
Learning Subjective Functions
with Large Margins

Claude-Nicolas Fiechter and Seth Rogers
DaimlerChrysler Research and Technology Center

1510 Page Mill Road, Palo Alto, CA 94304
+1 650 845 2504/2533

~fiechter, rogers} @rtna.dalmlerchrysler.com

Abstract

In many optimization and decision problems the
objective function can be expressed as a linear
combination of competing criteria, the weights of
which specify the relative importance of the cri-
teria for the user. We consider the problem of
learning such a "subjective" function from prefer-
ence judgments collected from traces of user in-
teractions. We propose a new algorithm for that
task based on the theory of Support Vector Ma-
chines. One advantage of the algorithm is that
prior knowledge about the domain can easily be
included to constrain the solution. We demon-
strate the algorithm in a route recommendation
system that adapts to the driver’s route prefer-
ences. We present experimental results on real
users that show that the algorithm performs well
in practice.

Introduction
In many optimization and decision problems the desir-
ability of a particular solution depends on a number of
competing factors or criteria. The solution can be rated
along a number of dimensions, and the overall quality
of the solution depends on its combined score on all
dimension simultaneously.

Most algorithms to solve optimization problems,
however, depend on the existence of a single objective
function that specify how good each potential solution
is. Multi-criteria problems are typically handled by
computing a cost or rating for each criteria indepen-
dently and combining these costs into a single function.

A particularly simple way of combining the costs is to
use a linear combination. In that case the weights in the
combination associated with the different costs specify
the relative importance of the criteria for the user. A
domain expert can sometimes fix these weights, but of-
ten the importance of the different criteria is subjective
and varies from user to user. We therefore think of the
weights as forming a model of the user preferences, and
we call such an objective function a subjective function.1

It is often difficult or inconvenient to ask the user to
explicitly specify the weights for a subjective function.

1The term was coined by Justin Boyan.

In many cases, the user might not even be consciously
aware of the importance he or she gives to the different
criteria. One approach to address this problem is to ap-
ply machine learning techniques to learn those weights
from traces of interactions with the user. In paxticu-
lax, the subjective function can be inferred from user’s
preference judgments that specify, either implicitly or
explicitly, that one solution should be ranked higher
than another (Cohen, Schapire, & Singer 1999). It
often easy to collect these preference judgments unob-
trusively, by observing the choices the user makes while
interacting with the system.

Gervasio, Iba and Langley (Gervasio, Iba, & Lang-
ley 1999) describe a crisis response scheduling assistant
that takes this approach to infer the most appropriate
schedule evaluation function for its user. Similarly, in
(Rogers, Fiechter, & Langley 1999) we describe a route
advice system that unobtrusively learns a driver’s route
preferences through interaction with that driver. In this
paper we extend that work and describe a new learning
algorithm that seems particularly well-suited to learn
subjective functions from traces of user interactions.

The learning algorithm relies on the basic ideas of
Support Vector Machines (SVM) (Vapnik 1995; 1999;
Burges 1998) but it takes advantage of the particular
structure of the problem. It is consequently much sim-
pler than a general SVM. In particular, computing the
coefficients of the subjective function only requires solv-
ing a linear program, instead of the quadratic program-
ming problem that a general SVM entails. One advan-
tage of that particular algorithm over other possible
machine learning techniques for learning a subjective
function is that prior knowledge about admissible coef-
ficients and functions can easily be included.

Below, we first briefly describe our adaptive route
advice system, focusing on the route generation compo-
nent and on the interface that presents the route options
to the user and gathers preference feedback. We then
formalize the problem of learning the user preference
model and describe the learning algorithm. The follow-
ing section describes some experimental results on real
(human) subjects and the conclusion briefly discusses
some directions for future research.

From: AAAI Technical Report SS-00-01. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

The Adaptive Route Advisor
The Adaptive Route Advisor is an adaptive user in-
terface (Langley 1997) that recommends routes on
road network and adapts to a driver’s route preferences
through interaction with that driver. Given a routing
task, the Route Advisor interacts with the driver to
generate a route that he or she finds satisfactory. Ini-
tially, the agent proposes a small number of possible
routes, taking into account the driver’s preferences if
known. The driver can then request solutions that dif-
fer from the initial options along some dimension. For
instance, the driver may request a route that is sim-
pler, even if it means a longer route. The driver and
the Route Advisor continue to work together, generat-
ing and evaluating different solutions, until the driver is
satisfied. During this process, the agent unobtrusively
collects information about the driver’s choices and uses
these data to refine its model of the driver’s preferences
for the next task.

