Learning Submodular Functions

Maria-Florina Balcan
Carnegie Mellon University

2-Minute Version

Submodular fns: important objects (combinatorial fns satisfying diminishing returns) that come up in many areas.

Traditionally: Optimization, operations research

Most recently

- Algorithmic Game Theory [Lehman-Lehman-Nisan'01],
- Machine Learning [Bilmes'03] [Guestrin-Krause'07]....
- Social Networks [Kleinberg-Kempe-Tardos'03]

This talk: learning submodular fns from data.

2-Minute Version

This talk: learning submodular functions from data.

- Can model pbs of interest to many areas, e.g., social networks \& alg. game theory.

- General learnability results in a statistical setting: surprising lower bounds showing unexpected structure.

- Much better upper bounds in cases with more structure, coming from social networks \& algorithmic game theory.
- Application for learning influence fnc in diffusion networks.

Structure of the talk

- Submodular functions. Why are they important.
- Learning submodular functions.

With connections and applications to Algorithmic Game Theory, Economics, Social Networks.

Submodular functions

- First of all, it's a function over sets.
- e.g., value on some set of items in a store.

- Ground set $V=\{1,2, \ldots, n\}$.

Submodular functions

- $V=\{1,2, \ldots, n\}$; set-function $f: 2^{V} \rightarrow R$ submodular if

For all $S, T \subseteq V: f(S)+f(T) \geq f(S \cap T)+f(S \cup T)$

$+$

- Equivalent decreasing marginal return:

For $T \subseteq S, x \notin S, f(T \cup\{x\})-f(T) \geq f(S \cup\{x\})-f(S)$

Submodular functions

- $V=\{1,2, \ldots, n\}$; set-function $f: 2^{V} \rightarrow R$ submodular if

$$
\text { For } T \subseteq S, x \notin S, f(T \cup\{x\})-f(T) \geq f(S \cup\{x\})-f(S)
$$

E.9.,

Coverage and Reachability Functions

- Coverage function: Let A_{1}, \ldots, A_{n} be sets. For each $S \subseteq V$, let $f(S)=\left|U_{j \in S} A_{j}\right|$

- Reachability function: $f(S)=\#$ nodes reachable from S.
E.g., in a network, A_{s} nodes reachable from s

Coverage and Reachability Functions

- Reachability function: $f(S)=\#$ nodes reachable from S.
E.g., in a network, A_{s} nodes reachable from s

Diminishing Returns

- Marginal value of x given S is \# number of new nodes that x can reach, but cannot be reached from any of the nodes in S.
- $T \subset S, x \notin S$, more chance reach new nodes when adding x to T, than when adding x to S.

Reachability function is submodular

Marginal value of $x=\#$ new nodes reachable from x.

Probabilistic Reachability Functions

- Given a distribution over graphs

$$
f(S)=E_{G}[\# \text { reachable from } S \mid G] \text { also submodular. }
$$

Submodular functions

More examples:

- Concave Functions Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be concave. For each $S \subseteq V$, let $f(S)=h(|S|)$
- Vector Spaces Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$, each $v_{i} \in R^{n}$. For each $S \subseteq V$, let $f(S)=\operatorname{rank}(V[S])$
- Cut Function in a Graph Let $f(S)=\#$ of edges between S and $V \backslash S$.

This talk: focus on
Monotone:

$$
f(S) \leq f(T), \forall S \subseteq T
$$

Non-negative:

$$
f(S) \geq 0, \forall S \subseteq V
$$

Submodular functions

- A lot of work on Optimization Problems involving Submodular Functions.

Traditionally: Optimization, operations research

Most recently

- Algorithmic Game Theory [Lehman-Lehman-Nisan'01],
- Machine Learning [Bilmes'03] [Guestrin-Krause'07],...
- Social Networks [Kleinberg-Kempe-Tardos'03]
- This talk: learning them from data.

