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Abstract Learning a complex task such as table tennis is a

challenging problem for both robots and humans. Even after

acquiring the necessary motor skills, a strategy is needed to

choose where and how to return the ball to the opponent’s

court in order to win the game. The data-driven identification

of basic strategies in interactive tasks, such as table tennis, is a

largely unexplored problem. In this paper, we suggest a com-
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putational model for representing and inferring strategies,

based on a Markov decision problem, where the reward func-

tion models the goal of the task as well as the strategic infor-

mation. We show how this reward function can be discovered

from demonstrations of table tennis matches using model-

free inverse reinforcement learning. The resulting framework

allows to identify basic elements on which the selection of

striking movements is based. We tested our approach on data

collected from players with different playing styles and under

different playing conditions. The estimated reward function

was able to capture expert-specific strategic information that

sufficed to distinguish the expert among players with differ-

ent skill levels as well as different playing styles.

Keywords Computational models of decision processes ·

Table tennis · Inverse reinforcement learning

1 Introduction

Understanding the complex interplay between learning, deci-

sion making and motion generation is crucial both for creat-

ing versatile, intelligent robot systems and for understanding

human motor control. To make headway toward this goal,

parsimonious models that “sculpt motor commands” based

on a notion of optimal performances are needed (Braiten-

berg et al. 1997). Braitenberg (1984) showed more than 25

years ago that the key to understand this complex interplay is

to create simple, elementary structures, such as his Braiten-

berg Vehicles, that nevertheless allow synthesizing complex

behavior. Braitenberg vehicles correspond to control policies

in reinforcement learning, which we can by today learn from

demonstrations and by self-improvement. In the last decade,

such approaches have matured in the robot learning context

and led to robot systems that can learn the complex motor
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skills including even basic robot table tennis (Muelling et al.

2013; Kober et al. 2012).

In complex competitive and cooperative motor tasks, mas-

tering the task is not merely a matter of perfect execution of

a specific movement pattern. For example, in table tennis, a

player usually cannot win the game by always returning the

ball safely to the same position. Instead, players need a good

strategy that defines where and how to return the ball to the

opponent’s court. An action should always be chosen to have

a high probability to successfully return the ball as well as to

make the task of the opponent harder, i.e., it should improve

the chance to win the game. In this paper, we want to make a

first step toward understanding the decision processes under-

lying such a behavior. We follow Braitenberg’s example of

finding straightforward synthetic constituents of strategies

rather than using complex physical models of the world. To

accomplish this goal, we create a simplified model of human-

human table tennis and study how basic strategic elements

can be extracted from a game play.

In racket science, researcher identified so-called winning

patterns in tennis video sequences in order to help train-

ers analyze their game (Wang et al. 2004; Wang and Para-

meswaran 2005; Vis et al. 2010). Here, specific repetitive

movement patterns of both the players and the ball were

turned into tactical templates. In table tennis, Hohmann et

al. (2004) determined the transition probabilities of differ-

ent stroke positions, directions and types individually. Such

transition probabilities allow identifying the components that

were used most efficiently. Diaz et al. (2013) showed that

memory-based information is used for predictive eye move-

ments in racquetball, and Seve et al. (2004) showed that such

memory-based information is also used for strategies in table

tennis. Seve et al. (2004) concluded from interviews with pro-

fessional table tennis players that those selected their actions

in a match not only based on the current situation, but also

on the knowledge of sequences that have proven to be effec-

tive in the past in similar situations. Rather than identify-

ing the frequencies and effectiveness of specific movement

patterns in large data sets, we want to model this situation-

based knowledge from a computational point of view and

extract it from collected table tennis data. Such an approach

would enable us to yield a better insight into the reasons

for choosing a given action in a specific state and to use

the learned model for artificial systems, such as table tennis

robots (Muelling et al. 2013). Creating a model that accounts

for the complexity of this task can easily lead to an intractable

problem formulation. For this reason, we use a straightfor-

ward approximation to this problem and only consider basic

features available to the player as well as perfect knowl-

edge about the environment. In particular, we account for

positional features of the players and the ball, but not for

opponent-specific strategies, changes in such an opponent-

specific strategy and spin. As a result, we are able to model

this decision process as a Markov decision problem (MDP,

Puterman (1994)).1

In an MDP framework, an agent interacts with a dynamic

environment. It chooses and executes an action that will

change the state of the agent and its environment (see Fig. 2).

The agent can observe this state change and may receive a

reward for its action. A strategy defines the general plan of

choosing actions in specific states in order to achieve a goal.

A strategy in the MDP framework is usually called a pol-

icy and is denoted by π . Given a MDP model, one can find

an optimal policy using optimal control techniques (Sutton

and Barto 1998; Powell 2011). The goal is to find a pol-

icy that maximizes the expected reward. The reward thus

encodes the goal of the task. While it is possible to learn a

policy directly from demonstrations using supervised learn-

ing (Schaal 1999; Argall et al. 2009), such behavioral cloning

approaches usually have limited generalization abilities since

they are restricted to the demonstrated scenarios. As they do

not consider the underlying dynamics, they cannot be applied

in a task with altered or constantly changing dynamics. In

table tennis, the dynamics of the environment changes as

the opponent changes. The player may also encounter new

states and hence need to learn new strategic elements while

his experience increases with training. Therefore, blindly fol-

lowing the strategy of an observed expert will not lead to a

successful strategy. In this paper, we do not intend to mimic

an observed strategy, instead we want to learn an underlying

reward function that connects the information available to

the player with his chosen actions.

Given an exact model, simple reward functions that only

specify an immediate positive reward for winning, a nega-

tive one for losing a rally and zero reward of nonterminal

actions may be sufficient. However, such simplified rewards

will cause slow convergence rates for behavior generation

as the system will need to pass through several state–action

pairs before receiving a reward. Although winning the game

remains a driving factor in their behavior, it remains unclear

whether a simple winning strategy explains human playing

behavior or whether humans learn subgoals leading to win.

In artificial systems, however, such simplified reward func-

tions are unsuited for learning table tennis due to the curse

of dimensionality. Instead of predefining the reward func-

tion, we seek to identify it from human game play. Such an

approach will also allow us to reveal memory-based knowl-

edge and individual preferences of table tennis players. The

process of determining the reward function from an expert

demonstration is referred to as inverse reinforcement learn-

ing (IRL) or inverse optimal control (Boyd et al. 1994; Ng and

Russel 2000). IRL has been applied to many problems such

1 Note that in order to include such uncertain state information as

assumptions about the strategy of the opponent or spin, a problem for-

mulation in form of partial observable MDPs would be necessary.
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as helicopter control (Abbeel et al. 2010), parking lot naviga-

tion (Abbeel et al. 2008), navigating a quadruped robot across

different terrains (Kolter and Ng 2011), human navigation

behavior (Rothkopf and Ballard 2013), routing preferences

of drivers (Ziebart et al. 2008), modeling goal-directed trajec-

tories of pedestrians (Ziebart et al. 2009) and user simulation

in spoken dialog management systems (Chandramohan et al.