The Routing Algorithm and User Model
The generative component of the Adaptive Route Ad-
visor is a routing algorithm that plans a path through a
digital map from a starting point to a destination. The
planner represents the digital map as a graph, where
the nodes are intersections and the edges are parts of
roads between intersections. Our digital maps provide
four attributes for each edge: length, estimated driv-
ing time, turn angle to connected edges, and road class
(e.g., highway, freeway, arterial road, local road). Based
on these attributes 14 features of a route are computed,
including its estimated driving time, distance, number
of left, right, and U-turns, number of intersections, and
distance on each road class. The cost of a route is com-
puted as a weighted sum of its features and the system
uses an optimized version of Dijkstra’s shortest path al-
gorithm (Dijkstra 1959) to find the path with the min-
imum cost.

As discussed above, the weights in the objective func-
tion play the role of a user model. The system is initial-
ized with a default user model and the model is refined
with feedback from interaction with the planner. More
specifically, we define an interaction with the planner
to be the presentation of a set of N generated routes
for a particular routing task and feedback from the user
indicating which route is preferable. This is completely
unobtrusive to the user, because he or she evaluates a
set of routes and selects one as part of the route advice
process. We expand the interaction into N - 1 prefer-
ence judgments, representing the fact that the selected
route is preferable to each of the presented alternatives,
and the learning algorithm processes a sequence of in-
teractions with the planner to produce a weight vector
that models the preferences expressed. We discuss the
learning algorithm itself in the next section.

In later interactions with that particular user the
routing algorithm uses the weights thus computed in
its cost function. In this way, as the driver uses the
interface, it adapts itself to his or her preferences. Note

Figure 1: The trip request panel.

that since the routing algorithm is optimal on the cost
function, the resulting route is guaranteed to have the
lowest cost for that user model among all routes be-
tween the same two nodes. In other words, the routes
computed are always Pareto optimal, in that there can
be routes that are better along each of the dimensions
(features) independently, but none that can be better
simultaneously on all dimensions.

The Interaction Module
When started, the Route Advisor displays its trip re-
quest panel as pictured in Figure 1. In the current im-
plementation, the user specifies origin and destination
in a postal address style, and identifies him or herself
for the purpose of loading the user model.

After requesting a route, the route summary panel
appears, as displayed in Figure 2(a), providing a list
of route options. The routes are presented in terms of
seven attributes: total time, number of intersections,
number of left turns, right turns and U-turns, total dis-
tance and distance on highways.

Initially the system computes and presents two routes
to the user. The first is computed using the current
preference model as the weight vector for the routing
cost function. The second route uses novel weights, se-
lected from a small set of prototypical user models, in
an attempt to explore new directions in the space of
preference models. Presenting at least two route op-
tions forces the user to make a choice and provide some
feedback to the system.

The map displays the selected route, as shown in Fig-
ure 2(b), and the turn directions for the route are avail-
able in a separate tabbed panel. Clicking "Select" in-
dicates that the highlighted route is satisfactory and
returns to the trip panel. The route advisor assumes
that the highlighted route is preferable to the alterna-
tive routes and updates the user model. Clicking "Can-
cel" returns to the trip panel but does not update the
model.

The "Modify" panel lets the user generate a new
route that is faster, shorter, has fewer turns, has fewer
intersections, or has less or more highway than the se-

4]

15:00 38 2 3 0

(a) The route selection panel.

I 2.0 MI, I
:] 22.079214 37~387659

(b) The map window.

Figure 2: Initially, the Adaptive Route Advisor presents two two alternative routes to the user. The best route
according to the current user-model is highlighted.

lected route. The implicit assumption is that the driver
is willing to accept routes that are somewhat worse on
other attributes if he or she can find one that is better
on the selected attribute. This approach to navigat-
ing through the space of possible solutions is similar to
"tweaking" in Burke et al.’s RENTME system (Burke,
Hammond, & Young 1996). In that system, the user
can navigate a database of apartments for rent by ask-
ing for an apartment that is either cheaper, bigger,
nicer, or safer than the one currently displayed.

