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Abstract

Data-free learning for student networks is a new

paradigm for solving users’ anxiety caused by the privacy

problem of using original training data. Since the archi-

tectures of modern convolutional neural networks (CNNs)

are compact and sophisticated, the alternative images or

meta-data generated from the teacher network are often

broken. Thus, the student network cannot achieve the compa-

rable performance to that of the pre-trained teacher network

especially on the large-scale image dataset. Different to

previous works, we present to maximally utilize the massive

available unlabeled data in the wild. Specifically, we first

thoroughly analyze the output differences between teacher

and student network on the original data and develop a

data collection method. Then, a noisy knowledge distilla-

tion algorithm is proposed for achieving the performance

of the student network. In practice, an adaptation matrix

is learned with the student network for correcting the la-

bel noise produced by the teacher network on the collected

unlabeled images. The effectiveness of our DFND (Data-

Free Noisy Distillation) method is then verified on several

benchmarks to demonstrate its superiority over state-of-the-

art data-free distillation methods. Experiments on various

datasets demonstrate that the student networks learned by

the proposed method can achieve comparable performance

with those using the original dataset. Code is available

at https://github.com/huawei-noah/Data-

Efficient-Model-Compression

1. Introduction

Deep convolutional neural networks have been widely

used in various computer vision tasks such as image recog-

nition [14, 18], object detection [29, 11, 42, 41] and image

segmentation [23]. However, these networks usually consist

of enormous number of parameters and requires heavy com-

putation cost, which prevent their usage in edge devices such
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Figure 1. The diagram of the proposed method for learning student

networks in the wild. Useful data will be first selected from the

external unlabeled data and then utilized for training the desired stu-

dent network. The noise adaption matrix is exploited for correcting

labels of unlabeled data estimated by the teacher network.

as mobile phones and autonomous cars. For example, VGG-

net [31] requires 548MB memory for saving parameters and

20G floating point operations for processing a single image.

To this end, a great number of techniques including quan-

tization [13], pruning [20] and distillation [15] have been

proposed to accelerate and compress convolutional neural

networks.

Admittedly, we can obtain considerable compression ra-

tios on benchmark datasets and models using these method

when we can access the original training data of the pre-

trained network. However, the training data is often unavail-

able in some practice constrains such as privacy or trans-

mission. For example, we want to compress a deep model

trained on millions of images, while the dataset is difficult

to transfer and restore. Furthermore, people are willing to

share their trained models to public, while they are very

anxious about the training data especially some private data,

e.g., face, voice and fingerprint. Thus, a recent trend for
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model compression algorithms is to develop data-free tech-

niques that can reduce the computational complexities of

pre-trained networks without original training data.

To this end, Lopes et al. [24] first formulated the data-free

learning problem and use the “meta-data” to reconstruct the

original images. However, its performance is limited since

the useful knowledge information in the teacher network

has not been fully investigated. Chen et al. [2] developed a

GAN (Generate Adversarial Network [10]) based method,

which used a generator network to approximate the training

samples from the given teacher network. Besides using

generators to obtain training data, other methods [27, 1]

synthesized training data by directly optimizing the input

random images on the pre-trained network.

However, it is hard to generate images which have enough

information for training the compressed network, since the

size of training data is usually much larger than the given

network. For example, ImageNet dataset consists of over 10

million numbers of images with 224× 224 size and requires

over 138GB storage, while a ResNet-50 model contains only

∼100MB parameters. Therefore, the quality of these gener-

ated images cannot be ensured. Moreover, the running time

and overhead for generating enough images for large scale

dataset (e.g., ImageNet) are expensive. Thus, an efficient

and effective method for learning portable student network

without training data is urgently required.

In this paper, we present to utilize the large amount of

unlabeled data in the wild to address the data-free knowledge

distillation problem. Instead of generating images from the

teacher network with a series of priori, images most relevant

to the given pre-trained network and tasks will be identified

from a large unlabeled dataset (e.g., Flickr [17]) to conduct

the knowledge distillation task. We first analyze the bound

of distance between the outputs of the teacher and the stu-

dent networks, and then explore a data selection method for

searching useful unlabeled data. Then, these data with the

noisy labels derived from the teacher network is collected.

