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2-Minute Version 
Submodular fns: important objects (combinatorial fns 
satisfying diminishing returns) that come up in many areas. 

Traditionally: Optimization, operations research 

This talk: learning submodular fns from data. 

• Algorithmic Game Theory 

• Machine Learning  

[Lehman-Lehman-Nisan’01], …. 

[Bilmes’03] [Guestrin-Krause’07], … 

Most recently 

• Social Networks [Kleinberg-Kempe-Tardos’03] 



2-Minute Version 
This talk:  learning submodular functions from data. 

Novel structural results 

Alg. Game Theory 
Economics 

Matroid  
Theory 

Discrete 
Optimization 

• Much better upper bounds in cases with more structure, 
coming from social networks & algorithmic game theory. 

• Application for learning influence fnc in diffusion networks. 

• General learnability results in a statistical setting; 
surprising lower bounds showing unexpected structure.  

• Can model pbs of interest to many areas, 
e.g., social networks & alg. game theory.  



Structure of the talk 

• Submodular functions. Why are they important. 

• Learning submodular functions. 

With connections and applications to Algorithmic 
Game Theory, Economics, Social Networks. 



Submodular functions 

• First of all, it’s a function over sets.  
• e.g., value on some set of items in a store. 

• Ground set V={1,2, …, n}. 



Submodular functions 
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For T µ S, xS, f(T [ {x}) – f(T)  ¸ f(S [ {x}) – f(S) 
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• Equivalent decreasing marginal return:  

  For all S,T µ V: f(S)+f(T)  ¸ f(S Å T)+f(S [ T) 

 

 

• V={1,2, …, n}; set-function f : 2V !  R submodular if 



Submodular functions 

For T µ S, xS, f(T [ {x}) – f(T)  ¸ f(S [ {x}) – f(S) 

• V={1,2, …, n}; set-function f : 2V !  R submodular if 
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Coverage and Reachability Functions 

𝑠1 

𝑠2 

• Reachability function: 

𝐴𝑠1 

𝐴𝑠2 

• Coverage function:  Let 𝐴1, … , 𝐴𝑛 be sets. 
For each S ⊆V, let f(S) = | 𝐴𝑗𝑗∈𝑆 | 

E.g., in a network, 𝐴𝑠 nodes reachable from s 

 𝑓 𝑆 = # nodes reachable from 𝑆. 



Coverage and Reachability Functions 
• Reachability function: 

E.g., in a network, 𝐴𝑠 nodes reachable from s 

 𝑓 𝑆 = # nodes reachable from 𝑆. 

• Marginal value of x given  S is # number of new nodes that x can 
reach, but cannot be reached from any of the nodes in S. 

• 𝑇 ⊂  𝑆, 𝑥 ∉ 𝑆, more chance reach new nodes when adding x to T, than 
when adding x to S. 

𝑠1 

𝑠2 

𝐴𝑠1 

𝐴𝑠2 
Diminishing Returns 



Reachability function is submodular 

𝑇 = 𝑠2 , 
𝑠1 

𝑆 = 𝑠1, 𝑠2 , 

𝑠2 𝑠2 

𝑥 𝑥 

𝑓 𝑇 ∪ 𝑥 − 𝑓 𝑇           ≥              𝑓 𝑆 ∪ 𝑥  − 𝑓 𝑆   
Marginal value of 𝑥 = # new nodes reachable from 𝑥. 

 𝑓 𝑇 = 5 𝑓 𝑆 = 8 3 ≥ 2 



Probabilistic Reachability Functions 

𝑠1 

𝑠2 

𝐴𝑠1 

𝐴𝑠2 

• Given a distribution over graphs f S = EG[# reachable from S|G] also submodular. 



Submodular functions 

• Vector Spaces   Let V={v1,,vn}, each v
i
 2 Rn. 

For each S µ V, let f(S) = rank(V[S]) 

More examples: 

• Cut Function in a Graph   Let f(S) = # of 
edges between S and V\S. 

f(S) · f(T) ,  8 S µ T 

f(S) ¸ 0, 8 S µ V 

  Monotone: 

This talk: focus on 

  Non-negative: 

• Concave Functions   Let h : R ! R be concave. 
 For each S µ V, let f(S) = h(|S|) 

 



Submodular functions 
• A lot of work on Optimization Problems involving 

Submodular Functions. 