2011). In most of these approaches, the underlying dynamics

of the system is assumed to be known. However, the dynam-

ics of human behavior is usually difficult to model. We avoid

modeling these complex dynamics by learning the strate-

gies directly from human demonstration. Thus, the dynam-

ics model underlying the task is implicitly encoded in the

observed data. To collect demonstrations, we asked skilled

and naive table tennis players to compete in several matches.

We recorded the ball trajectories as well as the Cartesian posi-

tion and orientation of the upper body joints for all players

with a VICON motion capture system (see Fig. 1).

This paper does not focus on the introduction of new

IRL methods for solving this kind of problem. We rather

intend to apply existing methods on this new challenging

problem. During the course of this paper, we will answer

the following questions: (1) Can we infer a reward func-

tion that captures expert-specific information using model-

free inverse reinforcement learning? (2) Using this reward

function, can we distinguish players with different playing

styles and skill levels? (3) Which parts of the sensory infor-

mation are the key elements for selecting the movement

parameters?

In the remainder of this paper, we will proceed as follows.

In Sect. 2, we present the theoretical background for mod-

eling decision processes, including MDPs and the used IRL

algorithms. We present the experimental setup and evalua-

tions in Sect. 3. In Sect. 4, we summarize our approach and

the results.

Fig. 1 Considered Scenario. Two people playing a competitive match

of table tennis. The movements of the player and the ball were recorded

with a VICON motion capture system and analyzed afterward

2 Modeling human strategies

As discussed in the introduction, we use model-free inverse

reinforcement learning (IRL) to learn human strategies. Here,

we will first introduce the notation and basic elements nec-

essary for the table tennis model. Subsequently, we will dis-

cuss different model-free IRL approaches and show how the

states, actions and reward features in the table tennis task can

be represented.

2.1 Preliminaries

To employ IRL, the problem at hand needs to be modeled

as a Markov decision problem (MDP). Formally, a MDP is

a tuple (S, A, T , R, d0, γ ), where S is the state space, A is

the action space, and T is a transition function

T (st , at , st+1) = Pr(st+1|st , at ),

with states st , st+1 ∈ S and actions at ∈ A. The function

R(s, a) defines the reward for executing action a in state s,

the initial state distribution d0(s) models the start conditions,

and the discount factor γ ∈ [0, 1) determines the effective

planning horizon.

A deterministic policy π is a mapping: S �→ A and defines

which action is chosen in a state s ∈ S. A stochastic policy is

a probability distribution over actions in a given state s and is

defined as π(s|a) = Pr(a|s). The performance of a policy is

measured with the so-called value function V π (s). The value

function of a policy π evaluated at state s is given by

V π (s) = E

[

∞
∑

t=0

γ t R(st , at )

∣

∣

∣

∣

π, T , s0 = s

]

,

and corresponds to the expected reward following policy π

starting from state s. The optimal value function is defined

by V ∗(s) = maxπ V π (s) ∀s ∈ S. The goal of an agent in

a MDP is to find the optimal policy π∗, i.e., a policy that

maximizes the value for every s ∈ S.

We assume that the reward function R is given by a linear

combination of m feature functions fi with weights wi . The

reward function is therefore defined by

R(s, a) =

m
∑

i=1

wi fi (s, a) = wTf(s, a),

where w ∈ R
m and f(s, a) ∈ R

m . The features fi are fixed,

known, bounded basis functions mapping from S × A into

R. For a given trajectory τ = s1a1, . . . , sT aT , the feature

counts are given by f τ
i =

∑H
t=1 γ t fi (st , at ). Similarly to

the value function, we can define the feature count f π
i under

policy π by
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f π
i (s) = E

[

∞
∑

t=0

γ t fi (st , at )

∣

∣

∣

∣

π, T , s0 = s

]

as the expected features observed when following policy π .

Since the reward function can be represented as a linear com-

bination of features fi , the expected return of policy π can

be written as

V π
w (s) =

m
∑

i=1

wi f π
i (s) = wTfπ (s),

where fπ ∈ R
m is a vector containing the single feature

counts f π
i (s) as entries.

2.2 Learning the reward function

The reward function is a crucial part of the MDP as it

defines the goal of the task and shapes the policy optimiza-

tion process. Usually, it is assumed that the reward function

is given. However, it is hard to specify the reward function for

solving a complex task beforehand, and the learned behavior

is sensitive to the provided reward function. This problem

is especially evident when the task requires modeling the

dynamics of human actions. The problem of designing the

right reward function led to the development of IRL methods.

Given the actions of an agent that is assumed to behave in an

optimal manner, the available sensory information about the

environment and, if possible, a model of the environment,

the goal of IRL is to determine a reward function that can

(mostly) justify the demonstrated behavior.

The IRL problem was originally formulated within the

MDP framework by Ng and Russel (2000). Many researches

provided further refinements in order to improve the original

algorithms suggested by Ng and Russel (2000) and Abbeel

and Ng (2004). For example, Ratliff et al. (2006) suggested

a max-margin planning approach. Ziebart et al. (2008) sug-

gested an algorithm where the principle of maximum entropy

was exploited. Ramachandran and Amir (2007) modeled the

uncertainties involved as probabilities where the demonstra-

tions are treated as evidence of the unknown reward function.

Rothkopf and Dimitrakakis (2011) extended this approach

by suggesting a general Bayesian formulation. Levine et al.

(2011) used GPs to model the reward as a nonlinear function

of the features. A recent review of IRL algorithms can be

found in (Zhifei and Joo 2012).

However, most IRL approaches rely on a given model of

the environment T or assume that it can be accurately learned

from the demonstrations. The reward function is found by

first computing a policy that optimizes a reward function

for an initial weight vector w. Subsequently, the expected

feature count of the new policy fπ can be computed. Based

on this feature count, a new weight vector that separates the

values of the expert feature fπE and the features of the current

policy fπ can be computed. These steps are repeated until the

weight vector converges. This general algorithm is displayed

in Algorithm 1. Generally, a model of the dynamics is used

to iteratively generate optimal trajectories (optimization step

in Algorithm 1) under different reward functions until the

generated trajectories match the ones provided by the expert.

Since modeling the dynamics of the table tennis task is

highly challenging, we adopt in this paper a slightly different

methodology. The policy optimization step in Algorithm 1 is

performed by searching in a finite set of policies and retaining

the policy with the highest average value. Each one of these

policies is obtained by recording the state–action trajectories

of a particular player. The skills of the players vary from

novice to expert.

Only few model-free IRL methods have been suggested:

Boularias et al. (2011) derived a relative entropy (RE)

approach which, was evaluated on a ball-in-a-cup scenario.

Mori et al. (2011) used least squares policy iteration and

least squares temporal difference learning and applied their

algorithm on human impedance control. We apply both RE-

IRL and the method suggested by Abbeel and Ng (2004) to

solve this problem and compare their performances. Boular-

ias et al. (2011) already used the same sample-based tech-

nique described in the previous paragraph. We use the same

methodology to obtain a model-free variant of Abbeel and

Ng (2004).