To further improve the performance of the student network,

a noise adaptation matrix is exploited for refining the la-

bels provided by the teacher network. The portable student

network is supervised by the conventional knowledge distil-

lation approach on the collected data and the proposed noisy

distillation using the adaptation matrix, as shown in Figure 1.

Experiments conducted on several benchmarks demonstrate

that the proposed DFND (Data-Free Noisy Distillation) al-

gorithm can surpass all data-free distillation methods and

achieve the state-of-the-art performance, the accuracy of the

resulting student is comparable to that of the student network

trained using original data.

2. Related Works

Here we briefly review the related works of model com-

pression and acceleration, which consists of data-driven and

data-free methods.

2.1. DataDriven Model Compreesion

In order to compress and speed-up pre-trained heavy deep

models, various effective approaches have been proposed

recently, including quantization [39, 3], pruning [33, 22, 6],

distillation [37] and neural architecture search [32, 38, 21].

Han et al. [13] combined pruning, quantization and Huffman

coding together and then obtained a compressed deep model

with extremely lower computation and storage cost. Hin-

ton et al. [15] proposed to distill the knowledge from a heavy

teacher network to a portable student network. Li et al. [20]

proposed a filter pruning method to remove the filters in the

convolutional neural network with small ℓ2 norm. Luo et

al. [25] proposed ThiNet, which formulate filter pruning

as an optimization problem and prune filters based on the

information from the next layer. Courbariaux et al. [5] pro-

posed binary neural network, which utilize binary weights

and activations to largely reduce the computation complexity

and storage consumption of networks. Howard et al. [16]

introduced depthwise separable convolution, which decom-

pose the traditional convolution into 1× 1 convolution and

depthwise convolution, to accelerate the inference of deep

neural networks. Han et al. [12] proposed GhostNet to uti-

lize cheap operations to generate more features from existing

features, which achieve the state-of-the-art performance in

mobile settings.

Although these methods can achieve promising compres-

sion and speed-up ratios, they cannot be directly used when

the original training dataset is unavailable. For instance,

pruning and quantization methods requires training data to

fine-tune the compressed networks. Therefore, data-free net-

work compression methods have become a research hotspot.

2.2. DataFree Model Compreesion

Only few works focus on compressing networks with-

out original training data. Lopes et al. [24] used the “meta

data”, which is the activation statistics of original data in the

teacher network, to reconstruct the dataset. Chen et al. [2]

introduced a generator which is trained by regarding the

teacher network as a fixed discriminator to generate the im-

ages which have similar distribution with the original dataset.

Nayak et al. [27] synthesized the Data Impressions from the

teacher netwwork as training samples. Fang et al. [7] pro-

posed a data-free adversarial distillation scheme to generate

“hard samples” for the student networks. Yin et al. [40]

proposed DeepInversion to invert the trained network to syn-

thesize input images from random noise. Beside knowledge

distillation, some works focus on data-free quantization and

pruning. Nage et al. [26] introduced a data-free compression

method, which can quantize network to 8bit without fine-

tuning by correcting the quantization bias. Choi et al. [4]

proposed a adversarial training method to generate samples
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for network quantization and pruning. Gong et al. [9] utilize

vector quantization and k-means clustering to weights and

lead to 16-24 times compression with little loss of accuracy.

Although the above data-free methods can compress net-

works without obtaining the original dataset, their perfor-

mance is limited since generating training samples using

only the teacher network is a hard attempt, especially on

large scale dataset (e.g., ImageNet). To this end, we pro-

pose to leverage the unlabeled data for data-free knowledge

distillation with better performance.

3. Preliminary

Here we first review the conventional knowledge distil-

lation [15] method for learning a portable student network

from a heavy pre-trained teacher network. Denote the train-

ing data as X , and Y is the ground-truth label, the student

network NS and the teacher network NT , respectively. The

loss function for distilling a student network is formulated

as:

LKD(NS) = HCE(NS(x), y) + λDKL(NS(x),NT (x)), (1)

where x ∈ X, y ∈ Y , HCE indicates the cross entropy loss,

DKL is the Kullback–Leibler (KL) divergence, and λ is the

trade-off parameter. The second term in Eq. 1 minimizes the

distance between output distributions of teacher and student

networks, which can be considered as a strong regularizer

for helping the training of the student network NS .