The interface described above simultaneously and
seamlessly fulfills two functions in the Adaptive Route
Advisor. First, it lets the users easily find routes they
like by giving them choices and letting them interac-
tively modify the routes proposed. Second, it unobtru-
sively collects the preference judgements that the learn-
ing algorithm needs to refine the user model and adapt
to a particular driver.

Learning Algoritm
As discussed above, the learning algorithm in the Adap-
tive Route Advisor processes a sequence of interactions
with the planner to produce a weight vector that models
the user preferences. These preferences are expressed in
the form of pairs of routes (R~, R2/ for which the user
ranked route R~ as preferable to route R2.

In general we formalize the problem of learning a sub-
jective function from preference judgements as follows:

We assume that each potential solution is character-
ized by a n-dimensional vector of real numbers that
specify the cost of the solution along n, not necessarily
independent, dimensions. In general, these costs can
be simple numeric attributes of the solution or complex
functions computed from several features of the solu-
tion.

We are given a set D of m preference judgments

g b
\[Xgd’ x~\d/ (d = 1, ..., m), with Xd, Xd ~: ~n, indicating
that the user prefers a solution with cost x~ over one
with cost xb. Our goal is to determine a subjective
function f : ~n ~ ~ that is consistent with those judge-
ments. Specifically, we would like that f(x b) > f(X~d)
for d= l,...,m.

Here we restrict ourselves to subjective functions
that are linear combinations of the individual costs,
i.e., f(x) = w.x, with w,x ~ ~n. The vector
w = (w~,w~,...,w, 0 forms our user model and spec-
ifies the relative importance of the competing criteria
for the user. Since, other things being equal, a rational
user should always prefer a solution with lower individ-
ual costs, we assume that the w~’s are non-negative.

The restriction to linear models is not as stringent
as it might appear at first, since the cost components
themselves can be non-linear functions of the attributes
of the solutions. Moreover, we believe that a simple
representation, with a limited number of parameters,
is generally preferable when learning a user model. In-
deed, in those applications, it is often more important
to quickly acquire an approximate model of the user
preferences from a limited number of user interactions
than to achieve the highest possible asymptotical accu-
racy. The experimental results described in the next
section illustrate this point.

With this representation, every preference judgment
x g xb \ corresponds to a linear constraint on w, namelyd, d~

W. (Xb --X~) > 0. We can interpret these constraints
as training instances for an induction algorithm that
learns a linear classifier w. Specifically, Xd = (zb -- Xgd)
represents a positive instance and --Xd represents a neg-
ative instance (see figure 3).

Any supervised learning technique that is capable
of representing a linear classifier can thus be applied

42

~eXl[

\[.
-x3o ’~

-X2o ~e X3

X9Figure 3: Each preference judgement (d,Xbd) defines
a positive instance Xd and a negative instance --Xd for
the linear classifier.

¯ X2

~X3

argin
-Xl ¢" \

Figure 4: Small margin versus large margin linear clas-
sifier.

to learn the weights of the subjective function from
the preference judgments. The previous version of the
Adaptive Route Advisor (Rogers, Fiechter, & Langley
1999), for instance, used a perceptron algorithm.

The algorithm that we describe here is based on
the basic ideas of Support Vector Machines (SVMs)
and attempts to maximize the margin of the clas-
sifier, which is the minimum distance between the
hyperplane defined by the classifer and the training
points. There is a strong theoretical motivation for
maximizing the margin of a classifier that stems from
a result in statistical learning theory (Vapnik 1995;
1999) that relates a bound on the generalization error
of a classifier to the size of its margin. It also has a very
intuitive interpretation: classifiers with larger margins
are more robust. Both classifiers in Figure 4 correctly
classify the training instances, but the second one has a
larger margin and has a higher probability of correctly
classifying a new instance.

In our setting the margin of a classifier w with respect
to a training instance Xd for which x ¯ w = b (b > 0)
is given by 2 ¯ b~ [[w[[. Hence, one way to find a clas-
sifter that maximizes the margin is to find a vector w
with minimum norm that keeps the separation (b) of all
training instances above a fixed threshold. In a general
SVM this results in a quadratic programming problem.
Here, however, since we know that the w’s components
must be non-negative we can minimize the 1-norm of w

instead of its Euclidean norm to achieve a similar result
while solving only a linear program.2 Specifically, we
can find a classifier with large margin by solving the
following problem:

n

minimize Z wj

j:l

subject to W.Xd >_ 1, d = 1,...,m (1)
wj > 0, j = 1,...,n (2)