We use both expert and nonoptimal data to compute the

weight vector w∗ that maximizes the differences between the

nonexpert and the expert reward values. Here, we assume that

the actions chosen by the expert are to be favored over those

chosen by the less skilled players as they enable the player to

win the game. The demonstrations given by the less skilled

players under different playing conditions and goals provide

arbitrary and suboptimal policies that stand in contrast to the

policy demonstrated by the expert. To compute the reward

weights, we tested three different methods, where the results

can be found in Sect. 3.2. The first two evaluated methods

that are based on the max-margin method of Abbeel and

Ng (2004), while the third algorithm is the model-free IRL

algorithm of Boularias et al. (2011). In the following sections,

we assume that we are given a set of expert demonstrations

Algorithm 1 General IRL Algorithm

Input: DE = {τ }P
p=1 expert demonstrations

Initialize: reward feature weights w0, j = 1

expert feature counts fπE = 1
P

∑

τ∈DE fτ

repeat

Optimize π j based on w j−1

Estimate f

Update w j such that (w j )T f π j < w j fπE

j ← j + 1

until ‖w j − w j−1‖2 < ε

123



Biol Cybern

Fig. 2 Considered scenario: A table tennis player (agent) plays a game

of table tennis. At time point t , he has to decide how to return the

approaching ball to the opponents court such that the chance of win-

ning the point will increase. Returning the ball to a specific goal on the

opponent’s court (with a specific orientation and velocity) corresponds

to an action at executed by the agent. The player chooses this action

based on his current state st (a). Due to this action, the system will

transfer to the state st+1 defining a new situation for the player (b)

DE = {τp}
P
p=1, where τp = s

p
1 a

p
1 , . . . , s

p

Tp
a

p

Tp
corresponds

to one rally (i.e., state–action trajectory), as well as a set of

nonoptimal demonstrations DN = {τl}
L
l=1. Here, Tp is the

number of volleys (i.e., state–action pairs) in the observed

rally τp.

Please note that the following IRL methods are only dis-

cussed briefly to illustrate how the chosen IRL methods were

applied in this (model-free) context. The reader is referred

to the original literature as referenced in the following for a

detailed description and analysis of the presented approaches.

2.2.1 Model-free max-margin for game values

The max-margin method of Abbeel and Ng (2004) aims

at finding a policy π that has an expected return close

to that of the expert, i.e., maxw |V π
w (s) − V

πE
w (s)| ≤ ǫ,

where ‖w‖2 ≤ 1. As the value is a linear function of the

reward, it suffices to find an optimal policy π that has fea-

ture counts close to the ones of the expert’s trajectories, i.e.,

‖fπ − fπE ‖2 ≤ ǫ. The policy π needs to be chosen from

the set of previously recorded nonoptimal policies due to the

lack of a model for generating policies. We use the projection

algorithm of Abbeel and Ng (2004) to solve the following

optimization problem

max
ξ,w

ξ s.t. wT fπE ≥ wT fπ j + ξ, ‖w‖ ≤ 2,

where ξ is the difference of the value of the expert and the

value of the nonexpert, and π j are the policies of nonex-

pert players. fπ j therefore corresponds to the average feature

count for all rallies demonstrated by a player in one game.

The corresponding algorithm is displayed in Algorithm 2. In

the following, we will refer to this algorithm as max-margin

for game values (MMG).

Algorithm 2 Max-Margin for Game Values

Input: DE = {τ }P
p=1 expert demonstrations

DN = {τ }L
l=1 nonoptimal demonstrations

Initialize: fπE = 1
P

∑

τ∈DE fτ

fπi = 1
L

∑

τ∈DNi fτ with DNi ⊂ DN

w0 = 0, j = 1

repeat

i = arg mini (w j−1)T (fπE − fπi )

f j−1 = fπi

Computef̄
j−1

, the projection of fπE on (f̄
j−2

, f j−1)

w j = fπE − f̄
j−1

∆ f = ‖fπE − f̄
j−1

‖2

j ← j + 1

until ∆ f < ε

2.2.2 Model-free max-margin of states values

Using the max-margin method of Abbeel and Ng (2004) in a

model-free setup as described above has one drawback. We

assume that the initial state of the rally largely defines all

following state–actions pairs. However, in table tennis, it is

unlikely that any player plans the strokes for more than only a

few steps ahead. Computing the value function based on only

a few state–action pairs after the initial serve would cause

the agent to lose important information that led to winning

or losing the rally. To avoid this information loss, we need to

compare the values of the expert in every state in the recorded

trajectories to the ones of the nonexperts in the same state.

As the states are continuous, it is unlikely that exactly the

same state is encountered in both the expert and nonexpert

trajectories. Nevertheless, we can find the weight vector w

by solving the quadratic optimization problem

max
w

P
∑

p=1

Tp
∑

t=0

(

V πE
w (s

p
t ) − V̂ πN

w (s
p
t )

)

− λ||w||2, (1)
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Algorithm 3 Max-Margin of States

Input: DE = {τp}
P
p=1 expert demonstrations

DN = {τl }
L
l=1 nonoptimal demonstrations

Initialize: n = 1

for all p ∈ DE do

for all s
p
t ∈ τp do

[FπE ]n: =
∑H

p
t

i=t f(s
p
t , a

p
t )

Compute k-nearest neighbors Nk(s
p
t )

[FπN ]n: = 1
k

∑

sl
t ∈Nk (s

p
t )

∑H l
t

i=t f(sl
i , al

i )

n ← n + 1

end for

end for

w = arg maxw w(FπE − FπN ) − λ||w||2

where V̂
πN
w (s

p
t ) is an estimated value of the nonexpert players

in the current state s
p
t of the expert. Estimating the value V̂ πN

in a given state s is a regression problem that we propose to

solve by using the k-nearest neighbors method,

V̂ πN
w (s) =

1

k

∑

s′∈Nk (s)

V πN
w (s′),

where Nk(s) is the set of k-nearest neighbors of s among all

the states that have been observed in trajectories of the nonex-

pert players.2 The metric used to find the k-nearest neighbors

is a Gaussian kernel K (s, s′) = exp(−(s−s′)T
�

−1(s−s′)T)

that defines the similarity measure between states. The diago-

nal matrix � contains the measured standard deviation of the

data. Note that one can also use other nonparametric meth-

ods, such as kernel regression.

The value functions V πE and V πN of the expert’s policy

πE and nonexperts policies πN are computed as

V π
w (s

p
t ) =

1

H
p

t − t + 1

H
p

t
∑

i=t

wTfπ (s
p

i , a
p

i ),

where H
p

t = min{t + H − 1, Tp} and H is the planning

horizon, i.e., the number of steps we look into the future.

The corresponding algorithm is displayed in Algorithm 3. In

the following, we will refer to this algorithm as max-margin

of state values (MMS).

2.2.3 Relative entropy method

The relative entropy IRL method (Boularias et al. 2011)

finds a distribution P over trajectories that minimizes the

KL-divergence to a reference distribution Q, while ensur-

ing that the feature counts under P are similar to the feature

counts in the expert trajectories. The reference distribution

Q encodes prior preferences and constraints of the learned

2 Please note that the performance of k-NN regression depends on the

density of the data. In the table tennis context, most of the data were

adequately concentrated in a small region.

