial input vector, executing an action
corresponding to an outgoing heavy arrow will result ultimately in the input vector
landing in R3.

 23

In terms of the region graph then, a robot's control strategy to achieve a given goal can be
implemented by selecting that prototype point that is closest to the input vector and
executing the action that labels the corresponding outgoing arc of the spanning tree for
that goal. The spanning tree can be thought of as a T-R program: the conditions are
membership in the regions, and the actions are the arcs of the spanning tree.

An alternative way of implementing the same strategy is to assign each region a value
corresponding to its distance (counting action arcs) from the goal region. Then in any
region, that action is selected that will next take the input vector to the accessible region
having the smallest value. If the values of the regions are negated (so that larger values
are preferred instead of smaller ones), then this strategy implements a version of a
“policy function” for achieving maximum reward, suggesting that Q-learning techniques
might be capable of learning the prototype points.

2. Reinforcement learning of prototype points and actions

Our learning algorithm starts with a set of prototype points, � � { P1, P2, … , Pi, … ,Pm} ,
that are initially set to random values. Each prototype point is arbitrarily assigned one of
the actions in the set of possible actions. To account for the possibility that the same
action might be executed in different circumstances, multiple prototype points might be
assigned the same action. As the robot executes actions during learning trials to achieve
a particular goal, these points (and their corresponding regions) individually migrate
through the input space (according to rules we shall describe) until they stabilize at
positions defining an acceptable spanning tree of the region graph. Except when actions
are selected by a teacher, soon to be discussed, that action is executed that is associated
with the prototype point that is closest to the input vector.

Each prototype point is also assigned a scalar mass and a scalar rank, each initially set to
zero, that are changed during learning and are used by the procedure that migrates the
prototype points. The mass is supposed to represent how many times the action
associated with its prototype point has been “successful,” and the rank is supposed to
represent something similar to the “Q-value” of its corresponding region-action pair in
terms of its proximity to the goal. In accord with the temporal-difference learning
literature, the larger the rank or value of a region the closer it is to the goal. In the
version of the algorithm described here, we assume we know a particular region of the
input space that corresponds to achieving the goal. This region is assigned a large and
unchangeable rank, say 100.

A learning run terminates whenever the robot enters the goal region. Learning can then
continue by re-positioning the robot and beginning another run---using the prototypes,
ranks, and masses learned in previous runs. Whenever the robot is not in the goal region
and the closest prototype point has zero rank, as it will initially, the robot attempts to
execute one of its actions, chosen randomly, for a random amount of time. Otherwise,
the action corresponding to the prototype point that is closest to the input vector is
executed. Whenever the rank of the prototype point of an executing action is above
zero, the rank decays to zero at some constant rate during the execution of that action.

 24

Learning takes place as follows: Suppose for some input, x, not in the goal region, the
closest prototype point and its corresponding action is denoted by the pair (P,a).
Suppose that continued execution of a results in a continuous stream of inputs for which
P is still the closest prototype point, but that ultimately for some x' either the closest
prototype point becomes P' or x' is in the goal region.

At that time, if P' is of higher rank than P (or if x' is in the goal region):

1. The rank of P is increased to an amount between its old rank (at that time) and the
rank of P' (or of the goal region if x' is in the goal region), say to the average of the
before and after ranks.

2. The mass of P is increased by 1.

3. P is changed to:

P
�

 (m P + xavg)/(m+1)

where m is the (old) mass of P, and xavg is the average value of the input vector during
the time a was being executed until the input vector became closer to P' than to P (or
entered the goal region).

If P' is of lower rank than P:

1. The rank of P is decreased to an amount between its old rank (at that time) and the
rank of P', say to the average of the two.

2. The mass of P is left unchanged.

3. P is changed to:

P
�

 (m P - xavg)/(m+1)

In all cases, whenever the rank of a prototype point falls to zero (or, alternatively, below
some low threshold value), the mass of that region is reset to zero.