Note that the above linear program only has a so-
lution when the data are linearly separable. We can
easily extend the formulation to the general, non-
separable case by transforming the constraints (1) into
"soft" constraints and penalizing the constraint viola-
tions (Burges 1998). More precisely, we introduce posi-
tive slack variables {d (d -- 1,..., m) in the constraints
and add a penalty on those variables in the objective
function:

n m

minimize Z wj + c. E {d
j=l d=l

subject to W.Xd > 1 -- {d, d = 1,...,m

wj _> 0, j = 1,...,n

~d _> 0, d = 1,...,m

Here, c is a parameter that specifies the importance
of minimizing the training error relative to maximizing
the margin.

We can apply a linear programming algorithm, like
the Simplex algorithm (see Papadimitriou & Steiglitz,
1982; Chvatal, 1983) to efficiently solve the above lin-
ear program and compute the coefficients w of the sub-
jective function. One advantage of this approach over
other supervised learning algorithms for this problem
is that it can be implemented in a truly on-line fash-
ion. Every time the user provides a new preference
judgment the system can update the subjective func-
tion without having to retrain the learning algorithm
on all the data. The system simply adds the constraint
associated with the new preference judgment to the lin-
ear program and revise the current solution to take new
constraint into account. This can be done efficiently
within the Simplex algorithm, without having to recon-
sider all the constraints (Chvatal 1983). In particular,
if the new constraint is satisfied by the current solution
w (i.e., if its associated slack variable is null) then w
still optimal and no work is necessary.

The main benefit of the Large Margin algorithm,
however, is that prior knowledge about the domain can
easily be included in the form of additional constraints
on the solution. For example, in the Adaptive Route
Advisor, we know that regardless of their particular

?Z
2Ifwi _> 0 (i = 1,...,n) then ~j=lwj/x/~ <_ JJwJ[_<

n
Y]j=I wj. Therefore, in relatively low-dimensional prob-

nlems, minimizing Y’]j=I wj is a reasonable approximation
to maximizing the margin.

43

route preferences (e.g., whether they like to drive on
highways or not), drivers will always want routes that
are reasonably short and fast. We do not want the sys-
tem to suggest a route that is 50 miles longer because
it avoids one mile of local road and previous interac-
tions indicates that the driver dislike those. This is
enforced by adding to the linear program a constraint
that the combined weight of the "total distance" and
"estimated time" features in w must represent at least
10% of the total weight. The Adaptive Route Advisor
includes similar constraints to express other common-
sense knowledge about route preferences, like that even
a driver that usually prefers route with fewer left turns
will not want to do a right turn followed by a U-turn
to avoid a left turn?

Those kinds of constraints on the solution are espe-
cially useful when the subjective function must be in-
ferred from a limited amount of data. This will often
be the case in the context of Adaptive User Interfaces
where we do not want to subject the user to a long
"training phase" before starting to adapt to his prefer-
ences.

Experimental Results
In order to compare their bias against the route pref-
erences of real users we tested the Large Margin al-
gorithm and several other adaptation algorithms with
human participants. We isolated the adaptation com-
ponent from the rest of the system by simulating a fixed
series of interactions on paper. The test consisted of 20
tasks that involved trips between intersections in the
Palo Alto area. To compensate for the lack of inter-
activity, we produced four routes for each task using
weight vectors with a unit weight for one attribute and
zero for the rest. This created routes optimized for
time, distance, number of turns, and number of inter-
sections. We plotted the four routes, labeled randomly
A through D, on a map of Palo Alto. We presented the
tasks in a different random order for each participant.
Figure 5 shows an example of one of the tasks and its
four route choices.

We asked the participants to evaluate the routes for
each task and rank them in preference order. To con-
trol for context (e.g., whether the driver is in a hurry or
sightseeing), the participants were instructed to imag-
ine that it is Sunday afternoon, and they are going out
on errands. Since an ordering of four items gives six
independent binary preferences (A better/worse than
B, C, D; B better/worse than C, D; C better/worse
than D), each participant provided 6.20 = 120 train-
ing instances. The features for each instance were four
metrics describing the route: distance, estimated du-
ration, number of turns, and number of intersections.4

3It is precisely because those types of "aberrant" rec-
ommendations were occasionally produced by the previous
version of the Adaptive Route Advisor that the Large Mar-
gin algorithm was developed.

4These metrics were not shown to the participant.