Algorithm 4 Relative Entropy IRL Algorithm

Input: DE = {τp}
P
p=1 expert demonstration

DN = {τl }
L
l=1 nonoptimal demonstration

Initialize: fπE = 1
P

∑

τ∈DE fτ

w0 = 0, j = 1

repeat

Compute P(τ |w j−1) =
Q(τ ) exp(

∑m
i=1 w

j−1
i fi )

∑

τ∈DN Q(τ ) exp(
∑m

i=1 w
j−1
i fi )

for all τ ∈ DN

for all features fi do
∂

∂wi
g(w) = f

πE

i −
∑

τ∈DN P(τ |w j−1) fi (τ ) − αi λi

w
j

i = w
j−1
i + ∂

∂wi
g(w)

end for

∆w = ‖w j−1 − w j ‖2

j ← j + 1

until ∆w < ε

behavior, which makes this method well suited for trans-

ferring the expert’s policy to a robot. The solution to this

problem takes the following form

P(τ |w) =
1

Z(w)
Q(τ ) exp

(

wT f τ
i

)

,

where Z(w) =
∑

τ Q(τ ) exp
(

wT f τ
i

)

. The reward weight

vector w is found by solving the optimization problem

max
w

wT fπE − ln Z(w) − λ‖w‖1. (2)

The gradient of this objective function is calculated by re-

using the expert and nonexpert trajectories with importance

sampling. For our experiments, we choose the reference dis-

tribution Q to be uniform, as we are mainly interested in

extracting the most informative reward function and not in

transferring the expert’s policy. The corresponding algorithm

is displayed in Algorithm 4. In the following, we will refer

to this algorithm as RE.

2.3 Computational model for representing strategies in

table tennis

In the previous sections, we have given a general description

of how the decision processes in table tennis can be modeled

as a MDP. We also showed several approaches for obtaining

the reward function from the table tennis player’s demon-

strations. As a next step, we now need to specify the states,

actions and reward features of the table tennis task.

2.3.1 States

Ideally, the state of the system would contain all informa-

tion experienced by the agent. However, such an approach is

not feasible for two reasons: First, we do not have access to

all information. For example, we do not know what kind of

assumptions the player makes about the opponent’s strategy
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Fig. 3 The state of the system is defined by the relative position of the

agent (dsx , dsy) and the relative position (dox , doy) and velocity (vo) of

the opponent toward the table, as well as the position (dbx , dby) and

velocity (vb) of the ball when bouncing on the table

or the spin of the ball. Modeling such hidden and uncer-

tain information in the state space leads to the formulation

of partial observable MDPs (PoMDPs, (Monahan 1982)).

Second, modeling such high-dimensional continuous state

domains in the context of PoMDPs requires a large data set

and is likely to be intractable. Hence, we approximate the

problem by assuming perfect knowledge about the environ-

ment and remove redundant and irrelevant information. We

assume that the player has to decide where and how to hit

the ball when the hitting movement is initiated and that the

decision depends on the following information: the planar

Cartesian position of the agent ds = [dsx , dsy], the oppo-

nent’s position do = [dox , doy] and velocity vo, the state of

the rally g ∈ {player serve, opponent serve, not served}, the

elbow position of the opponent eo = [eox , eoy ] as well as

the ball position db = [dbx , dby], velocity |vb| and direction

given by the angles θpy and θpz (see Fig. 3).

Thus, the state can be represented by the parameters

si = [db, |vb|, θpy, θpz, ds, do, eo, vo, g]. The variables θpy

and θpz are defined as the horizontal and vertical bouncing

angles of the ball at the moment of impact on the player’s

side of the table, respectively. θpz defines the bouncing angle

in the xz-plane and therefore corresponds to how flat the ball

was played. θpy defines the bouncing angle in the xy-plane

(see Fig. 5). Playing the ball diagonal to the backhand area of

the opponent results in a smaller negative angle for θpy, while

playing the ball diagonal to the forehand area results in an

increased angle. Playing the ball straight corresponds to an

angle of zero. Additionally, we define a set of terminal states

sT ∈ {W, L}. A rally will end when either the subject won

the rally (sT = W ), or the subject lost the rally (sT = L).

2.3.2 Actions

To perform a hitting movement, the system needs the fol-

lowing information: (i) where and when to hit the ball, (ii)

the velocity of the racket and (iii) the orientation of the

racket at impact. While the first may directly result from the

current state of the system, the second and third points are

determined by where and how the player decides to return

the ball to the opponent’s court. This decision includes the

desired bouncing point pb of the ball on the opponent’s court,

the corresponding bouncing angles θoy and θoz, the overall

velocity of the ball ||vb|| and the spin of the ball. Here, the

desired bouncing point refers to the bouncing point on the

opponent’s court desired by the player. Since the different

kinds of spin are hard to capture without an expert classi-

fying the sampled data, we discard the spin and use only

basic strategic elements. Therefore, an action can be defined

as a = [pb, ||vb||, θoy, θoz]. We do not distinguish between

serves and nonserves for the actions, as the first bounce of

the serve will be fully described by the second bounce.

2.3.3 Reward features

In order to estimate the desired unknown reward function, we

assume that the reward function is given by a linear combina-

tion of observable reward features. Usually, those reward fea-

tures are chosen manually by the experimenter. An automatic

approach for choosing these reward features was suggested

by Levine et al. (2010). Here, it was suggested to construct

the features from a logical combinations of components that

are the most relevant to the task. Nevertheless, this approach

also requires the definition of the most relevant components

of the state space beforehand. Even if it would be possible

to consider the whole state space as components, some fea-

tures might be the result of a nontrivial combination of these

elements. Other feature combinations might be redundant

and could dominate the behavior due to their multiple occur-

rences. Therefore, we choose the features manually taking

into account the logical combination of state components

that seemed most relevant for the task.

We choose the features as a combination of the state infor-

mation of the ball and the position of the opponent. In order to

be able to distinguish whatever the relevant features depend

on the opponent or not, we choose features that depend only

on the state information of the ball but are independent of the

opponent and features that depend on the state information

of the ball and the opponent. In the following, we list the

chosen reward features fi (s, a).

Position on the table This feature corresponds to the

bouncing point of the ball in the opponent’s court. Players

do not usually target a particular point on the table but rather

a small region. Therefore, we discretize the court into nine

regions (see Fig. 4). Each region i is identified by its cen-

ter ci. We use as features the relative distances between the

observed bouncing point pb of the ball on the opponent’s

court and each center ci, given by
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pci
=

exp(−‖pb − ci‖2)
∑

j exp(−‖pb − c j‖2)
.

This computation is based on the euclidean distance between

pb and the cell center ci . pb corresponds here to chosen action

of the player.

Bouncing angles We computed two bouncing angles θoz

and θoy which define the direction of the ball when bouncing

on the opponent’s side of the court (see Fig. 5). This feature

allows us to tell whether the ball was played rather cross or

straight, or if there where any preferences in how flat the ball

was played.

Distance to the edges of the table We provided two

features defining the proximity of the bouncing point pb

to the edge of the table et . One for the x-direction δtx =

exp(−1.5|etx − pbx |) and one for the y-direction δty =

exp(−1.5|ety − pby |). These features were chosen in order

to see whether the expert plays in general closer to the edges

than the naive player.

