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2-Minute Version

Submodular fns: important objects (combinatorial fns
satisfying diminishing returns) that come up in many areas.

Traditionally: Optimization, operations research
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Most recently

. Algor'i'l'hmic Game Theory [Lehman-Lehman-Nisan'01], ...
*  Machine Learning [Bilmes'03] [Guestrin-Krause'07], ..

e Social Networks  [Kleinberg-Kempe-Tardos'03]

This talk: learning submodular fns from data.



2-Minute Version
This talk: learning submodular functions from da’ra.

General learnability results in a statistical setting;
surprising lower bounds showing unexpected structure.
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Alg. Game Theory Matroid Discrete
Economics Theory Optimization

Much better upper bounds in cases with more structure,
coming from social networks & algorithmic game theory.

Application for learning influence fnc in diffusion networks.



Structure of the talk

« Submodular functions. Why are they important.

* Learning submodular functions.

With connections and applications to Algorithmic
Game Theory, Economics, Social Networks.



Submodular functions

First of all, it's a function over sets.

* e.g., value on some set of items in a store.

Ground set V={1,2, ..., n}.



Submodular functions
V={1,2, ..., n}; set-function f : 2V — R submodular if

Forall S, T C V: f(S)+f(T) > f(SNTH+f(SUT)
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Equivalent decreasing marginal return:

For TC S, xeS, f(Tu{x}) - f(T) > f(SuU{x})-f(S)

T o X < Large improvement I

+ oX <Sma|l improvement |




Submodular functions
« V={1,2, .., n}; set-function f : 2¥ — R submodular if
For TC S, xS, f(TU{x})-f(T) > f(Su{x})-f(S)

‘ T X < Large improvement I

T oX <mal| improvement




Coverage and Reachability Functions

Coverage function: Let A4, ..., A, be sefts.
For each S €V, let f(S) = |U s 4|
Reachability function: f(S) =# nodes reachable from S.

E.g., in a network, A; nodes reachable from s




Coverage and Reachability Functions

« Reachability function: f(S) =# nodes reachable from .

E.g., in a network, A; nodes reachable from s

Diminishing Returns

« Marginal value of x given S is # number of new nodes that x can
reach, but cannot be reached from any of the nodes in S.

« Tc S,x &S5, more chance reach new nodes when adding x tfo T, than
when adding x to S.



Reachability function is submodular

Marginal value of x = # new nodes reachable from x.

T={SZ}' f(T) =5

3
f(Tuixy) —£(T)

S = {51152}r f(S) =38

2
fSUixy) = f(S)
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Probabilistic Reachability Functions

 Given a distribution over graphs

f(S) = Eg[# reachable from S|G] also submodular.




Submodular functions

More examples:

Concave Functions Let h: R — R be concave.
For each S C V, let £f(S) = h(|S])

« Vector Spaces Let V={v,,...,v,}, each v. € R".
For each S C V, let f(S) = rank(V[S])

 Cut Function in a Graph Let f(S) = # of
edges between S and V\S.

This talk: focus on
Monotone: f(S)<f(T), VvSCT

Non-negative: f(S)>0,vSscV




Submodular functions

* A lot of work on Optimization Problems involving
Submodular Functions.

Traditionally: Optimization, operations research

Most recently

. Algor'i'l'hmic Game Theor'y [Lehman-Lehman-Nisan'01], ....
« Machine Lear'ning [Bilmes'03] [Guestrin-Krause'07], ...

e Social Networks [Kleinberg-Kempe-Tardos'03]

« This talk: learning them from data.



Learning submodular functions

Valuation Functions in Economics

Supermarket chain
« V=dll the items you sell.
« f(S) = valuation on set of items S.




Learning submodular functions

Influence Function in Social Networks ' : 4 ’

« V =set of nodes. '
* f(S) = expected number of nodes S will influencd ‘%

f is a probabilistic reachability fnc in classic diffusuon
models (e.g., independent cascade model, random threshold model) [Kleinberg-Kempe-Tardos'03]

Past Work Our Work

Assume(an explucu’r model »n how Learn the influence function

info sprea estimate directly from data

the influence fAc. .'.lif)i /\§,\ &
9o

S \
Could be mis-specified. %_%



Learning submodular functions

Influence Function in Networks
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Learning Submodular Function

General Learnability Results

SR

« Upper & lower bounds on their intrinsic complexity.

« Implications to Alg. Game Theory, Economics, Discrete
Optimization, Matroid Theory.