More descriptive features would have been helpful, such
as lane merges or traffic lights, but they were not avail-
able in our digital map.

Adaptation Algorithms

Besides the Large Margin algorithm, we tested three
other learning methods: perceptron training (Nilsson
1965) as in the previous version of the Adaptive Route
Advisor, SANE (Moriarty 1997), and a search over lex-
icographic orderings.

As described in the previous section, both the Large
Margin algorithm and the perceptron algorithm imple-
ment simple linear classifiers. To test whether a more
powerful representation would be beneficial we also im-
plemented a multi-layer neural network. The hidden
layer in this network combines the input features into
possibly more meaningful features, and next combines
these features into a route cost. Instead of training the
network by backpropagation, we found a more natu-
ral training signal to be a positive feedback if the rela-
tive ordering of two routes is correct or negative if the
ordering is incorrect. The SANE (Symbiotic, Adap-
tive Neuro-Evolution) system (Moriarty 1997) evolves
a neural network through such weak feedback. SANE is
an evolutionary algorithm that manages a population
of neurons, constructs three-layer neural networks from
the neurons in each generation, and evaluates the net-
works. The neurons participating in the most effective
networks reproduce to the next generation. SANE’s
adaptation has been shown to be fast and accurate over
several task domains.

Another natural approach to evaluating routes is
a lexicographic (or]uzzy-lexicographie) comparison on
the features. This involves generating an ordering
on the features, such as [Time, D±startce, Turns,
Intersect±ons], and comparing the features of two
routes in that order. If a route is (significantly) better
than another for one feature, it is preferred. Otherwise,
the comparison goes to the next feature in the ordering.
In the fuzzy version used here, the amount by which a
feature has to be better for the whole route to be con-
sidered better is computed as the product of a signifi-
cance parameter A with the standard deviation of the
values for that feature. In domains such as this with
small feature sets, the adaptation algorithm can find
the best ordering by explicitly enumerating all possible
orderings.

Results

Figure 6 presents the testing accuracy of the four adap-
tation algorithms on each participant. For each algo-
rithm, we measure the accuracy with ten-fold cross val-
idation. The cost c of misclassification in the large
margin algorithm was set to 2, and the perceptron
was trained for 100,000 epochs with a learning rate
~? = 0.001. The lexicographic search estimated the
significance parameter A for each possible ordering via
cross validation, and tested the best ordering on a hold-

......-"

,,"
", k "-+-’-

B--B-
C.-~
D..~,-.

Figure 5: Sample task for the participants. The starting point is the box at the upper left and the ending point
is the box at the lower right¯ A is the route with fewest turns, B is the fastest route, C is the route with fewest
intersections, and D is the shortest route.

o

®

s0K i , i i i

60 \""~r"~’"""i:..~..,:~:::’.... :".:!....;\:":
,~"’ \ i \ × / ",. / ’~ /i ~ "¯

..... ~" k ,~""...x \ ~: z, i", / ’,~ /] \ ..,"\ I

~., \ i ~< i X/ ~ .," ’~ ~<
-i/ i ’~ ~ ’ ,,

4O

2O

\L" i \~ ..×.
... "’.i ..~:::’L.....’.:~,.

I-arge Margirt
! Pemeptro~
IJexlcog raphlc~ - B--’

SANE "x

I i j
4 7 10 13 16 19 22

Subject Number

Figure 6: Accuracy of each adaptation technique. The accuracy was computed using ten-fold cross validation¯

45

out set. SANE trained a neural network with five hid-
den units.

For this data set, the large margin, perceptron, and
lexicographic testing accuracies are very similar. They
all performed significantly better than chance (50%),
but they did not reach 100% performance, even on the
training data. For the large margin and perceptron
training, this indicates that the human preference data
is not linearly separable.

SANE’s accuracy, on the other hand, is significantly
lower even though its representation is more flexible.
There does not appear to be enough training data for
SANE to accurately tune the neural network. This
seems to corroborate the intuition that in adaptive
user interfaces application, where it is important for
the system to quickly acquire an approximate model
of the user’s preferences, simpler representations can
learn more accurate models with little data. Other
studies of testing accuracy versus representational com-
plexity for a given training set support this finding,
such as the comparison of naive Bayes nets to more
powerful classifiers (Langley, Iba, & Thompson 1992;
Domingos & Pazzani 1997), as well as the compari-
son of l-level decision trees (decision "stumps") to full
decision-tree induction (Holte 1993).