The traditional knowledge distillation requires the orig-

inal training data , i.e., the dataset used for training the

teacher network NT . However, as mentioned above, this

dataset is usually unavailable due to the privacy or transmis-

sion problems. Instead of using these data, there are massive

data available on the Internet (e.g., ImageNet and Flickr1M).

Although there are a seies of data-free compression meth-

ods [2, 7] generating images from the given teacher network,

the visual quality and computational costs limit their per-

formance. Thus, we are motivated to explore an effective

method for learning student networks with these unlabeled

but available data.

A straightforward idea for using public unlabeled data

xU ∈ XU to perform the knowledge distillation is:

LU
KD(NS) = DKL(NS(x

U ),NT (x
U )). (2)

However, compared with Eq. 1, the limitations of Eq. 2

mainly lies in two parts. First, Eq. 2 aims to minimize

the distance between the outputs of NT and NS over the

distribution of the unlabeled data XU instead of the original

data XO as claimed in Eq. 1. Therefore, the performance of

the student network learned by Eq. 2 on the original dataset

is not guaranteed. On the other hand, the classification loss

is absent as the ground-truth labels are not accessible for

the unlabeled data. These two parts prevent Eq. 2 from a

suitable objective function for learning a student network

with acceptable performance on the original data.

To overcome the shortage mentioned above and leverage

the advantage provided by the unlabeled data, we propose a

Data-Free Noisy Distillation (DFND) algorithm that help the

student network to learn useful and correct information from

the teacher. In brief, we select the most valuable samples

from unlabeled data which helps the student to achieve good

performance over the distribution of original data, and equip

the unlabeled data with a noisy pseudo label to implement

the classification loss which is missing in Eq. 2.

4. Data Collection in the Wild

As mentioned above, performance of the student network

trained on the unlabeled dataset cannot be guaranteed. To

this end, we aim to collect useful data from the huge un-

labeled dataset XU , which can ensure the student network

trained by the selected data achieve good performance in the

original data. Thus, our goal can be formulated as follows,

X̂U = argmin
XU

DKL(NS(x
O),NT (x

O)) (3)

where xO denotes the original training data, and NS is the

student network trained by the selected data xU ∈ XU

according to Eq. 2. However, sample selection principle

described in Eq. 3 is intractable as the original data xO is not

accessible. In the following, we provide a surrogate selec-

tion principle to collect useful data from the huge unlabeled

dataset XU .

Hinton et al. [15] has proved that minimizing the KL

divergence of the soft targets between the teacher and student

can be regarded as minimizing the MSE (mean squared error)

loss of their outputs when the temperature for knowledge

distillation is relative high compared with the magnitude of

the logits. Thus, instead of using KL divergence in Eq. 3, we

will analyze the MSE loss (ℓ2
2

distance) between the output

of teacher and student to collect useful data, i.e.,

X̂U = argmin
XU

LMSE(NS(x
O),NT (x

O)) (4)

With the help of Eq. 4, we propose the surrogate principle to

select samples in Proposition 1.

Proposition 1: Given a pre-trained teacher network NT , and

a huge unlabeled dataset XU , the noisy value of an unlabeled

sample xU can be expressed as,

V (xU ) = DKL(NT (x
U ), ŷU ), (5)

where ŷU = argmax
i

NT (y = yi|x
U ) is the pseudo label of

xU which is predicted by the teacher network NT . A useful

sample is expected to have a small noisy value V (xU ).

Proof. For the convenience of proof, we calculate the dis-

tance between domain instead of specific images. Denote
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the domain of original data as DO and the domain of the

unlabeled training data for distillation as DU . Using the tri-

angle inequality of distance metric, the ℓ2
2

distance between

the teacher output and student output taking data in DO as

inputs is bounded as:

dℓ2(D
O
S , D

O
T ) ≤ dℓ2(D

O
S , D

U
S ) + dℓ2(D

U
S , D

U
T )

+ dℓ2(D
U
T , D

O
T ),

(6)

where DO
S , DU

S denote the student outputs in DO, DU and

DO
T , DU

T are the teacher outputs in DO, DU , respectively.

