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ABSTRACT

The dictionary approach to signal and image processing has
been massively investigated in the last two decades, proving
very attractive for a wide range of applications. The effec-
tiveness of dictionary-based methods, however, is strongly
influenced by the choice of the set of basis functions. More-
over, the structure of the dictionary is of paramount impor-
tance regarding efficient implementation and practical ap-
plications such as image coding. In this work, an over-
complete code for sparse representation of natural images
has been learnt from a set a real-world scenes. The func-
tions found have been organized into a hierarchical struc-
ture. We take advantage of this representation of the dictio-
nary, adopting a tree-structured greedy algorithm to build
sparse approximations of images. Using this procedure, no
a-priori constraint is imposed on the structure of the dictio-
nary, allowing great flexibility in its design and lower com-
putational complexity.

1. INTRODUCTION

For many applications in the field of signal and image pro-
cessing, it is desirable to have an efficient, sparse represen-
tation of information, in particular for computational cost
reasons. Redundant systems like Matching Pursuit (MP) [1]
are able to produce such a sparse representation and allow
for great freedom in designing dictionaries with prescribed
properties, or adapted to particular signal structures or even
to communication application requirements [2].

The effectiveness of approaches based on expanding the
signal over a redundant set of functions, however, largely
depends on the choice of the dictionary of functions itself.
Thus, the question that arises at this point is how to built
effective, meaningful sets of functions, that are able to gen-
erate sparse representations of images.

Until today, the methods developed to deal with natural
images impose somehow a structure in the representation.
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This means that, being able to efficiently process, encode
or transmit image data imposes strong constraints on the
representation framework. As an example, we can cite the
wavelet transform whose success in image coding largely
depends on its hierarchical tree structure [3]. This however
limits its flexibility, as witnessed by the limited freedom in
choosing the properties of a wavelet basis.

In contrast, a promising approach consists in learning a
set of visual primitives from training images, and then orga-
nize the learnt dictionary in a useful and meaningful struc-
ture. In the field of computational vision, several efforts
have been done to try to deduce sets of functions that are
able to efficiently represent natural images. Particularly in-
teresting and successful methods are those designed to learn
sparse codes [4, 5] or independent components (ICA) [6, 7]
of natural images. The sparse approach, however, seems to
be more plausible than the ICA one from a biological [4, 8]
and mathematical [9] point of view.

In this work, we study the characteristics of real world
scenes to build an ad hoc library of functions for the sparse
representation of natural images. The image is assumed
to be a linear superposition of functions belonging to an
overcomplete library. The functions used in this study are
Anisotropic Refinement atoms, that have been used in [10]
as basis functions for a Matching Pursuit algorithm. Here
the parameters of such waveforms are learnt from a set of
natural images, using a method inspired by [4].

Once the learning process is accomplished, the resulting
huge amount of data must be organized. Basically, we want
to identify the essential, most significative structures under-
lying the learnt dictionary. This would allow to arrange it
in a tractable structure. To this end, the obtained atoms are
clustered and organized in a tree representation, like the one
proposed in [11]. Atoms are grouped into clusters that rep-
resent subspaces of the whole learnt dictionary, which are
as orthogonal as possible one to the others.

The obtained tree-structured dictionary allows to design
a coarse-to-fine greedy algorithm to build sparse approxi-
mations of natural images. This algorithm has the non negli-
gible advantage of being less complex and much faster than



a classical MP method.
The great advantage of the proposed approach is that

no a-priori hypothesis on the structure of the dictionary is
done, except for the shape of the basis waveforms. This
permits a great flexibility in the design of the dictionary,
that is thus able to adapt to the structures present in images.

2. IMAGE MODEL

As a first step, we define the image model used in this work.
An image I(x, y) is supposed to be represented as a linear
summation of basis functions gγi

(x, y):

I(x, y) ≈
N−1∑
i=0

cigγi
(x, y), (1)

where ci are the coefficients and N is the number of basis
functions used to reconstruct the image.