Fig. 4 In order to compute the table preferences on the opponent’s

court, the table was divided into nine cells. Each cell was assigned a

center (red points) ci (color figure online)

Velocity of the ball The velocity of the ball ‖vb‖ in meters

per second was used as another feature.

Smash One of the features defined whether the ball was

a smash. When the ball velocity was higher than 10 m/s, this

feature was set to one, otherwise this feature was set to zero.

The velocity of 10 m/s was defined empirically.

Distance to the opponent Two features define the dis-

tance of the bouncing point of the ball on the opponent’s

court and the right hand of the opponent. One of the features

is defined by the distance in x-direction δox = |pox − pbx |,

while the second is defined by the distance in y-direction

δoy = |poy − pby |. This feature allows to evaluate whether

the skilled player chose the bouncing point such that the

distance between the player and the ball is maximized or

not.

Elbow One feature is the closeness of the ball to the elbow,

and therefore, it measures if the ball was played to the elbow

of the opponent eo. It is defined by δelbow = exp(−|eoy −

pby + tan(θy)(eox − pbx |)), where tan(θy)(eox − pbx ) is an

extrapolation of the ball position. This feature also provides

a measurement of how close the ball bounces relative to the

opponent. Playing the ball close to the opponent makes it

harder for the opponent to return the ball.

Movement direction of the opponent One feature was

derived in order to define the velocity of the opponent and the

ball in y-direction. It is defined by vo = (poy − pby )voy ,. This

feature indicates whether the ball was played in the opposite

moving direction of the opponent.

Winning and loosing One binary feature was used to

assign a reward to the terminal states (i.e., winning and los-

ing). For all nonterminal states, this feature was set to zero.

For the terminal states, a value of one was assigned to the

feature for sT = W and a value of −1 for sT = L .

All features are scaled to lie in an interval of [0 1], except

for the direction sensitive features θoy and vo, which lie in

Fig. 5 The bouncing angles θy and θz in the xy- and xz-surface define the orientation of the ball. While θz corresponds to the horizontal bouncing

angle, θy corresponds to the direction of the ball and thereby defines if the ball is played cross to the left, cross to the right or straight
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an interval of [−1 1]. Some of the features reflect aspects

of other features. For example, the position of the bounc-

ing point on the table can reflect a preference of a bounc-

ing angle. The position on the table might depend on the

position of the opponent or opponent specific weakness.

Nevertheless, we choose these feature since each of them

seemed to be likely to be a strategic component and as they

allow us to analyze the influences of the state components

individually.

3 Experiments and evaluations

To validate the suitability of using IRL algorithms in order

to extract basic strategic elements, we recorded table tennis

players with various skill levels. The subjects played under

three different conditions. These data were used to com-

pute the reward feature weights and to validate the potential

reward functions.

In the following, we will first describe the experiment and

the data processing procedure. Subsequently, we will present

the results.

3.1 Experimental setup and data collection

The purpose of the experiment was to investigate basic strate-

gic elements in table tennis (excluding all types of spin which

are difficult to capture), using IRL techniques. Therefore, a

data set with expert demonstrations and a data set with dif-

ferent suboptimal policies were collected. In this study, there

were both participants serving as subjects who rarely played

table tennis, as well as subjects who played on a regular basis

in a table tennis club.

3.1.1 Participants

Eight healthy right-handed subjects of all genders (seven

males and one female) participated in this study. The mean

age of the participants was 26.25 years (standard deviation

(SD) 3.38 years). All subjects had normal or corrected-to-

normal eye sight. All participants gave their consent prior

to the experiment and completed a form about their playing

skills according to which they were grouped in one of two

classes: (1) naive players and (2) skilled players.

The group of naive players consisted of five subjects (four

males and one female) with a mean age of 28.4 years (SD

1.14 years). The subjects were recruited from the Max Planck

Campus in Tübingen and the University of Tübingen. All

naive players fulfilled the following requirements: (i) never

played in a table tennis club, (ii) did not train on a regu-

lar basis (weekly or daily) in the last five years, (iii) did

not participate in table tennis tournaments and (iv) did not

play any other racket sports on a regular basis. The group

of skilled players consisted of three subjects (all male) with

a mean age of 22.67 years (SD 2.08 years). The subjects

were recruited from a local table tennis club and fulfilled the

following requirements: (i) played for at least eight years in

a table tennis club, (ii) trained on a weekly basis (at least

twice a week) and (iii) participated regularly in table tennis

competitions.

One of the skilled players was used as a permanent fixed

opponent and, therefore, was not considered part of the sub-

ject set. Furthermore, only one of the skilled subjects was

used for the expert demonstrations since the other skilled

player was not able to win against the opponent. All other

subjects were used as nonoptimal demonstrations. Due to

the fact that the nonoptimal data set also contains a skilled

player, we have the possibility to test the approach not only

to detect the differences between naive and skilled players,

but also between skilled players which have the same level

of training.

3.1.2 Apparatus

In order to collect information about the position of the par-

ticipants, the table and the ball during the game, we used

a VICON motion capture system (VICON MX-13 with the

VICON IQ 2.5 Software, 16 cameras, 120 frames per sec-

ond). Therefore, 25 VICON infrared reflecting markers were

attached to the hands, wrists, elbows, shoulders, hips and the

back and front of the participants. With this setup and a 3D

kinematic model of the upper body of each individual, we

could capture their whole body movement during the game.

To identify the table and the net, we placed four markers

at each corner of the table and one marker on one of the

edges of the net. A standard table tennis table (length 2.74 m,

width 1.53 m and height 0.76 m) and rackets conform with

the rules of the International Table Tennis Federation (2011)

were used. The surfaces of the rackets were chosen such that

they did not allow for spin on both sides. The table tennis

ball was covered with a gray green infrared reflecting pow-

der in order to detect it with the VICON system. As a result,

the ball had an additional weight of 2 g. This coating slightly

changed its physical properties (e.g., it additionally reduced

the spin during the game). Additionally, the subjects were

recorded with two video cameras. The experimental setup is

also shown in Fig. 6.

3.1.3 Procedure

The participants were asked to play a game of table tennis

under three different conditions.

Condition 1. The subject played a cooperative game of

table tennis. The goal for the subjects is to maximize the

number of returns in a rally for a ten minute period.
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Fig. 6 Experimental setup. A naive player (right side) plays against

an expert opponent (left side). The upper body of both players and the

ball are tracked by a motion capture system

Condition 2. The subject was told to perform a competi-

tive game of table tennis, while the opponent was instructed

to return the ball “nicely” (i.e., the opponent was instructed

to play toward the subject when possible in a cooperative

way).

Condition 3. Both the subject and the opponent were

instructed to play a competitive game of table tennis.

Each of the seven subjects played against the opponent

one game under each of the three conditions. The partic-

ipants were required to play table tennis according to the

standard table tennis rules defined by the International Table

Tennis Federation (2011) with the following exceptions: (i)

The players did not switch sides after a game, (ii) the expedite

system3 did not apply during the game and (iii) the first serve

of the match was always executed by the subject (never by the

opponent). A game consisted of the best of five matches, i.e.,

the game was won by the player who first won three matches.