Since we cannot directly minimize dℓ2(D
O
S , D

O
T ) as the

original data is unknown, we then turns to minimize its upper

bound. The first term in inequation 6, i.e., dℓ2(D
U
S , D

O
S ),

measures the distance between the outputs of original data

and unlabeled data, which can be viewed as the generaliza-

tion ability of the student network and it is determined by

the network itself. The second term of inequality 6 on the

right is exactly the goal of distillation on the unlabeled do-

main DU , i.e. loss function 2. The third term dℓ2(D
U
T , D

O
T )

measures the distance between the teacher outputs in the

original domain and unlabeled domain. As the pre-trained

teacher network NT and the original domain DO is fixed,

we can only select the unlabeled data for the domain DU to

minimize this term.

Since the true distribution of DO
T is unknown, we cannot

directly minimize the dℓ2
2

(DU
T , D

O
T ). Taking the distribution

of the label in the original domain as DY , we have the

inequality:

dℓ2(D
U
T , D

O
T ) ≤ dℓ2(D

U
T , D

Y ) + dℓ2(D
O
T , D

Y )

≤ dℓ2(D
U
T , D

Y ) + dℓ1(D
O
T , D

Y )

≤
√

DKL(DU
T , D

Y ) +
√

DKL(DO
T , D

Y ).

(7)

The second inequality is hold since ℓ2 distance is bounded by

ℓ1 distance while the third inequality is hold since the square

of ℓ1 distance is bound by the KL divergence (theorem 1.3

in [28]). The teacher network have been well trained in

the original domain DO
T , which means the second term of

inquation 7 on the right can be very small. Then we have

dℓ2(D
U
T , D

O
T ) ≤

√

DKL(DU
T , D

Y ).

Therefore, the inequation 6 can be rewritten as:

dℓ2(D
O
S , D

O
T ) ≤ dℓ2(D

O
S , D

U
S ) + dℓ2(D

U
S , D

U
T )

+
√

DKL(DU
T , D

Y ).
(8)

Utilizing the approximation of MSE loss and KL divergence,

the optimization problem 4 can be reformulated as:

X̂U = argmin
XU

[

√

DKL(NT (xU ), y)

+
√

DKL(NT (xU ),NS(xU ))
]

,

(9)

where y are the labels predicted by the teacher network. As

the second term in Eq. 9 is exactly the goal for training the

student network and will be minimized to a very small value.

The objective for selecting useful data from the optimal

unlabeled dataset X̂U can be formulated as:

X̂U = argmin
XU

DKL(NT (x
U ), y) (10)

Denote xU and y as the data and corresponding labels of

the dataset XU . we will calculate the noisy value V (xU ) =
DKL(NT (x

U ), y) of each image xU ∈ XU and select a

certain number of samples with smallest values to construct

the optimal unlabeled dataset X̂U for knowledge distillation.

Note that the data is unlabeled, we use pseudo label y to

calculate the noisy value, where y = argmaxj(NT (x))j .

Following the Proposition 1, samples with higher confi-

dence score provided by the teacher are more likely to be

selected as training data. The intuitions behind the data

collection method are straightforward. First, with a teacher

trained with the original data, samples assigned with a lower

confidence score have a lower probability of being from

the original distribution. Thus the proposition 1 can pre-

vent most out-of-distribution samples from being selected.

What’s more, the information provided by the teacher on

samples with a higher confidence score is less likely to be

incorrect. As a result, we select samples with high value

defined in Proposition 1.

It should be noted that, although selecting unlabeled

data with low entropy pseudo labels is sometime used in

semi-supervised learning [19, 35], we are the first to apply

this technique in the data-free knowledge distillation setting.

Moreover, we provide thorough analysis to guarantee the

effectiveness of this data collection method theoretically.

5. Noisy Distillation from the unlabeled Data

Besides the KL-divergence on the outputs, the student

network is also supervised by the cross entropy loss with

ground-truth labels in the conventional knowledge distilla-

tion (Eq. 1). However, in the data-free distillation setting,

the training data is unlabeled thus we do not have enough

supervised information for learning student networks with

better performance. Although the teacher network can be uti-

lized for generating labels for the unlabeled data, the teacher

could also make mistakes and provide incorrect label. To

address this problem, we propose a novel noisy distillation

method for distilling the student network with unlabeled data

and noisy labels produced by the teacher network.