The functions gγi
(x, y) are created by applying geomet-

ric transformations to a generating function g(x, y) of unit
L2 norm. Basically, the required transformations are trans-
lations over the image plane by tx and ty, rotations by θ,
and scaling by sx and sy . It is easy to demonstrate that the
set of atoms built in such a way is overcomplete [10].

The generating function g should be able to represent
well edges on the 2-D plane and thus should behave like a
smooth scaling function in one direction and like a wavelet
in the orthogonal one. In this case, the function g is a Gaus-
sian along one axis and the second derivative of a Gaussian
along the orthogonal one. This set of atoms has been cho-
sen because it is able to efficiently represent contours and
edges, as shown in [10]. An Anisotropic Refinement atom
gγ rotated by θ, translated by tx and ty , and anisotropically
scaled by sx and sy can thus be written as:

gγ(u, v) =
C√
sxsy

(2 − 4u2) exp(−(u2 + v2)), (2)

where C is a normalization constant and

u =
cosθ(x − tx) + sinθ(y − ty)

sx
(3)

v =
−sinθ(x − tx) + cosθ(y − ty)

sy
. (4)

3. LEARNING OF THE DICTIONARY

Our aim is to learn the parameters of the atoms (tx,i, ty,i, θi,
sx,i and sy,i) that best represent an image, but that also en-
force the sparseness of the representation. The learning can
thus be accomplished by minimizing an objective function
composed of three terms:

E =
∑
x,y

[
I(x, y) −

N−1∑
i=0

cigγi
(x, y)

]2

+

+ λ1

N−1∑
i=0

S(ci) + λ2

N−1∑
i=0

P (sxi
, syi

), (5)

with respect to the parameters txi
, tyi

, θi, sxi
, syi

and the
coefficients ci, with i = 0, . . . , N − 1 where N is the num-
ber of atoms considered for the reconstruction. The first
term of the functional E represents the square error be-
tween the original image and the reconstructed one. The
second term encourages a sparse representation of the data,
giving a high penalty to large coefficients. In this case we
set S(x) = log(1+x2). The third part of the expression en-
courages, for each atom, the scale sxi

to be smaller then syi
.

Here we have chosen to set P (x, y) = arctan(k(x − y)),
where k determines the slope of the arctan function. This
term has been inserted to reduce the introduction of patho-
logical atoms that do not have the desired characteristics of
band-pass, edge-detector functions. The parameters λ1 and
λ2 are constant terms that determine the importance of the
second and third terms respectively.

The images used for the learning are those of the dataset
of ten 512 × 512 pixels filtered images of Olshausen and
Field [4]. Experiments have been run on 16 × 16 patches,
randomly sampled from the dataset. Only patches with a
variance at least twice as large as that of the original set of
images have been taken into account for the computation.
Every image patch I(x, y) was reconstructed using N = 30
atoms, each having 6 free parameters ci, txi

, tyi
, θi, sxi

,
syi

. For each image, thus, the function E was minimized
in a space of dimension 6 ×N = 180. The optimization
was performed on each patch individually using a Sequen-
tial Quadratic Programming (SQP) method [12].

The parameter λ1 was imposed to be equal to 0.14 σI ,
where σI is the standard deviation of the considered image
patch, λ2 was set to the same value of λ1 and the parameter
k was fixed to 5. Different combinations of the parameters
have been tested with no significant changes in the results.

4. GENERATION OF THE TREE

The resulting atoms have been grouped into clusters using
the algorithm presented in [11]. This method creates clus-
ters in the initial dictionary and it organizes them in a hierar-
chical tree structure. Each node Ni,j at level i and position j
in the tree has M children and is characterized by the group
of atoms Gi,j contained in the subtree spanned by Ni,j . A
centroid ci,j is assigned to the node Ni,j that represents the
functions of the dictionary present in the corresponding sub-
tree:



Fig. 1. The first two layers of the tree and an example of a third layer sub-cluster. Basis functions (up) and their corresponding
power spectra (down) are shown.

ci,j =

∑
k∈Gi,j

gγk√
‖∑

k∈Gi,j
gγk

‖
, (6)

where gγk
is the learnt anisotropic atom. The elements of

the original learnt dictionary lie at the leaves of the tree, and
each node represents a subspace of the dictionary, which is
as orthogonal as possible to its siblings.