Before the experiment started, the subjects played a friendly

game with the opponent for 10 minutes in order to get used

to the slightly altered bouncing properties of the table tennis

ball (due to the coating with reflective powder). Each subject

was required to read the rules before the experiment. The

current score of the game in Conditions 2 and 3 were dis-

played on a scoreboard visible for both of the two players. In

each game, a referee ensured that the game was conducted

in accordance with the rules. The score was protocolled by

two of the experimenters independently and reconciled after-

ward.

3 Expedite system: additional rules to discourage slow play in a table

tennis match. It is used after 10 minutes of play or if requested by both

players.

3.1.4 Data processing

The captured motion was post-processed using the VICON

IQ 2.5 software. The marker labels were automatically

assigned to each marker using the VICON IQ 2.5 trajectory

labeler. Errors that occurred during this automatic labeling

process were manually corrected afterward. The ball had to

be labeled manually as it was tracked similar to a single

VICON marker. The VICON IQ 2.5 kinematic fitting func-

tion computed the 3D kinematic information of the subjects

automatically. Bouncing and hitting events for all data were

then automatically labeled during another MATLAB post-

processing step and manually reassigned if necessary. For

each point, the score was automatically computed based on

this information and reconciled with the score information

recorded by the experimenters. Finally, for each time where

the ball was hit by the subject, the corresponding state and

reward features were extracted and saved in a MATLAB file.

3.2 Results and discussion

Only one of the subjects was able to win against the opponent

in the competitive game under Condition 3. All other games

were won by the skilled opponent. The scoring results of

the subjects that lost the game can be found in Table 1. The

skilled player who won the game in Condition 3 was able to

win 41 out of 75 rallies. Based on these results, the data were

divided into two subsets: (1) a nonexpert data set and (2) an

expert data set. The nonexpert data set included all games

of the subjects who lost against the fixed opponent, i.e., all

naive subjects and one of the skilled players, as well as all

cooperative games. We will refer to the players that lost as

Naive 1–5 and Skilled 1. The expert data set consisted of all

rallies in the competitive game (Condition 3) played by the

skilled player that won against the opponent. We will refer to

this player as Expert. When asked which player performed

worst, the opponent stated that Naive 3 was the worst.

We tested all three IRL methods as described in Sect. 2.2.

To evaluate the potential reward functions, we performed

a leave-one-subject-out testing scheme. We computed the

reward feature weights for each of the three methods seven

times. Every time leaving out all rallies (i.e., state–action

trajectories) of one of the subjects that lost or the rallies

of the cooperative game of the expert respectively. We also

excluded 20 rallies of the expert for the validations. To this

spared data of the expert and the naive players, we refer to as

spared test data. The obtained reward functions were tested

for the different skill levels of the subjects using the excluded

rallies demonstrated in the game under Condition 3 only and

the different styles using the cooperative game of the expert.

All resulting reward functions yielded the highest rewards

for the feature of the terminal state for losing or winning the

rally. Winning the rally was therefore highly desirable for the

123



Biol Cybern

agent while losing should be avoided. For the evaluations, we

did not consider this feature in order to see how well we can

distinguish the subjects based on the other strategic elements.

Analyzing the scores yielded by the subjects in Condi-

tion 2 and Condition 3, one can see that the scores yielded

by the naive players are higher in Condition 3 than in Con-

dition 2. This might seem contradicting on a first glance.

While the opponent was playing always nicely back toward

the subject in Condition 2, there was a lower chance of mak-

ing a fault. In Condition 3, however, the opponent played

the ball such that there is a higher chance that the subject

is not able to return the ball. By doing so, he also takes a

higher risk of making a fault. It seems reasonable to assume

that a player takes a higher risk when he has a reasonable

advance or is quite certain that he can beat his opponent.

This assumption seems to be reflected in the data, where it

can be observed that the opponent loses more points in Con-

dition 3 when his opponent was not as good (as reflected in

Condition 2).

Statistical significance values can be computed by repeat-

ing the game of each player several times. However, it is

anticipated that the behavior of the individual players will

change overtime due to his increased experience and knowl-

edge of the opponent. Consequently, also their expected fea-

ture counts will change overtime. Significance tests might not

be able to capture such time varying behaviors of contestants

during an extended match.

Due to the complex and multidimensional nature of the

task, the feature scores within a game usually have a large

variance. For this reason, we reported only the average reward

for each player. From the results reported in Table 1, it can be

concluded that the predicted performance (average reward)

of each player is correlated with the observed performance

(actual score).

In the following, we will first present the overall results of

the three methods showing that we were able to distinguish

between different playing skills and styles. Subsequently, we

will discuss the influence of the horizon for the MMS algo-

rithm. Finally, we discuss the results for all features sepa-

rately.

3.2.1 Classifying the skill levels of the players

We computed the differences in the average reward for a

state–action pair of the spared expert and nonexpert data

for the reward functions obtained from the three methods

described in Sect. 2.2 abbreviated as before as MMG, MMS

and RE. The results in terms of the differences in the aver-

age reward between expert and nonexpert are displayed in

Table 1. All three reward functions were able to distinguish

between the nonexpert games and the expert game, as well as

between the different playing styles of the expert (competi-

tive vs cooperative). In general, the average reward for each

player reflected the skill level of the players with the excep-

tion of Naive 2. For all naive players except Naive 2, the

differences were high, while the difference between Skilled

1 and the expert was moderate. These differences were more

distinctive for the MMS algorithm.

The player Naive 2 yielded similar scores as the expert

and the player Skilled 1 with respect to the analyzed features

(see Table 1; Fig. 8). Although the subject did not yield as

many points as player Skilled 1, he did achieve a better fea-

ture score. There are two possible explanations for this result.

First, it can be argued that the subject did use a similar strategy

as the expert, but suffered from an inaccurate movement exe-

cution due to his lack of practice. As a consequence, he made

many mistakes as playing the ball into the net or missing the

court. Second, it is possible that we are missing features that

would distinguish the naive and the expert. However, Naive 2

was the best of the naive players and came close to the score

observed for the skilled player. Given the high scores in Con-

dition 2 and 3 (compared to Skilled 1), it seems reasonable

to assume that player Naive 2 chooses his actions based on

the same principles as the expert in a game without spin. In

comparison, Skilled 1 has a very good movement execution

due to his long training and experience. However, he was not

able to win against the opponent, although this player had the

most experience in terms of years. This suggests that Skilled

1 was a very good player in terms of playing the ball success-

fully back to the opponent, but was not efficient in choosing

his actions without the strategic element of spin.