A straightforward method to generate labels for the first

term in Eq. 1 is to use the pseudo labels predicted by the

teacher network as their one-hot labels. The loss function
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Algorithm 1 Learning Student Network with Unlabled Data

and Noise Labels.

Input: A given teacher network NT , unlabeled dataset DU ,

number of selected data K.

1: Module 1: Unlabeled data selection.

2: for each sample xi in unlabeled dataset DU do

3: Employ the teacher network to obtain NT (xi);
4: Predict the pseudo label: yi = argmaxj(NT (xi))j ;

5: Calculate and restore the noisy value V (xi) =
DKL(NT (xi), yi) for the sample xi;

6: end for

7: Select K samples with smallest noisy values and estab-

lish an alternative dataset X̂U ;

8: Module 2: Noisy distillation.

9: Initialize the student network NS with fewer parameters

and lower computation cost;

10: Construct the noisy adaptation layer with the matrix Q

according to Eq. 14;

11: repeat

12: Randomly select a batch {xs
i}

n
i=1

from X̂U ;

13: Employ the teacher network and the student network

simultaneously: NT (x), NS(x);
14: Calculate the noisy distillation loss

LND(NS ,NT , Q, x) according to Eq. 13;

15: Update NS and Q according to their gradients;

16: until convergence

Output: The resulting student network NS with acceptable

performance.

for knowledge distillation can be reformulated as:

LND(NS) = HCE(NS(x), ŷ)+λDKL(NS(x)‖NT (x)), (11)

where x, y denotes the training data and ŷ =
argmaxi(NT (x))i. For the knowledge distillation term

DKL, the student can directly learn from the teacher with

the unlabeled data. For the cross entropy term, a more ac-

curate label y will definitely help the training of the student

network. However, teacher predicted labels ŷ is noisy la-

bels, since NT is not learned for capturing information in

the unlabeled data. To address this problem, we utilize the

following function to discover the probability of noisy labels

and true labels, i.e.,

p(ŷ = i|x) =
k

∑

j=1

p(ŷ = i|y = j)p(y = j|x), (12)

where k is the number of categories of y, p(ŷ|y) is a noisy

adaption matrix Q where Qij = p(ŷ = i|y = j). It trans-

forms the probability of true label p(y|x) to the noisy prob-

ability p(ŷ|x). Therefore, we can learn the true labels by

adding a noisy adaptation matrix Q after the softmax layer

of the student network. Then, the cross entropy is calculated

between the transformed outputs and the pseudo labels. The

noisy distillation in Eq. 3 can be reformulated as:

LND(NS) =HCE(Q(NS(x)), ŷ)

+ λDKL(NS(x),NT (x)).
(13)

In practice, the actual values in the matrix Q are unknown.

We thus initialize values in Q with the prior information of

the teacher network. Specifically, denote the accuracy of the

teacher network for the i-th class in the original dataset as

ai, the diagonal value of Q can be set as Qii = ai. Since the

row of Q can be regarded as a probability distribution, we

have
∑k

j=1
Qij =

∑k

j=1
p(Ŷ = i|Y = j) = 1. Therefore,

we initialize the Q as:

Q =











a1
1−a2

k−1
· · · 1−ak

k−1
1−a1

k−1
a2 · · · 1−ak

k−1

...
...

. . .
...

1−a1

k−1

1−a2

k−1
· · · ak











. (14)

During optimizing the student network NS , the noisy adap-

tation matrix Q is optimized simultaneously, keeping the

constraints
∑k

j=1
Qij = 1. Note that Goldberger and Ben-

Reuven [8] also proposed to utilize a noisy adaptation layer

for learning noisy labels. Our work apply the noisy adap-

tation technique to the knowledge distillation scheme and

simultaneously learn the soft label sand noisy predicted la-

bels from the teacher network, which have different setting

and loss function with this work.

The proposed method is summarized in Algorithm 1.

First, we select data from the unlabeled dataset with the

smallest noisy values, which implicitly minimizes the diver-

gence between the teacher and student outputs in the original

dataset. Second, the student is also trained by a classification

loss with noisy labels predicted by the teacher, and an adap-

tation matrix is explored for correcting label noise. Note that

there are few works [30, 34] also utilize noise to improve the

knowledge distillation, their original training set is available

and they focus on adding noise to labels and images and

improve the generalization ability of the student networks.