Defining the distance between two atoms as

d(gγl
, gγm

) = |〈gγl
, gγm

〉| , (7)

one can define the mean distance between ci,j and the atoms
that it represents as

Di,j =
1

ni,j

∑
k∈Gi,j

d(gγk
, ci,j) , (8)

with ni,j being the cardinality of Gi,j . For a fixed set Gi,j ,
the quality of the clustering is defined as:

QGi,j
=

1
M

M−1∑
ω=0

Di+1,jM+ω . (9)

The tree is built using a k-means algorithm that attempts
to maximize for each group of atoms the quantity QGi,j

.
The clustering process stops when QGi,j

increases from one
step of the k-means algorithm to the following one by a
quantity that is smaller than a given ε.

5. RESULTS

The minimization of the functional E has been computed
on 10000 images, thus obtaining 300000 atoms. The learnt
atoms have a mean scale ratio sy/sx of 2.6246 with a stan-
dard deviation of 1.4508. The learnt functions exhibit an ap-
proximately uniform distribution of the rotations. At small
scales, there is a slight preference for horizontal and vertical
orientations, but this could be due to the fact that images are
sampled using a square grid when digitalized: small atoms
seem to be more influenced by the sampling structure.

The obtained atoms have been grouped using the algo-
rithm described in Section 4, setting the number of children
for each node to M = 4. The upper part of the tree resulting
from the clustering of the atoms learnt from 16 × 16 image
patches is depicted in Fig. 1.

The centroids are linear combinations of the atoms learnt
and are thus functions well localized in space and frequency.
The waveforms that represent the first level of the tree are
edge-detector functions oriented along the four main direc-
tions of the image plane. Descending into the tree, the chil-
dren of each node specialize in catching different image fea-
tures at various scales and orientations.

We take advantage of the hierarchical representation of
the learnt dictionary, using a Tree-Based Pursuit algorithm
to generate sparse representations of images. The method,
proposed in [11], finds at each step the best path through



(a) Original image (b) PSNR = 24.93 dB

(c) PSNR = 28.63 dB (d) PSNR = 30.82 dB

Fig. 2. Lena 128 × 128. Original Lena image (a) and its
reconstructions using respectively (b) 100, (c) 300 and (d)
500 atoms.

the tree down to the leaves level, picking the best atom from
the learnt dictionary. Let RNI be the residual image after
N steps of the algorithm. The method firstly performs a
full search over RNI for the set of M root nodes, returning
the centroid cB that best matches the residual image and its
position (xB , yB). Then, a full search over a window of
size W × W (here W = 3) around the position (xB , yB)
is performed, considering the subtree referring to cB . The
algorithm executes the search descending through the tree
down to the leaves level, where the atom that best matches
RNI is found.

The complexity of this modified pursuit method is much
lower than that of a full search MP method. Moreover, the
learnt dictionary is completely general and can be used to
reconstruct images of different types and sizes, and with
variable quality. Fig. 2 shows the 128 × 128 Lena test im-
age reconstructed using 100, 300 and 500 atoms.

6. CONCLUSION

In this paper we addressed the problem of efficiently repre-
senting images using sparse superposition of functions se-
lected in a redundant dictionary. Meaningful atoms were
designed through learning by minimizing a cost functional
enforcing sparsity and good approximation power. A uni-
versal set of basis functions were then obtained, displaying

various spatial and frequency localization behaviors. Im-
posing a hierarchical structure on the learnt set was achieved
using a clustering approach. Finally, a fast tree-structured
greedy algorithm was designed to benefit from the organi-
zation of the dictionary. Applications of this technique to
image coding are foreseen, where encoding atom identities
could also be performed in a tree-structured manner.
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