Table 1 Summary of the results of the evaluations for the different methods

Method Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

Average reward difference MMG 1.01 0.28 0.90 1.16 0.69 0.49 0.55

with respect to the expert MMS 1.16 0.07 1.24 0.86 0.71 0.33 0.50

RE 0.70 0.11 0.60 0.80 0.42 0.31 0.55

Scores in Condition 2 5:33 12:33 2:33 5:33 2:33 21:34

Scores in Condition 3 13:33 17:33 10:33 5:33 17:33 20:33

The differences in the average rewards with respect to the expert define the differences between the reward of the expert and the spared test subject

of the nonexpert data set. The feature of winning and loosing the rally was not included. MMG corresponds to the model-free max-margin of

game values, MMS corresponds to the model-free max-margin of states values with an horizon of three, and RE corresponds to the relative entropy

method (see Sect. 2.2)
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The close feature scores of subject Naive 2 the expert

also show that all tested algorithms are able to deal with

nonoptimal data containing strategies similar to the one of

the expert.

3.2.2 Comparison of the tested IRL methods

All three reward functions obtained in the evaluation show a

very small difference in the average reward of the expert and

Naive 2, followed by Skilled 1 and Naive 5. Furthermore, all

three methods showed relatively large differences between

the expert and the players Naive 1, Naive 3 and Naive 4.

However, they disagree in the ranking of these three play-

ers. While the reward function obtained by the MMG and

RE algorithm shows the highest difference for the expert and

Naive 4, the reward function obtained by the MMS algorithm

yields the highest difference between the expert and Naive 3.

Naive 4 being the worst player is in compliance with the scor-

ing results of Experiment 3, while Naive 3 being the worst

player is in compliance with the statement of the permanent

opponent.

3.2.3 Influence of the planning horizon

For the max-margin of the state values algorithm given by the

MMS algorithm, we evaluated the setup with three different

horizons. We chose the horizons of H = 1, H = 2 and

H = 3. The horizon of one only considers one state–action

pair. The horizon of two also considers the state–action pair

presented directly after the current one. A horizon of three

means that we consider up to two state–action pairs following

the current one.

The results of the average reward differences of the nonop-

timal policies and the expert for the whole game and the states

directly before the terminal are displayed in Table 2. In gen-

eral, the average reward difference was reduced slightly with

increasing horizon, while the average reward difference for

the last H − 1 states before the terminal state increases with

growing planning horizon, reaching its maximum with a hori-

zon of three. Horizons larger than three did not improve the

differences in the reward.

3.2.4 Individual reward features

Analyzing the reward weights individually, the different

methods showed similar weights for the most important fea-

tures (i.e., the features with the highest weights and highest

resulting reward differences). The largest influence resulted

from the bouncing angles θy and θz , the table preferences

and the distance between the desired bouncing point and the

racket of the opponent. For simplicity, we will only discuss

the parameter values for the individual features of the reward

functions obtained by the MMS and RE algorithm (MMG had

the worst performance in terms of individual feature classi-

fication).

The reward weights for the individual features are dis-

played in Fig. 7a, b. We also showed the average reward

differences for the spared test data sets for each feature indi-

vidually in Fig. 7b and for the different time steps in Fig. 7c.

The individual differences of each player are displayed in

Fig. 7d. Figure 8 shows the various characteristics of the

features for each subjects individually. We will discuss all

features in the next sections.

A paired t-test was performed on the average rewards of

the expert and the nonexert subject for each feature (Fig. 8).

The results are reported below.

3.2.5 Goal preferences on the table

The preferences of the locations on the table are indepen-

dent from the state information of the opponent, but they

do reflect parts of the strategy that will also be covered by

other features. The resulting reward functions of the differ-

ent algorithms showed a preference for the areas where the

opponent would have to return the ball using the backhand,

while the areas that are suited for returning the ball with

the forehand and the areas directly after the net are often

rather avoided (see Fig. 7a). The differences in the average

reward for the goal preferences on the table were signifi-

Table 2 Summary of the results for the different horizons with Algorithm 3

horizon Naive 1 Naive 2 Naive 3 Naive 4 Naive 5 Skilled 1 Cooperative

Average reward difference 1 1.30 0.04 1.17 0.91 0.74 0.30 0.43

with respect to the expert 2 1.20 0.07 1.22 0.87 0.72 0.33 0.47

3 1.16 0.07 1.24 0.86 0.71 0.33 0.50

Average reward differences 2 0.91 −0.21 0.92 0.57 0.38 −0.12 0.23

directly before terminal state 3 1.12 0.04 1.23 0.89 0.76 0.24 0.53

The differences in the average reward with respect to the expert trained with the different horizons. The differences in the average reward directly

before the terminal define the differences of the reward of the expert and the spared test subject for the state before the terminal or the average

reward of the two states before the terminal for the horizons 2 and 3, respectively

123



Biol Cybern

(a) Reward function for table preferences
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(b) Reward feature weights
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(c) Average reward differences
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(d) Reward differences features at different time steps

Fig. 7 Resulting parameter values for the individual features. a The

resulting reward function of the table preferences for Algorithm 3 (MM).

b The weights of all other features for Algorithm 3 (MM) and Algo-

rithm 4 (RE), respectively. c The differences of the average reward of

the expert and the naive player for each feature separately using the

reward function of the max-margin algorithm (green) and the relative

entropy algorithm (yellow). d The differences of the average rewards for

the most important features at different time steps before the terminal

state (win or loss) for the reward function yield with the max-margin

algorithm. a Reward function for table preferences. b Reward feature

weights. c Average reward differences. d Reward differences features

at different time steps (color figure online)

cant for both MMS (t (4) = −4.22, p = 0.008) and RE

(t (4) = −3.06, p = 0.03).

3.2.6 Distance to the edges of the table

The distance of the bouncing point of the ball to the edges

of the table had only a small positive influence in the reward

function yielded by the max-margin algorithm. The reward

function yielded by the RE algorithm assigned a little neg-

ative reward for playing the ball close to the edge in the

y-direction (i.e., along the width of the table) and a rel-

atively high negative reward for playing the ball close to

the edge in the x-direction (direction toward the player).

The average reward differences in the evaluations indicate

that the reward assigned by the reward function of the RE

method is to be favored (see Fig. 7b). However, the average

reward differences in x- and y-directions are not significant

for both MMS (t (4) = 2.07, p = 0.09; t4) = 1.18, p =

0.29) and RE (t (4) = −1.85, p = 0.12; t (4) = −0.91,

p = 0.40).

3.2.7 Distance to the opponent

Maximizing the difference between the position of the bounc-

ing point and the position of the opponent in the x-direction

(i.e., direction toward the opponent) received only a small

reward (Fig. 7a) and also had only a small effect in the eval-

uations (Fig. 7b). While the reward function of the maxi-
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Fig. 8 Individual player

preferences. Histogram of the

average reward differences

between the expert and

nonoptimal players for each

player and each feature

individually. The reward

function was received by the

MMS algorithm with a horizon

of three (color figure online)
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mum margin algorithm assigned a slightly positive reward

for maximizing this distance, the reward function yielded

by the relative entropy algorithm assigned a slightly neg-

ative reward. The evaluations on the spared test data were

in favor for the positive reward weights. The differences

in the average reward were not significant for both MMS

(t (4) = −1.5, p = 0.19) and RE (t (4) = 1.25, p = 0.26).