In contrast, we focus on eliminate the noise of the labels

predicted by teacher networks for the unlabeled images.

6. Experiments

In this section, We conduct extensive experiments to ver-

ify the effectiveness of the proposed method on the image

classification task and semantic segmentation task.

6.1. Classification Results on CIFAR

We first test the proposed method on the CIFAR-10 and

CIFAR-100 dataset. Both of them contain 60,000 RGB

32× 32 size images, including 50,000 training images and

10,000 test images of 10 and 100 categories, respectively. To
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Table 1. Classification result on the CIFAR-10 and CIFAR-100 datasets.
Algorithm Required data FLOPS #params CIFAR-10 CIFAR-100

Teacher Original data ∼1.16G ∼21M 94.85% 77.34%

Student Original data ∼557M ∼11M 93.92% 76.53%

Knowledge Distillation [15] Original data ∼557M ∼11M 94.34% 76.87%

DAFL [2] No data ∼557M ∼11M 92.22% 74.47%

DFAD [7] No data ∼557M ∼11M 93.30% 67.70%

DeepInversion [40] No data ∼557M ∼11M 93.26% -

PU-compression [36] PU data ∼557M ∼11M 93.75% -

Randomly selected unlabeled data ∼557M ∼11M 91.25% 73.25%

DFND (ours) unlabeled data ∼557M ∼11M 94.02% 76.35%

(a) original data (b) selected data (c) unselected data
Figure 2. Visualization of selected images, unselected images from ImageNet and original images on CIFAR-10 using ResNet-34. Each part

consists of 100 images.

make a fair comparison, we select the ResNet-34 model as

the teacher network and ResNet-18 as the student network

following [2]. The teacher network and student network

are optimized using Nesterov Accelerated Gradient (NAG).

Weight decay and momentum are set as 5 × 10−4 and 0.9,

respectively. We train the teacher networks for 200 epochs,

where the initial learning rate is set as 0.1 and divided by 10

at 80 and 120 epochs, respectively. Random flipping, random

crop and zero padding are used for data augmentation as sug-

gested in [2]. The student networks of the proposed method

are trained for 40000 iteration. For the proposed method,

we select 600,000 images from the ImageNet dataset and

the hyper-parameters T in knowledge distillation is set as 2,

which is tuned by grid search. λ in Eq. 11 is set as 4 follow-

ing [15]. The ImageNet dataset are resized to 32× 32× 3
so that the unlabeled images can be put into the teacher net-

work. When training the student network using knowledge

distillation, the training data is normalized and cropped into

32 size with a 4 pixel zero padding.

Table 1 reports the distillation results on the CIFAR-10

and CIFAR-100 datasets. The teacher network achieves a

95.58% accuracy on the CIFAR-10 dataset and the student

network using knowledge distillation on the original dataset

achieves a 94.34% accuracy.

We then observe the performance of the same student

network without the original training data. Chen et al. [2]

proposed DAFL to use a generator for approximating the

original training data from the pre-trained teacher network.

Since it is difficult to generate images with only a teacher

network, this method only achieves an accuracy of 92.22%.

Data-Free Adversarial Learning [7] achieves a 93.30% ac-

curacy without any training data, which is slightly higher

than that of DAFL. Yin et al. [40] utilize DeepInversion

to achieve a 93.26% accuracy. PU Compression [36] uti-

lizes few original training data (100 images from CIFAR-10)

and massive unlabeled data (all images from ImageNet) and

select useful data using a PU classifier, which achieves a

93.75% accuracy. However, the positive data (few original

training data) is not always available due to privacy and

transmission reasons. Therefore, we propose to directly se-

lect useful from the massive unlabeled data (ImageNet data)

using the teacher network using Eq. 10. As a result, the re-

sulting student network learned using the proposed method

achieves a 94.02% accuracy, which is very closed to that of

the baseline knowledge distillation using the original data.

In contrast, using the randomly selected data from the un-

labeled dataset can only achieve a 91.25% accuracy. Note

that the number of selected data used here is same as that in

these two methods.

Besides CIFAR-10, we further verify the capability of the
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Table 2. Classification result on the ImageNet dataset.