- ]

 Highlights importance of beyond worst case analysis.
Better Results for Cases with More Structure

Large Scale Application to Social Networks



Statistical learning model
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PMAC model for learning real valued functions
[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012]

D‘”“*‘””“"' Distribution
E§77= D on 2(n!

Expert / Oracle

Learning
Algorithm

Labeled Examples
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\(51,1‘(51)),---, (Sk.f(SK))
Alg.outpu g2l >R,

« Algo sees (5,,f(S9))..... (5,.f(Sy)). S;i.i.d. from D, produces g.
«  With probability > 1-5 we have Pr[g(S) < f(S)< a g(S)]> 1-¢

Probably Mostly Approximately Correct



PMAC model for learning real valued functions
[Balcan&Harvey, STOC 2011 & Nectar Track, ECML-PKDD 2012]

Learning
Algorithm

D‘”°5°”“"' Distribution
E§77= D on 2(n!

Expert / Oracle

Labeled Examples

§) «
\(51,1‘(51)),--., (Sk.f(SK))
Alg.outpu g2l >R,

Algo sees (51,f(S¢))..... (5,.f(S,)), S; i.i.d. from D, produces g.
With probability > 1-5 we have Prg[g(S) < f(S)< a g(S)]> 1-¢

a =1, recover PAC model.



Learning submodular functions

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012]

Theorem: (General upper bound)

Poly time alg. for PMAC-learning (w.r.t. an arbitrary
distribution) with an approx. factor a=0(n'/?).

Theorem: (General lower bound)

No algo can PMAC learn the class of submodular fns with
approx. factor 6(n'/3).

Even if value queries allowed; even for rank fns of matroids.

Corollary: Matroid rank fns do not have a concise,
approximate representation.

Surprising answer to open question
in Economics of

Paul Milgrom  Noam Nisan



Moral: Exploit Additional Structure

* Product distribution.

[Balcan-Harvey,STOC'11][Feldman-Vondrak, FOCS'13]

« Bounded Curvature (i.e., almost linear)
[Tyer-Jegelka-Bilmes, NIPS'13]

* Learning valuation fns from AGT and Economics.

[Balcan-Constantin-Iwata-Wang, COLT '12]
[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA'12]

Learning influence fns in information diffusion networks
[Du, Liang, Balcan, Song, ICML'14; NIPS'14]

Learning values of coalitions in cooperative game theory
[Balcan, Procacia, Zick, IJCAT'15]



Learning submodular functions

[Balcan&Harvey, STOC 2011 & Necktar Track, ECML-PKDD 2012]

Theorem: (General upper bound)

Poly time alg. for PMAC-learning (w.r.t. an arbitrary
distribution) with an approx. factor a=0(n'/?).

Theorem: (General lower bound)

No algo can PMAC learn the class of submodular fns with
approx. factor o(n'/3).

Even if value queries allowed; even for rank fns of matroids.

Surprising answer to open question
in Economics of

Paul Milgrom  Noam Nisan



A General Upper Bound

Theorem:

3 an alg. for PMAC-learning the class of non-negative,
monotone, submodular fns (w.r.t. an arbitrary
distribution) with an approx. factor O(n'/?).



Subadditive Fns are Approximately Linear

* Let f be non-negative, monotone and subadditive

» Claim: f can be approximated to within factor n
by a linear function g.

* Proof Sketch: Let g(S) =2, s f({x}).
Then f(S) < g(S) < n - f(S).

Subadditive: f(S+f(T)>f(SUT) VS TCV
Monotonicity: f(S) < f(T) VSCT
Non-negativity: f(s)>0 VSCV




Subaddtive Fns are Approximately Linear

f(S) < 9(S) < n-f(S) n-f




PMAC Learning Subadditive Valuations
f(S) < g(S) < n-f(S) where g(S)=w:x(S)

features

7~
« Labeled examples ((x(S), f(S) ), +) and ((x(S), n-f(S) ), -) are

linearly separable in R™1.

* Idea: reduction to learning a linear separator. :\ ‘

Problem: data not i.i.d.

Solution: create a related distib. P. Sample S from D; flip a coin.
If heads add ((x(S), f(S) ), +). Else add ((x(S), n-f(S) ), -).

 Claim: A linear separator with low error on P induces a linear
function with an approx. factor of n on the original data.




PMAC Learning Subadditive Valuations
Algorithm:

Input: (Sq, f(Sy)) ..., (S, f(S,)
For each S, flip a coin.
« If heads add ((x(S), f(S)) ), +).