Traditionally: Optimization, operations research 

• This talk: learning them from data. 

• Algorithmic Game Theory 

• Machine Learning  

[Lehman-Lehman-Nisan’01], …. 

[Bilmes’03] [Guestrin-Krause’07], … 

Most recently 

• Social Networks [Kleinberg-Kempe-Tardos’03] 



Learning submodular functions 

Supermarket chain 
• V = all the items you sell. 

• f(S) = valuation on set of items S. 

Valuation Functions in Economics  

f(             ,             ) ! R 



Learning submodular functions 
Influence Function in Social Networks 

• V = set of nodes. 

• f(S) = expected number of nodes S will influence. 

f is a probabilistic reachability fnc in classic diffusion 
models (e.g., independent cascade model, random threshold model) 

Assume an explicit model on how 
info spreads ; use it to estimate 
the influence fnc. 

Past Work Our Work 

Learn the influence function 
directly from data 

Could be mis-specified…. 

[Kleinberg-Kempe-Tardos’03] 



Learning submodular functions 
Influence Function in Networks  

virus  
report 

cybersecurity: 
computer virus spread 

epidemiology: influenza spread 

biology:  
gene expression cascade 



Learning Submodular Functions 

General Learnability Results 

• Highlights importance of beyond worst case analysis. 

• Upper & lower bounds on their intrinsic complexity. 

Large Scale Application to Social Networks 

• Implications to Alg. Game Theory, Economics, Discrete 
Optimization, Matroid Theory.   

Better Results for Cases with More Structure 



   Labeled Examples   

Statistical learning model 

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs 

Distribution 
D on 2[n]  

f : 2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

g :2[n]  R+ 



PMAC model for learning real valued functions 

Distribution 
D on 2[n]  

   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs f : 2[n]  R+ 
g :2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

•  Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g. 

Probably Mostly Approximately Correct 

•  With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-² 

[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012] 



PMAC model for learning real valued functions 

Distribution 
D on 2[n]  

   Labeled Examples   

Learning 
Algorithm 

Expert / Oracle 

Data Source 

Alg.outputs f : 2[n]  R+ 
g :2[n]  R+ 

(S1,f(S1)),…, (Sk,f(Sk)) 

•  Algo sees (S1,f(S1)),…, (Sk,f(Sk)), Si i.i.d. from D, produces g. 

•  With probability ¸ 1-± we have PrS[g(S) · f(S)· ® g(S)]¸ 1-² 

[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012] 

𝛼 = 1 , recover PAC  model. 



Learning submodular functions 

   No algo can PMAC learn the class of submodular fns with 
approx. factor õ(n1/3). 

Theorem: (General lower bound) 
  

Corollary: Matroid rank fns do not have a concise, 
approximate representation. 

Surprising answer to open question 
in Economics of 

Theorem: (General upper bound) 
 Poly time alg. for PMAC-learning (w.r.t. an arbitrary 

distribution) with an approx. factor ®=O(n1/2). 

• Even if value queries allowed; even for rank fns of matroids. 

Noam Nisan Paul Milgrom 

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012] 



Moral: Exploit Additional Structure 

• Product distribution. 
[Balcan-Harvey,STOC’11] 

• Learning valuation fns  from AGT and Economics. 

• Learning influence fns in information diffusion networks 

[Balcan-Constantin-Iwata-Wang, COLT ‘12] 

[Du, Liang, Balcan, Song, ICML’14; NIPS’14] 

• Bounded Curvature (i.e., almost linear) 

[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA’12] 

[Feldman-Vondrak,FOCS’13] 

[Iyer-Jegelka-Bilmes, NIPS’13] 

• Learning values of coalitions in cooperative game theory 
[Balcan, Procacia, Zick, IJCAI’15] 



Learning submodular functions 

   No algo can PMAC learn the class of submodular fns with 
approx. factor õ(n1/3). 

Theorem: (General lower bound) 
  

Surprising answer to open question 
in Economics of 

Theorem: (General upper bound) 
 Poly time alg. for PMAC-learning (w.r.t. an arbitrary 

distribution) with an approx. factor ®=O(n1/2). 