Learning submodular functions

Valuation Functions in Economics

Supermarket chain

- $V=$ all the items you sell.
- $f(S)=$ valuation on set of items S.

Learning submodular functions

Influence Function in Social Networks

- $V=$ set of nodes.
- $f(S)=$ expected number of nodes S will influence.
f is a probabilistic reachability fnc in classic diffusion models (e.g., independent cascade model, random threshold model) [Kleinberg-Kempe-Tardos'03]

Past Work

Assume an explicit model on how info spread's, usise it to estimate

Our Work

Learn the influence function directly from data

Learning submodular functions

Influence Function in Networks

epidemiology: influenza spread

biology:
gene expression cascade

Learning Submodular Functions

General Learnability Results

- Upper \& lower bounds on their intrinsic complexity.
- Implications to Alg. Game Theory, Economics, Discrete Optimization, Matroid Theory.
- Highlights importance of beyond worst case analysis.

Better Results for Cases with More Structure

Large Scale Application to Social Networks

Statistical learning model

PMAC model for learning real valued functions

[Balcan\&Harvey, STOC 2011 \& Nectar Track, ECML-PKDD 2012]

- Algo sees $\left(S_{1}, f\left(S_{1}\right)\right), \ldots,\left(S_{k}, f\left(S_{k}\right)\right), S_{i} i . i . d$. from D, produces g.
- With probability $\geq 1-\delta$ we have $\operatorname{Pr}_{s}[g(S) \leq f(S) \leq \alpha g(S)] \geq 1-\epsilon$

Probably Mostly Approximately Correct

PMAC model for learning real valued functions

[Balcan\&Harvey, STOC 2011 \& Nectar Track, ECML-PKDD 2012]

- Algo sees $\left(S_{1}, f\left(S_{1}\right)\right), \ldots,\left(S_{k}, f\left(S_{k}\right)\right), S_{i}$ i.i.d. from D, produces g.
- With probability $\geq 1-\delta$ we have $\operatorname{Pr}_{s}[g(S) \leq f(S) \leq \alpha g(S)] \geq 1-\epsilon$

$$
\alpha=1, \text { recover PAC model. }
$$

Learning submodular functions

[Balcan\&Harvey, STOC 2011 \& Necktar Track, ECML-PKDD 2012]
Theorem: (General upper bound)
Poly time alg. for PMAC-learning (w.r.t. an arbitrary distribution) with an approx. factor $\alpha=O\left(n^{1 / 2}\right)$.

Theorem: (General lower bound)
No algo can PMAC learn the class of submodular fns with approx. factor $\tilde{o}\left(n^{1 / 3}\right)$.

- Even if value queries allowed; even for rank fns of matroids.

Corollary: Matroid rank fns do not have a concise, approximate representation.

Surprising answer to open question in Economics of

Paul Milgrom

Noam Nisan

Moral: Exploit Additional Structure

- Product distribution.
[Balcan-Harvey,STOC'11][Feldman-Vondrak,FOCS'13]
- Bounded Curvature (i.e., almost linear)
[Iyer-Jegelka-Bilmes, NIPS'13]
- Learning valuation fns from AGT and Economics.
[Balcan-Constantin-Iwata-Wang, COLT'12]
[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA'12]
- Learning influence fns in information diffusion networks [Du, Liang, Balcan, Song, ICML'14; NIPS'14]
- Learning values of coalitions in cooperative game theory [Balcan, Procacia, Zick, IJCAI'15]

Learning submodular functions

[Balcan\&Harvey, STOC 2011 \& Necktar Track, ECML-PKDD 2012]
Theorem: (General upper bound)
Poly time alg. for PMAC-learning (w.r.t. an arbitrary distribution) with an approx. factor $\alpha=O\left(n^{1 / 2}\right)$.

Theorem: (General lower bound)
No algo can PMAC learn the class of submodular fns with approx. factor õ ($n^{1 / 3}$).

- Even if value queries allowed; even for rank fns of matroids.