+ Else add ((x(S), n-£(S) ), -).
 Learn a linear separator u=(w,-z) in R,
Output: g(S)=1/(n+1) w - x (S).

« Theorem: For m=6(n/e), g approximates f to within a
factor non a 1-¢ fraction of the distribution.



PMAC Learning Submodular Fns
Algorithm:

Input: (S, f(Sy)) ... (Sp. F(Sp))
For each S, flip a coin.
« TIf heads add ((x(S), f(s) ), +).
« Else add ((x(S), n f3(s))), -).
 Learn a linear separator u=(w,-z) in R,

Output: g(S)=1/(n+1)2 w - x (S)

« Theorem: For m = ©(n/c), g approximates f to within a
factor n/2on a 1-¢ fraction of the distribution.

Proof idea: f non-negative, monotone, submodular can be
approximated within n'/?2 by a \sqrt{linear function}. [6HIM, 09]



PMAC Learning Submodular Fns
Algorithm:

Input: (S, f(Sy)) ... (Sp. F(Sp))
For each S, flip a coin.
« TIf heads add ((x(S), f(s) ), +).
« Else add ((x(S), n f3(s))), -).
 Learn a linear separator u=(w,-z) in R,

Output: g(S)=1/(n+1)2 w - x (S)

« Theorem: For m = ©(n/c), g approximates f to within a
factor n/2on a 1-¢ fraction of the distribution.

Proof idea: f non-negative, monotone, submodular can be
approximated within n'/?2 by a \sqrt{linear function}. [6HIM, 09]



A General Lower Bound

Theorem

No algorithm can PMAC learn the class of non-neg.,
monotone, submodular fns with an approx. factor o(n'/3).

Plan:
Use the fact that any matroid rank fnc is submodular.

Construct a hard family of matroid rank functions.

High=n1/3 X X

L=n|og logn

Low=log2n

A, A, As

Vast generalization of partition matroids.



Partition Matroids

Ay, A, . AL C V{12, ., n}, all disjoint; u; < |A]-1
Ind={I: [I N A;| < u;, forall j}
Then (V, Ind) is a matroid.

If sets A, are not disjoint, then (V,Ind) might not be a matroid.

E.g., n=5, A={1,2,3}, A,={3,4,5}, u;=u,=2.

« {1,2,45}and {2,3,4} both maximal sets in Ind; do not have
the same cardinality.



Almost partition matroids

k=2, A;, A, C V (not necessarily disjoint); u, < |A;|-1

Ind={T: TN Al <u;, [T (A UA) < up+u, - |A; N A
Then (V,Ind) is a matroid.



Almost partition matroids

More generally

Al' Az, ey Ak g V:{l,z, ey n}, Lli S |A:I<|0_1; f: Z[k] — Z

Ind={I: [InAQ)| <f(J), VT C[k]}
Then (V, Ind) is a matroid (if nonempty).

Qewrite T, f(J)=|A(J)|‘ZJ'eJ(|AJ'| - UJ'), vV J C [K]



Almost partition matroids

More generally f:2kl— Z
FD=IAWDI-Z; ¢ 5(1A] - up), v T < [K]

Ind={I: [InAQW)| <f(J),VJICI[k]}
Then (V, Ind) is a matroid (if nonempty).

fr2lkd Z,f(J):|A(J)|-ZJ c J(lAjl ‘UJ'), v J C [KI. u; < |Ai|‘1
Note: This I"CQUir'CS kS N (for k > n, f becomes negative)

More tricks to allow k=nloglogn



Learning submodular valuations

Theorem

No algorithm can PMAC learn the class of non-neg.,
monotone, submodular fns with an approx. factor o(n'/3).

High=n1/3 —X %

|_=nlog logn

AV AV4
ZAN

Low=log2n

Worst Case Analysis ©



Moral: Exploit Additional Structure

* Product distribution.

[Balcan-Harvey,STOC'11][Feldman-Vondrak, FOCS'13]

« Bounded Curvature (i.e., almost linear)
[Tyer-Jegelka-Bilmes, NIPS'13]

* Learning valuation fns from AGT and Economics.

[Balcan-Constantin-Iwata-Wang, COLT '12]
[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA'12]

Learning influence fns in information diffusion networks
[Du, Liang, Balcan, Song, ICML'14; NIPS'14]

Learning values of coalitions in cooperative game theory
[Balcan, Procacia, Zick, IJCAT'15]



Learning Valuation Functions

« Target dependent learnability for classes of valuation
fns have a succinct description.