• Even if value queries allowed; even for rank fns of matroids. 

Noam Nisan Paul Milgrom 

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012] 



A General Upper Bound 

Theorem:  
9 an alg. for PMAC-learning the class of non-negative, 
monotone, submodular fns (w.r.t. an arbitrary 
distribution) with an approx. factor O(n1/2). 



Subadditive Fns are Approximately Linear 

• Let f be non-negative, monotone and subadditive 

• Claim: f can be approximated to within factor n 
by a linear function g. 

 Subadditive:    f(S)+f(T) ¸ f(S[ T)      8 S,T µ V 
 Monotonicity:         f(S) · f(T)                  8 Sµ T 

   Non-negativity:            f(S) ¸ 0                 8 S µ V 

• Proof Sketch: Let g(S) = x in S f({x}). 
Then f(S) ·  g(S)  · n ¢ f(S). 



V 

Subaddtive Fns are Approximately Linear 

f 

n¢f 

g 

f(S) · g(S) · n¢f(S) 



g (S) =w ¢ Â (S) 

• Labeled examples  ((Â(S), f(S) ), +) and ((Â(S), n¢f(S) ), -)  are 
linearly separable in Rn+1. 

• Idea: reduction to learning a linear separator.  

Problem: data not i.i.d.  

Solution: create a related distib. P. Sample S from D; flip a coin. 
If heads add ((Â(S), f(S) ), +). Else add  ((Â(S), n¢f(S) ), -). 

+ 

+ 

- - 
+ 
+ - - 

- 

f(S) · g(S) · n¢f(S)   where  

features 

• Claim: A linear separator with low error on P induces a linear 
function with an approx. factor of n on the original data. 

PMAC Learning Subadditive Valuations 



Input: (S1, f(S1)) …, (Sm, f(Sm)) 

•  For each Si, flip a coin.  

Algorithm: 

PMAC Learning Subadditive Valuations 

• If heads add ((Â(S), f(Si) ), +). 

• Else add  ((Â(S), n¢f(Si) ), -). 

• Theorem:  For m = £(n/²),  g approximates f to within a 
factor n on a 1-² fraction of the distribution. 

• Learn a linear separator u=(w,-z) in Rn+1.  

Output: g(S)=1/(n+1)  w ¢ Â (S).  



Input: (S1, f(S1)) …, (Sm, f(Sm)) 

•  For each Si, flip a coin.  

Algorithm: 

PMAC Learning Submodular Fns 

• If heads add ((Â(S), f2(Si) ), +). 

• Else add  ((Â(S), n f2(Si) ), -). 

• Learn a linear separator u=(w,-z) in Rn+1.  

Output: g(S)=1/(n+1)1/2  w ¢ Â (S) 

• Theorem:  For m = £(n/²),  g approximates f to within a 
factor n1/2 on a 1-² fraction of the distribution. 

   Proof idea:  f non-negative, monotone, submodular can be 
approximated within n1/2  by a \sqrt{linear function}. [GHIM, 09] 



Input: (S1, f(S1)) …, (Sm, f(Sm)) 

•  For each Si, flip a coin.  

Algorithm: 

PMAC Learning Submodular Fns 

• If heads add ((Â(S), f2(Si) ), +). 

• Else add  ((Â(S), n f2(Si) ), -). 

• Learn a linear separator u=(w,-z) in Rn+1.  

Output: g(S)=1/(n+1)1/2  w ¢ Â (S) 

• Theorem:  For m = £(n/²),  g approximates f to within a 
factor n1/2 on a 1-² fraction of the distribution. 

   Proof idea:  f non-negative, monotone, submodular can be 
approximated within n1/2  by a \sqrt{linear function}. [GHIM, 09] 



A General Lower Bound 

Use the fact that any matroid rank fnc is submodular. 

Construct a hard family of matroid rank functions. 

A1 A2 AL A3 

X 

X X 

Low=log2n 

High=n1/3 

X 

… … …. …. 

L=nlog log n 

Plan: 

 
No algorithm can PMAC learn the class of non-neg., 
monotone, submodular fns with an approx. factor õ(n1/3). 