Although the lexicographic ordering performs well on
this data set it is not in general a convenient representa-
tion to use in an optimization algorithm. In the route
advisor, for instance, it is not practical to generate a
lexicographically optimal route, because it is computa-
tionally prohibitive to enumerate all possible routes and
sort them.

By contrast, both the perceptron training and the
large margin algorithm use a linear combination of
weights to represent preferences, leading to efficient op-
timal path calculations. The accuracy of the two al-
gorithms were comparable, but we observed that the
model learned by the perceptron for some participants
had negative weights on some features. This means that
higher values for those features makes the route more
desirable, which is quite counter-intuitive. This analy-
sis lead us to believe that the large margin approach is
a good training algorithm for this domain, because its
accuracy is never significantly worse than the best al-
ternative, and its intuitively plausible preference models
are more likely to generate better routes.

Conclusions
To build systems that help their users solve optimiza-
tion or decision problems it is often desirable to learn
a user’s subjective function from preference judgments.
We have presented a large margin algorithm that we
think is particularly well suited for that task. In par-
ticular prior knowledge about the domain can easily be
used to constraint the models the algorithm generates.

We have demonstrated the algorithm in the Adaptive
Route Advisor system and presented here some exper-
imental results on real users that show that the algo-
rithm is competitive. We have also conducted more sys-

tematic experiments on synthetic users that show that
the algorithm quickly converges toward good models of
the user’s route preferences, in a few interactions with
the user. These results will be described in a longer
version of the paper.

This work can be extended in several ways. We are
particularly interested in testing the large margin algo-
rithm in other adaptive recommendation systems to see
how it performs in different domains. In the Adaptive
Route Advisor, we want to address the problem of the
context for the route recommendation. The driver is
likely to prefer different routes depending on the time
of day or whether he is sightseeing or going to an im-
portant business meeting. One simple approach would
be to build a seperate model for each context. We are
more interested in a solution that would automatically
"cluster" the preferences into appropriate contexts.

References
Burges, C. 1998. A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery 2:121-167.

Burke, R.; Hammond, K.; and Young, B. 1996.
Knowledge-based navigation of complex information
spaces. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, 462-468. Cambridge,
MA: AAAI Press/MIT Press.

Chvatal, V. 1983. Linear Programming. New York:
Freedmand and Co.
Cohen, W.; Schapire, 1% and Singer, Y. 1999. Learn-
ing to order things. Journal of Artificial Intelligence
Research 10:243-270.

Dijkstra, E. W. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1:269-
271.

Domingos, P., and Pazzani, M. 1997. On the opti-
mality of the simple bayesian classifier under zero-one
loss. Machine Learning 29:103-130.
Gervasio, M.; Iba, W.; and Langley’, P. 1999. Learn-
ing user evaluation functions for adaptive scheduling
assistance. In Proceeding of the Sixteenth International
Conference on Machine Learning. Morgan Kanfman.

Holte, R. C. 1993. Very simple classification rules per-
form well on most commonly used datasets. Machine
Learning 11(1):63-90.

Langley, P.; Iba, W.; and Thompson, K. 1992. An
analysis of bayesian classifiers. In Proceedings of the
Tenth National Conference on Artificial Intelligence,
223-228. Cambride, MA: MIT Press.
Langley, P. 1997. Machine learning for adaptive user
interfaces. In Proceedings of the 21st German Annual
Conference on Artificial Intelligence, 53-62. Freiburg,
Germany: Springer.

Moriarty, D. E. 1997. Symbiotic Evolution of Neural
Networks in Sequential Decision Tasks. Ph.D. Disser-
tation, University of Texas at Austin, Austin, TX.

Nilsson, N. J. 1965. Learning machines. New York:
McGraw-Hill.
Papadimitriou, C. H., and Steiglitz, K. 1982. Com-
binatorial Optimization: Algorithms and Complexity.
Englewood Cliffs, NJ.: Prentice-Hall.
Rogers, S.; Fiechter, C.-N.; and Langley, P. 1999. An
adaptive interactive agent for route advice. In Pro-
ceedings of the Third International Conference on Au-
tonomous Agents. ACM Press.

Vapnik, V. 1995. The Nature of Statistical Learning
Theory. New York: Springer-Verlag.

Vapnik, V. 1999. Statistical Learning Theory. New
York: Wiley and Sons~ Inc.