[Balcan-Constantin-Iwata-Wang, COLT 2012]

Well-studied subclasses of subadditive valuations.

[Algorithmic game theory and Economics]

~

Additive C OXS Q.’_jSubmodular C XOS C Subadditigé

-~ ==

[Sandholm'99] [Lehman-Lehman-Nisan‘al']\ """"""""""""""""""""""""""""



XOS valuations

Functions that can be represented as a MAX of SUMs.

Max

Sum

Romania UM switzerland

({3}, 55)

(%2 (2,99) ({1}, $10) (2}, $6)

9({1,2}) = %16 g({2,3})=%10  g({1,2.3})=9$16



Target dependent Upper Bound for XOS

Theorem: (Polynomial number of Sum trees)
O(R) approximation in time O(n/).
Max

Main Idea: .\ R

« Target approx within O(R¢) by a linear Sum ;m
function over O(n'/<) feature space (one
feature for each n'c-tuple of items). /\ /\ /\

Reduction to learning a linear separator
in a higher dim. feature space.

Highlights importance of considering the u, -
complexity of the target function. @




Learning Influence Functions in
Information Diffusion Networks

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]

Influence Function in Networks

« V =set of nodes.
« f(S) = expected number of nodes S will influence.

Fact: in classic diffusion models (discrete time independent
cascade model/random threshold model, continuous time analogues,
etc), the influence function is coverage function. [Kleinberg-Kempe-Tardos03]

f(S) = Eg[# reachable from S|G] 9\‘. §.1<{
probabilistic reachability fnc o ™ Nt

L >0

S, Ag,

\;<:




Discrete-time independent cascade model

Each edge has a weight w € [0,1]

- Cascade generative process for a source set S
- presence of edge is sampled independently according to w

- influenced nodes are those reachable from at least one of
the source nodes in the resulting "live edge graph”

* Influence of S is expected number of nodes
influenced under this random process




Learning Influence Functions in
Information Diffusion Networks

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]

Fact: in classic diffusion models, the influence function is a
coverage function.

f(S) = Eg[# reachable from S|G]
probabilistic reachability fnc

S A52
* Note 1: Do not know better guarantees for efficient
algorithms if access only to value queries.

* Note 2: Do better theoretically and empirically, if have
access to information diffusion traces or cascades.



Learning Influence Functions based on information
propagation traces (cascades)

15
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Another cascade




Learning the influence function

Input: past influence cascades {(S,11),(S2,15), ..., (Sm, Im) }-

Goal: learn Influence function f(S) = E[#influenced(S)].

Assumption: f(S) is a probabilistic coverage function.

I.e., there is a distribution pg over reachability matrices R s.t.:

f(S) = Egp—p,[#influenced(S|R)]

{ } A st

| {j:Rs; = 1 for some s€ S} |

————-—-

Rs;j = 1 if s can reach j,
Rs; = 0 otherwise.



Learning the influence function

Input: past influence cascades {(S1,11), (S, 1), -, (St Im) 3

Goal: learn Influence function f(S) = E[#influenced(S)].

Idea: f(S) =%, fj (S), where f;(S) = Rgg (j is influenced by S).

For each j, will learn £,(S). Output ¥ £ (S).

Algorithm for learning f;

Use “random kitchen sink" approach:

« choose random binary vectors vy, v, ..., vg from q.

» Parametrize £;(S) as X;w; - [[{Is, v;) = 1] (T;w; < 1, wi= 0)
Learn weights via maximum conditional likelihood.



Influence estimation in real data

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]

* Memetracker Dataset, blog data cascades : "apple and jobs”,
“tsunami earthquake”, "william kate marriage”

2 5 T 1 I 1 I 1 [

I InfluLearner
[ICIC
ElDIC
20( 1
LLI 15_ il
=
10
il 1
0 1 2 4 9 7/ 8

3 6
Groups of memes



Conclusions

Learnability of submodular, other combinatorial fns

 Can model problems of interest to many areas.
« Very strong lower bounds in the worst case.

* Much better learnability results for classes with additional

structure.
Max el J _->:';
Sum um \ 8 4




Conclusions
Learnability of submodular functions

« Very strong lower bounds in the worst case.

 Highlight the importance of considering the
complexity of the target function.

Open Questions:

« Exploit complexity of target for better approx
guarantees. [for learning and optimization]

* What is a natural description language for
submodular fns?

* Other interesting applications.