Theorem 

Vast generalization of partition matroids. 



Ind={I: |I Å Aj| · uj, for all j } 

Partition Matroids 

• E.g., n=5, A1={1,2,3}, A2={3,4,5}, 

A1, A2, …, Ak µ V={1,2, …, n}, all disjoint; ui · |Ai|-1 

Then (V, Ind) is a matroid. 

If sets Ai are not disjoint, then (V,Ind) might not be a matroid. 

• {1,2,4,5} and {2,3,4} both maximal sets in Ind; do not have 
the same cardinality. 

u1 = u2=2. 



Almost partition matroids 

k=2,  A1, A2 µ V (not necessarily disjoint); ui · |Ai|-1 
 

Then (V,Ind) is a matroid. 

Ind={I: |I Å Aj| · uj , |I Å (A1 [ A2)| · u1 +u2 - |A1 Å A2|} 



Almost partition matroids 

More generally 

Ind= { I: |I Å A(J)| · f(J), 8 J µ [k] } 

f(J)= j 2 J uj +|A(J)|-j 2 J|Aj|, 8 J µ [k]  

f : 2[k] ! Z 

Then (V, Ind) is a matroid (if nonempty). 

Rewrite f, f(J)=|A(J)|-j 2 J(|Aj| - uj), 8 J µ [k]  

=<0 
A1, A2, …, Ak µ V={1,2, …, n}, ui · |Ai|-1;  



Almost partition matroids 

More generally 

Ind= { I: |I Å A(J)| · f(J), 8 J µ [k] } 

f(J)=|A(J)|-j 2 J(|Aj| - uj), 8 J µ [k]  

f : 2[k] ! Z 

Then (V, Ind) is a matroid (if nonempty). 

Note:  This requires k· n (for k > n, f becomes negative)  

f(J)=|A(J)|-j 2 J(|Aj| -uj), 8 J µ [k]; ui · |Ai|-1   f : 2[k] ! Z,  

More tricks to allow k=nlog log n.  



Learning submodular valuations 

A1 A2 AL A3 

X 

X X 

Low=log2n 

High=n1/3 

X 

… … …. …. 

L=nlog log n 

 
No algorithm can PMAC learn the class of non-neg., 
monotone, submodular fns with an approx. factor õ(n1/3). 

Theorem 

Worst Case Analysis  



Moral: Exploit Additional Structure 

• Product distribution. 
[Balcan-Harvey,STOC’11] 

• Learning valuation fns  from AGT and Economics. 

• Learning influence fns in information diffusion networks 

[Balcan-Constantin-Iwata-Wang, COLT ‘12] 

[Du, Liang, Balcan, Song, ICML’14; NIPS’14] 

• Bounded Curvature (i.e., almost linear) 

[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA’12] 

[Feldman-Vondrak,FOCS’13] 

[Iyer-Jegelka-Bilmes, NIPS’13] 

• Learning values of coalitions in cooperative game theory 
[Balcan, Procacia, Zick, IJCAI’15] 



Learning Valuation Functions 

Additive µ OXS µ Submodular µ XOS µ Subadditive 

Well-studied subclasses of subadditive valuations. 

[Sandholm’99] [Lehman-Lehman-Nisan’01] 

[Algorithmic game theory and Economics] 

• Target dependent learnability for classes of  valuation 
fns have a succinct description. 

[Balcan-Constantin-Iwata-Wang, COLT 2012] 



g( {1,2} ) = $16 

XOS valuations 

Functions that can be represented as a MAX of SUMs.  

g( {1,2,3} ) = $16 

Max 

Sum 

({1}, $2) ({2}, $5) 

Romania Switzerland Sum 

({2}, $6) ({1}, $10) 
({3}, $5) 

g( {2,3} ) = $10 



Target dependent Upper Bound for XOS 

Theorem: (Polynomial number of Sum trees) 
    O(R²) approximation in time O(n1/²). 

Main Idea: 

• Target approx within O(R²) by a linear 
function over  O(n1/²) feature space (one 
feature for each n1/²-tuple of items). 

Max 

Sum Sum Sum 

… … 

• Reduction to learning a linear separator 
in a higher dim. feature space. 