The distance in y-direction (i.e., along the width of the

table) between the bouncing point and the racket of the oppo-

nent resulted in a high reward in both reward functions. This

feature also influences the differences in the reward yield

by the naive and expert table tennis player. The difference

in the average reward of the expert and the subjects was

significant for both MMS (t (4) = −2.67, p = 0.044) and

RE(t (4) = −2.69, p = 0.046).

The overall performance on average only increased by

∼ [0.05|0.08].4 The differences in the average reward for

the features before a terminal state increased dramatically by

∼ [0.26|0.40] and became a dominant factor in the reward

function (see Fig. 7d). The differences between the average

reward two states before the terminal were below average.

This observation suggests that the chance of winning a point

increases with an increasing distance between the bouncing

point and the racket between the player.

3.2.8 Proximity to the elbow

Playing toward the elbow of the opponent had a negative

effect. The weights for the elbow features were negative and

4 In the following, the first value will correspond to the reward differ-

ences obtained by MMS algorithm and the second value will correspond

to the reward differences obtained by the RE algorithm.

increased the differences in the average reward between non-

expert players and the expert player (see Fig. 7b). The dif-

ferences in the average rewards between expert and subjects

were significant for RE (t (4) = −3.01, p = 0.03), but not

for MMS (t (4) = −2.47, p = 0.06).

3.2.9 Velocity of the ball and opponent

The feature for the velocity of the ball had only a small posi-

tive weight and almost no influence on the difference between

the players (see Fig. 7a, b) in the evaluations. This feature was

also not significant for both MMS (t (4) = −2.24, p = 0.07)

and RE (t (4) = −2.25, p = 0.07).

The movement direction of the opponent relative to the

ball had a moderate positive weight (see Fig. 7a), but only a

small influence in the evaluations on the differences between

the nonexpert and expert data set. These differences were

significant in both MMS (t (4) = −4.7, p = 0.005) and RE

(t (4) = −3.8, p = 0.01). This observation indicates that

this feature was used by the expert but did not dominate his

behavior.

3.2.10 Direction of the ball

We evaluated the direction of the ball by means of two

angles: θz and θy . The horizontal angle θz had a high negative

reward value, i.e., smaller angles were preferred. The over-

all difference in the performance between the expert and the

naive players did increase the overall reward difference only

slightly. Hence, the ball was in general played in a slightly

flatter manner by the expert. However, this feature was not

significant for both MMS [t (4) = −1.26, p = 0.26] and RE

[t (4) = −0.35, p = 0.73].
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Fig. 9 Possible strategy that distinguished the expert player that won

the game, from the nonexpert players that lost the game against the

opponent. If the expert had the chance, he would play the ball very

cross to the backhand area (left side). As a result, the opponent was

forced to move more into the left corner. The expert could then play the

ball to the forehand area in order to increase the distance between the

ball and the opponent (right side)

The angle θy also had a high negative weight, i.e., playing

the ball cross to the backhand area was preferred to play-

ing the ball cross toward the forehand area. These results are

conform with the table preferences as displayed in Fig. 7a.

This feature was one of the dominating factors in the reward

function and in the evaluations of the excluded subjects. The

average difference between expert and naive players for the

state right before the terminal state was only decreased by

∼ [0.02|0.01]. The average reward two states before the ter-

minal state on the other side were much higher than the over-

all average reward (∼ [0.48|0.25]). The differences in the

average reward of the expert and the subjects were significant

for this feature for both MMS (t (4) = −3.46, p = 0.018)

and RE (t (4) = −3.56, p = 0.016).

This observation together with the results of the distance

of the bouncing point and the racket suggests the following

strategy successfully applied by the Expert. When playing the

ball very cross to the outer backhand area of the opponent,

the opponent was forced to move to his left. The expert used

this opportunity to play the ball to the other side of the table

in order to increase the distance between the ball and the

opponent, although he usually did not play to the forehand

area (see Fig. 9).

The observation that the overall difference in the reward

between the expert and Naive 2 and the expert and Skilled

1 is not high indicates that these two players use similar

techniques in terms of playing the ball cross to the back-

hand area. However, when comparing the results in the

last hits before the terminal state, we notice that (i) the

expert usually plays the ball more cross in the backhand

area, forcing the opponent to move further in this direc-

tion and (ii) the other two players did not play the ball

into the other direction afterward in order to increase the

distance.

4 Conclusion

In this paper, we modeled table tennis games as a MDP. We

have shown that it is possible to automatically extract expert

knowledge on effective elements of basic strategy in the form

of a reward function using model-free IRL. To accomplish

this step, we collected data from humans playing table ten-

nis using a motion capture system. Participants with differ-

ent skill levels played in both a competitive and a cooper-

ative game during this study. Based on their performance,

we divided the data into an expert and a nonoptimal data

set. These data sets have been used to infer and evaluate the

reward functions.

We have tested three different model-free inverse rein-

forcement learning methods. Two were derived from the

model-based IRL method of Abbeel and Ng (2004). The

third algorithm was the model-free relative entropy method

of Boularias et al. (2011). The resulting reward functions

were evaluated successfully in a leave-one-subject-out test-

ing scheme. All learned reward functions were able to distin-

guish strategic information of players with different playing

skills and styles. The findings of all tested IRL methods sup-

port each other and demonstrate that they are all suitable for

the challenging task context presented in this paper.

The presented approach used information about the posi-

tion of the player and the opponent as well as the ball position,

velocity and orientation. However, assumptions made by the

player about the spin or the strategy of the opponent were not

included in this setup. The reward function was able to cap-

ture the goal of the task, in terms of winning the rally while

avoiding to lose it. The key elements revealed by the model

were (i) playing cross to the backhand area of the opponent,

(ii) maximizing the distance of the bouncing point of the ball

and the opponent and (iii) playing the ball in a flat manner.
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Other elements as playing against the moving direction and

the velocity of the ball were also positively correlated.

The presented approach is not limited to analyzing indi-

vidual preferences of players and successful strategic compo-

nents against a specific opponent. Rather, the learned reward

function can also be used within the MDP framework for

artificial systems such as table tennis robots or virtual reality-

based table tennis games. Thus, the robot can learn a strat-

egy against a human opponent. The described method allows

an artificial system to analyze the strategy of the opponent,

and as a result, the system will be able to anticipate the

actions of its opponent. Such anticipation can allow artifi-

cial systems to adapt their own strategies to improve their

chances.5

In this paper, we modeled table tennis as an MDP, assum-

ing the task consists of one agent that has perfect knowl-

edge about its environment. This approach is a good starting

point, but might be an overly strong assumption. In the cur-

rent model, we did not account for the opponent’s personal

weaknesses, his strategy, spin of the ball and the possibility of

imperfect sensory information. Here, PoMDPs could be use-

ful. In contrast to modeling the task using a MDP, PoMDPs

assume that the agent cannot completely observe its environ-

ment. PoMDPs model uncertainty of the state the agent is

currently in such that we are able to include beliefs about the

intentions of the opponent. Here, it should be investigated

whether it is possible to extend the model-free methods pre-

sented in this paper to PoMDPs.

In future work, we will also investigate whether it is possi-

ble to use the Kinect cameras instead of the VICON system in

order to track the players. Furthermore, we plan to integrate

the results of this study into a robot table tennis setup.
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