Algorithm Required data FLOPS #params Top-1 acc Top-5 acc

Teacher Original data ∼3.67G ∼22M 73.27% 91.26%

Student Original data ∼1.82G ∼12M 67.00% 87.60%

Knowledge Distillation [15] Original data ∼1.82G ∼12M 68.67% 88.76%

PU-compression [36] PU data ∼1.82G ∼12M 61.92% 86.00%

DFND (ours) unlabeled data ∼1.82G ∼12M 61.75% 85.93%

proposed method on the CIFAR-100 dataset. The accuracy

of the teacher network is 77.84% and the performance of the

student network is only 76.53%. Data-Free Learning (DAFL)

can obtain a 74.47% accuracy without any real-world train-

ing data while DFAD only achieves a 67.70% accuracy. Us-

ing the randomly selected data achieves a 73.25% accuracy

and the proposed noisy distillation method achieves a 76.35%

accuracy, which is much higher than other approaches.

6.2. Ablation Study

To further demonstrate the effectiveness of the proposed

method, we conduct visualization experiments and ablation

study on the CIFAR dataset.

Visualization of selected data. We visualize the selected

data from the ImageNet dataset using the ResNet-34 network

pre-trained on CIFAR-10 dataset. Figure 2 shows the images

in the CIFAR-10 dataset, the selected and unselected images

of the ImageNet dataset, respectively. In practice, the select

images are similar with the original data. For example, there

are dogs and cats in these images, which are also included

on the categories of the CIFAR-10 dataset. In contrast, the

unselected images consists of classes of humans and scenes

which are not exist the original CIFAR-10 dataset. This visu-

alization result demonstrates that the proposed data selection

scheme in Eq. 10 can successfully select the useful training

data from the massive unlabeled data. By using these se-

lected data, the student network can successfully learn useful

information from the pre-trained teacher network.

Figure 3. T-sne visualization of features generated by selected

images, unselected images from ImageNet and original images on

CIFAR-10 using ResNet-34. Each part consists of 500 images.

Visualization of features. To further investigate the ef-

fectiveness of our data collection method, we visualize the

features before the fully connect layer generated by different

data from the teacher networks. The pre-trained ResNet-34

network in the CIFAR-100 dataset is used as the teacher net-

work. We take 5000 images from the CIFAR-100 dataset, the

selected images using the proposed data collected method

and unselected images from the ImageNet dataset for visu-

alization. As shown in Figure 3, the features of selected

data has similar distribution with those of original data. The

visualization results demonstrate that the selected data can

inherit similar information with the original data from the

teacher network.

Table 3. Effectiveness of different learning strategies used in our

method.
Initialization of Q Q = I Eq. 14

Fixed Q 75.60% 75.85%

Learnable Q 76.07% 76.35%

Without Q 75.73% 75.73%

Ablation study. To have an explicit understanding of

the proposed method, we then evaluate the effectiveness of

the noisy adaptation matrix in our method on the CIFAR-

100 dataset. Table 3 shows the impacts of using different

initializations for the noisy adaptation matrix Q. The impact

of using a fixed or learnable Q is also investigated. The

line ”Without Q” means that we only use Eq. 2 to train the

student network instead of Eq. 11, which can only achieve

a 75.73% accuracy. By introducing the noisy adaptation

matrix Q taking Eq. 14 as initialization, we can achieve a

75.85% accuracy. If Q is learnable, the proposed method

can achieve the best performance, i.e., 76.35% accuracy in

the CIFAR-100 dataset, which is closed to the accuracy of

the student network trained with original data (76.57%).

6.3. Classification Results on ImageNet

We then conduct experiments on the ImageNet dataset,

which consists of ∼1.2 million images. Images in this dataset

are resized into 3×256×256 RGB images and are randomly

cropped into 224× 224 size for training the teacher and stu-

dent networks. It is not easy for the existing data-free meth-

ods [2, 7] to generate so many high-resolution images only

using the information from a pre-trained teacher network.

Thus, these methods can hardly be applied on the ImageNet

dataset. To this end, we propose the data collection method

to utilize the massive unlabeled data in the wild. We use the
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Table 4. Semantic segmentation results on the NYUv2 dataset.