Highlights importance of considering the 
complexity of the target function.  

R 



Learning Influence Functions in 
Information Diffusion Networks 
[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14] 

𝑠1 

𝑠2 

𝐴𝑠1 

𝐴𝑠2 

f S = EG[# reachable from S|G] 
probabilistic reachability fnc 

Fact: in classic diffusion models  (discrete time independent 
cascade model/random threshold model, continuous time analogues, 
etc), the influence function is coverage function. 

Influence Function in Networks 
• V = set of nodes. 

• f(S) = expected number of nodes S will influence. 

[Kleinberg-Kempe-Tardos’03] 



Discrete-time independent cascade model 

• Each edge has a weight 𝑤 ∈ [0,1] 

𝑤1 𝑤2 

𝑆 𝑆 

sample 

• Cascade generative process for a source set 𝑆 
– presence of edge is sampled independently according to 𝑤 

– influenced nodes are those reachable from at least one of 
the source nodes in the resulting “live edge graph” 

• Influence of S is expected number of nodes 
influenced under this random process 



Learning Influence Functions in 
Information Diffusion Networks 
[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14] 

𝑠1 

𝑠2 

𝐴𝑠1 

𝐴𝑠2 

f S = EG[# reachable from S|G] 
probabilistic reachability fnc 

Fact: in classic diffusion models, the influence function is a 
coverage function. 

• Note 2: Do better theoretically and empirically, if have  
access to information diffusion traces or cascades. 

• Note 1:  Do not know better guarantees for efficient 
algorithms if access only to value queries. 



Learning Influence Functions based on information 
propagation traces (cascades) 

44 

Mary 

David 



Another cascade 

45 

Mary 

David 



Learning the influence function 

I.e., there is a distribution 𝑝𝑅 over reachability matrices R s.t.: 

Assumption:  f 𝑆  is a probabilistic coverage function.  

𝑅𝑠𝑗 𝑠 

𝑗 

𝑅𝑠𝑗 = 1 if 𝑠 can reach 𝑗, 𝑅𝑠𝑗 = 0 otherwise. 

f 𝑆 = 𝐸𝑅∼𝑝𝑅[#influenced(𝑆|𝑅)] 
| {𝑗: 𝑅𝑠𝑗 = 1 for some s∈ 𝑆} | 

Goal: learn Influence function f S = E[#influenced(S)]. Input: past influence cascades { S1, I1 , S2, I2 , … , Sm, Im }. 



Learning the influence function 

Idea: 𝑓 𝑆 =  𝑓𝑗  (𝑆)𝑗 , where 𝑓𝑗 𝑆 = Pr𝑅∼𝑝𝑅(𝑗 is influenced by 𝑆).  
Goal: learn Influence function f S = E[#influenced(S)]. Input: past influence cascades { S1, I1 , S2, I2 , … , Sm, Im }. 

For each j, will learn f j(S).   Output  f j(S)j . 

Use “random kitchen sink” approach:  
• choose random binary vectors v1, v2, … , vK from q. 

• Parametrize  f j(S) as  wi ⋅ I[ IS, vi ≥ 1i ] ( wi ≤ 1, wi≥ 0)i  

Learn weights via maximum conditional likelihood. 

Algorithm for learning 𝑓𝑗 



Influence estimation in real data 

• Memetracker Dataset, blog data cascades : “apple and jobs”, 
“tsunami earthquake”, “william kate marriage” 

 

[Du, Liang, Balcan, Song, ICML 2014 , NIPS’14] 



Conclusions 

• Very strong lower bounds in the worst case.  

Learnability of submodular, other combinatorial fns 

• Much better learnability results for classes with additional 
structure. 

Max 

Sum 

({1}, $2) ({2}, $5) 

Sum 

({2}, $6) ({1}, $10) 
({3}, $5) 

• Can model problems of interest to many areas.  



Conclusions 

• Very strong lower bounds in the worst case.  

Learnability of submodular functions 

• Highlight the importance of considering the 
complexity of the target function. 

Open Questions: 

• Exploit complexity of target for better approx 
guarantees. 

• What is a natural description language for 
submodular fns? 

[for learning and optimization] 

• Other interesting applications. 
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