The algorithm is a temporal-difference procedure (Sutton, 1988) because the rank of a
prototype point is changed to make it closer to the rank of a temporally next region. It is
a delayed reinforcement learning procedure because reward comes only when the input
vector enters the goal region. We could make the algorithm more closely resemble
classical reinforcement learning procedures by selecting actions according to a
probability distribution that favors that action associated with the closest prototype point.

The algorithm is also a cluster-seeking procedure because the prototype points will tend
to end up in the centers of clusters of frequently occurring input vectors for which the

 25

same action was successful in moving the input vector toward the goal. It is this latter
property which gives the resulting action selection policy a capability to generalize over
similar inputs (for which the same action ought to be selected). Experiments with a
similar cluster-seeking, reinforcement procedure were conducted by (Mahadevan &
Connell, 1992).

3. Preliminary experiments

Some preliminary experiments with this algorithm were conducted in 1991 in the
botworld domain. The goal was to have a bot grab a bar. All reinforcement learning
procedures work best when the task to be learned is learned “backwards” from large
rewards. For our migrating prototype-point algorithm, backwards learning involves
placing the robot near the goal or near prototype points already having been assigned
high rank (such that random actions rather quickly get it close to the goal or to those
prototype points). The high values of the prototype points previously learned are thus
propagated backward to points associated with actions that move the robot toward these
points learned earlier. With these facts in mind, I used a “teacher” to force backwards
learning of a solution and then checked to see whether or not continued learning
destroyed the solution. Solutions seemed to be stable; once achieved, further learning did
not destroy them. It remains to be seen under what circumstances the algorithm can be
used in a less guided fashion to obtain a solution in the first place.

There are some parameters, such as the rate of decay of a prototype point's rank, the
increments by which the ranks and masses are changed, and the amount by which a
prototype point is moved, whose adjustments would undoubtedly affect the performance
of the algorithm.

The botworld domain in which the learning experiments were performed and the
components of the input vector, x, are illustrated and defined in the figure below. The
reader will note that I chose the components of the input vector, x = (x1, x2, x3, x4, x5, x6,
x7, x8, x9), to be those that I knew were particularly relevant to performing the task. A
more severe learning task would be one in which the input vector consisted of more
primitive components.

 26

The goal region consists of all of those inputs for which x1 = 1. The usual domain
“physics” applies; the robot can grab the bar only if x2 = 1 and x3 = 1.

I used seven prototype points. These and their associated actions were:

B, move
C, turn ccw
D, turn cw
BB, move
CC, turn ccw
DD, turn cw
E, grab

The initial value of each point was the vector (1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2).
The initial ranks and masses were all 0.

A teacher can insert himself into the learning process by selecting a prototype point and
its action (instead of letting the robot select it by the usual nearest-distance calculation).
After a teacher-selected action, the learning process already described is then allowed to
take place as usual. I used this teaching adjustment to the learning process in the
following way:

1. The robot was first positioned so that x2 and x3 were both equal to 1, and I (the

teacher) selected point E. The robot performed the associated grab action (which, of
course succeeded), and the position, mass, and rank of E were changed accordingly. I
did this initial “priming” several times.

x1 = 1 iff bot is grabbing
bar

x2 = 1 iff bot’s center is within this
box (same asAt-bar defined
earlier)

x3 = 1 iff bot’s heading is normal to
bar, within some tolerance (same as
Facing-bar defined earlier)

x4 = 1 iff bot’s center is within this
strip (same asOn-midline defined
earlier)

x5 = 1 iff bot’s center is within this
box

ccwg = 1 iff bot should turn ccw to
face this box

cwg = 1 iff bot should turn cw to
face this box

x6 = ¬x4 ^ ccwg

x7 = ¬x4 ^ cwg

ccwb = 1 iff bot should turn ccw to
face in same direction as the normal
to the bar

cwb = 1 iff bot should turn cw to face
in same direction as the normal to the
bar

x8 = x4 ^ ccwb

x9 = x4 ^ cwb

 27

2. Then, the robot was positioned so that x3 and x5 were both equal to 1, and I selected

B. The robot performed the associated move action until the robot got closest to E,
and the position, mass, and rank of B were changed accordingly. Again, this step was
performed several times.