Algorithm Required data FLOPS #params mIOU

Teacher Original data ∼41.0G ∼24M 0.517

Student Original data ∼5.54G ∼3.4M 0.375

Knowledge Distillation [15] Original data ∼5.54G ∼3.4M 0.380

DAFL [2] No data ∼5.54G ∼3.4M 0.105

DFAD [7] No data ∼5.54G ∼3.4M 0.364

DFND (ours) unlabeled data ∼5.54G ∼3.4M 0.378

Flicker1M dataset as the unlabeled dataset, which contains

1 million images. The pre-trained ResNet-34 network on

the ImageNet dataset is used as the teacher model and a

randomly initialized ResNet-18 is used as the student model.

For training the student network, we use 0.1 initial learning

rate with 5 × 10−4 weight decay and 0.9 momentum. We

train 110 epochs in both steps and divide the learning rate

by 10 every 30 epochs as suggested in [36] for maintaining

the performance of the student networks.

Table 2 reports the classification results on the ImageNet

dataset using different methods. The teacher ResNet-34

model achieves 73.27% top-1 accuracy and 91.26% top-5

accuracy, while requires 41.0G FLOPs and 24M parame-

ters, which is not affordable for mobile devices. The student

ResNet-18 model trained using the original ImageNet dataset

achieves a 67.00% top-1 accuracy and a 87.60% top-5 accu-

racy, and have a lower computational complexity. By apply-

ing knowledge distillation, the student network can achieve

a 68.67% top-1 accuracy and a 88.76% top-5 accuracy. The

PU-compression method [36] utilizes the few original data,

i.e., 1000 images from the ImageNet data and the unlabeled

dataset to conduct the experiment. This method achieves a

61.92% top-1. However, few data from the original dataset is

usually unavailable. Therefore, we apply our data-free noisy

distillation method by using the Flicker1M dataset as the un-

labeled dataset. As a result, the proposed method achieves a

61.75% top-1 accuracy and a 85.93% top-5 accuracy without

any original data and with only unlabeled data, which is very

closed to those of PU compression method. These results

demonstrate the effectiveness of the proposed method for

selecting suitable training images from massive unlabeled

data and learning student networks on the large-scale dataset.

6.4. Segmentation Results

Besides the image classification, the proposed method

can also be applied on segmentation tasks, since semantic

segmentation can be regarded as a pixel-level visual recogni-

tion problem. We adopt the calculation noisy value on each

pixel of images and average the per-pixel noisy values for

each image.

We conduct experiment on the NYUv2 dataset as that

in [7]. This dataset contains 1449 images from 13 differ-

ent classes. The images in the experiments are resized and

cropped to 128× 128. We use FCN with ResNet-50 back-

bone as the teacher model while that with MobileNetV2

backbone as the student model. The teacher model is trained

on the NYUv2 dataset and the student networks are randomly

initialized. For the proposed method, we use the ImageNet

dataset as the unlabeled dataset.

Table 4 reports the segmentation results using different al-

gorithms. The teacher network achieves a 0.517 mIOU while

requires 41.0G FLOPs. The student networks trained using

the original data achieves a 0.375 mIOU and requires only

5.54G FLOPs. Applying the knowledge distillation tech-

nique brings up the performance of the student network to a

0.380 mIOU. When the original training data is unavailable,

traditional compression methods cannot be directly applied.

Chen et al. [2] and Fang et al. [7] use the generated data to

train the student network and achieve 0.105 and 0.364 mIOU

values, respectively, which are lower than that of the baseline

student network using the original dataset. In contrast, the

proposed noisy distillation method achieves a 0.378 mIOU,

which surpasses all the existing data-free approaches and

demonstrates that the proposed method can be successfully

applied on semantic segmentation task.

7. Conclusion

Since original data is often unavailable when compressing

the pre-trained networks, a lot of data-free model compres-

sion methods are developed for generating the training data.

However, the performance of compressed networks using

these methods is limited due to the difficulty of image gen-

eration, especially on large-scale datasets. In this paper, we

propose a two-step framework to compress the given net-

work using massive unlabeled data effectively. First, we

develop a data selection method by analyzing the bound of

the distillation loss of the original data. Second, since the

selected data is unlabeled, we propose a noisy distillation

scheme by introducing a noisy adaptation layer to eliminate

the noisy of the labels generated by teacher network. As

a result, the proposed method achieves the state-of-the-art

performance among all the data-free compression methods.
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