3. The robot was positioned so that x5 was equal to 1, and I selected either C or D, as

appropriate, etc.

4. And so on.

After priming in this way, I ceased teaching and allowed the robot to continue on its own
for several more learning trials. The main result of this experiment was not that the robot
could learn to grab the bar on its own without teaching, but that once it had been primed,
continued learning was “stable” in the sense that the skill was not unlearned.

After priming and after several subsequent learning trials without the teacher, the
prototype points, their masses and ranks had the following values:

 x1 x2 x3 x4 x5 x6 x7 x8 x9 mass rank
B 0 0.006 0.85 0.84 0.29 0 0.17 0.08 0.03 33 92
C 0 0 0.01 0.94 0.33 0 0.05 0.88 0.06 18 63
D 0 0 0.02 0.83 0.28 0 0.16 0 0.8 18 66

BB 0 0 0 0 0.125 0 0 0 0 2 47
CC 0 0 0.02 0 0 1 0 0 0 3 23
DD 0 0 0.02 0 0 0 1 0 0 3 34
E 0 0.97 0.82 0.71 0 0 0.29 0.03 0 35 99

By way of comparison, we might note that the following values of the prototype points
would yield ideal bar-grabbing behavior:

 x1 x2 x3 x4 x5 x6 x7 x8 x9
B 0 0 1.0 1.0 0.5 0 0 0 0
C 0 0 0 1.0 0.5 0 0 1.0 0
D 0 0 0 1.0 0.5 0 0 0 1.0

BB 0 0 0 0 0 0 0 0 0
CC 0 0 0 0 0 1 0 0 0
DD 0 0 0 0 0 0 1 0 0
E 0 1.0 1.0 1.0 0 0 0 0 0

These initial experiments suggest that the migrating prototype algorithm has potential for
the reinforcement learning of T-R programs. Further development and experimentation
thus seems justified.

 28

IX. Conclusions

Versatile robots will need to be programmed, of course. But beyond explicit
programming by a programmer, they will need to be able to plan how to perform new
tasks and how to perform old tasks under new circumstances. They will also need to be
able to learn. In addition to learning about their environments by making maps, they will
need to learn under what conditions various actions have what effects. [See, for example,
(Benson, 1996).]

In this article, I concentrated on two other types of learning, namely supervised learning
and reinforcement learning of robot control programs. I argued also that it would be
useful for all of these programs, those explicitly programmed, those planned, and those
learned, to be expressed in a common language. I proposed what I think is a good
candidate for such a language, namely the formalism of teleo-reactive (T-R) programs.
Most of the article dealt with the matter of learning T-R programs. I asserted that such
programs are PAC learnable and then described some techniques for learning them and
the results of some preliminary learning experiments. The work on learning T-R
programs is in a very early stage, but I think enough has been started to warrant further
development and experimentation. For that reason I make this article available on the
web, but I caution readers about the tentative nature of this work. I solicit comments and
suggestions at: nilsson@cs.stanford.edu.

REFERENCES

Benson 1993
 Benson, S., “Botworld Homepage,” Robotics Laboratory, Department of
Computer Science, Stanford University, 1993.
http://robotics.stanford.edu/~sbenson/botworld.html

Benson 1996

Benson, S., Learning Action Models for Reactive Autonomous Agents, PhD
Thesis, Department of Computer Science, Stanford University, 1996.

Connell 1992
 Connell, J., “SSS: A Hybrid Architecture Applied to Robot Navigation,” in Proc
1992 IEEE International Conf. on Robotics and Automation, pp. 2719-2724, 1992.

John 1994
 John, G., “SQUISH: A Preprocessing Method for Supervised Learning of T-R
Trees From Solution Paths,” Draft Memo, Stanford Computer Science Dept., November
22, 1994.

 29

Lin 1992
 Lin, L. J., “Self-Improving Reactive Agents Based On Reinforcement Learning,
Planning and Teaching,” Machine Learning 8:293-321, 1992.

Mahadevan & Connell 1992
 Mahadevan, S., and Connell, J., “Automatic Programming of Behavior-Based
Robots Using Reinforcement Learning,” Proceedings ML92, pp. 290-299, 1992.

Michie, et al. 1990

Michie, D., Bain, M., and Hayes-Michie, J. E., “Cognitive Models from
Subcognitive Skills,” in M. Grimble, S. McGhee, and P. Mowforth (eds.), Knowledge-
base Systems in Industrial Control. Peter Peregrinus, 1990.

Moore 2000
 Moore, A. W., “The Anchors Hierarchy: Using the Triangle Inequality to Survive
High Dimensional Data,” Proc. Twelfth Conference on Uncertainty in Artificial
Intelligence, Menlo Park, CA: AAAI Press, 2000.

Mahadevan & Connell 1992
 Mahadevan, S., and Connell, J., “Automatic Programming of Behavior-Based
Robots Using Reinforcement Learning,” Proceedings ML92, pp. 290-299, 1992.

Nilsson 1984
 Nilsson, N. J., Shakey the Robot, Technical Note 325, SRI International, Menlo
Park, CA, 1984.

Nilsson 1992
 Nilsson, N. J., Toward Agent Programs with Circuit Semantics, Technical Report
STAN-CS-92-1412, Stanford University Computer Science Department, 1992.

Nilsson 1994
 Nilsson, N. J., “Teleo-Reactive Programs for Agent Control,” Journal of
Artificial Intelligence Research, 1, pp. 139-158, January 1994.

Pomerleau 1993
 Pomerleau, D., Neural Network Perception for Mobile Robot Guidance, Boston:
Kluwer Academic Publishers, 1993.

Rivest 1987
 Rivest, R., “Learning Decision Lists,” Machine Learning, 2:229-246, 1987.

Rumelhart et al. 1986
 Rumelhart, D., Hinton, G., and Willliams, R., “Learning Internal Representations
by Error Propagation,” in Rumelhart, D., and McClelland, J., (eds.), Parallel Distributed
Processing, Vol 1, pp. 318-362, Cambridge, MA: The MIT Press, 1986.

 30

Sammut, et al. 1992
Sammut, C., Hurst, S., Kedzier, D., and Michie, D., “Learning to Fly,” in D.

Sleeman and P. Edwards (eds.), Proceedings of the Ninth International Conference on
Machine Learning, Aberdeen: Morgan Kaufmann, 1992.

Singh & Bertsekas 1997
 Singh S, and Bertsekas D., Reinforcement Learning for Dynamic Channel
Allocation in Cellular Telephone Systems . Proceedings of NIPS, 1997.

Sutton 1988
 Sutton, R., “Learning to Predict by the Methods of Temporal Differences,”
Machine Learning, 3:9-44, 1988.

Sutton & Barto 1998
 Sutton, R., and Barto, A., Reinforcement Learning: An Introduction, Cambridge,
MA: MIT Press, 1998.

Tesauro 1995
 Tesauro, G., “Temporal-Difference Learning and TD-Gammon,” Comm. ACM,
38(3):58-68, March, 1995.

Urbancic & Bratko 1994

Urbancic, T., and Bratko, I., “Reconstructing Human Skill with Machine
Learning,” in A. Cohn (ed.), Proceedings of the 11th European Conference on Artificial
Intelligence, John Wiley & Sons, 1994.

Watkins 1989

Watkins, C. J. C. H., Learning from Delayed Rewards, PhD thesis, Cambridge
University, Cambridge, England, 1989.

Willeke 1998
 Willeke, T., “Learning Robot Behaviors with TR Trees,” unpublished memo,
Robotics Laboratory, Department of Computer Science, Stanford University, May 19,
1998.