Surprising answer to open question in Economics of

Paul Milgrom

Noam Nisan

A General Upper Bound

Theorem:

\exists an alg. for PMAC-learning the class of non-negative, monotone, submodular fns (w.r.t. an arbitrary distribution) with an approx. factor $O\left(n^{1 / 2}\right)$.

Subadditive Fns are Approximately Linear

- Let f be non-negative, monotone and subadditive
- Claim: f can be approximated to within factor n by a linear function g.
- Proof Sketch: Let $g(S)=\sum_{x \text { in } s} f(\{x\})$.

Then $f(S) \leq g(S) \leq n \cdot f(S)$.

Subadditive: $\quad f(S)+f(T) \geq f(S \cup T) \quad \forall S, T \subseteq V$
Monotonicity:

$$
\begin{aligned}
f(S) \leq f(T) & \forall S \subseteq T \\
f(S) \geq 0 & \forall S \subseteq V
\end{aligned}
$$

Subaddtive Fns are Approximately Linear $f(S) \leq g(S) \leq n \cdot f(S)$

$$
n \cdot f
$$

PMAC Learning Subadditive Valuations

$f(S) \leq g(S) \leq n \cdot f(S)$ where $g(S)=w \cdot \chi(S)$
features

- Labeled examples $((\chi(S), f(S)),+)$ and $((\chi(S), n \cdot f(S)),-)$ are linearly separable in R^{n+1}.
- Idea: reduction to learning a linear separator.

Problem: data not i.i.d.

Solution: create a related distib. P. Sample S from D; flip a coin. If heads add (($\chi(S), f(S)),+$. Else add (($\chi(S), n \cdot f(S)),-)$.

- Claim: A linear separator with low error on P induces a linear function with an approx. factor of n on the original data.

PMAC Learning Subadditive Valuations

Algorithm:

Input: $\left(S_{1}, f\left(S_{1}\right)\right) \ldots,\left(S_{m}, f\left(S_{m}\right)\right)$

- For each S_{i}, flip a coin.
- If heads add (($\left.\chi(S), f\left(S_{i}\right)\right)$, +).
- Else add $\left(\left(\chi(S), n \cdot f\left(S_{i}\right)\right),-\right)$.
- Learn a linear separator $u=(w,-z)$ in R^{n+1}.

Output: $g(S)=1 /(n+1) w \cdot \chi(S)$.

- Theorem: For $m=\Theta(n / \epsilon)$, g approximates f to within a factor n on a 1- ϵ fraction of the distribution.

PMAC Learning Submodular Fns

Algorithm:

Input: $\left(S_{1}, f\left(S_{1}\right)\right) \ldots,\left(S_{m}, f\left(S_{m}\right)\right)$

- For each S_{i}, flip a coin.
- If heads add (($\left.\chi(S), f^{2}\left(S_{i}\right)\right),+$).
- Else add (($\left.\left.\chi(S), n f^{2}\left(S_{i}\right)\right),-\right)$.
- Learn a linear separator $u=(w,-z)$ in R^{n+1}.

Output: $g(S)=1 /(n+1)^{1 / 2} w \cdot \chi(S)$

- Theorem: For $m=\Theta(n / \epsilon), g$ approximates f to within a factor $n^{1 / 2}$ on a 1- ϵ fraction of the distribution.

Proof idea: f non-negative, monotone, submodular can be approximated within $\mathrm{n}^{1 / 2}$ by a \backslash sqrt\{linear function\}. [GHIM, 09]

PMAC Learning Submodular Fns

Algorithm:

Input: $\left(S_{1}, f\left(S_{1}\right)\right) \ldots,\left(S_{m}, f\left(S_{m}\right)\right)$

- For each S_{i}, flip a coin.
- If heads add (($\left.\chi(S), f^{2}\left(S_{i}\right)\right),+$).
- Else add (($\left.\left.\chi(S), n f^{2}\left(S_{i}\right)\right),-\right)$.
- Learn a linear separator $u=(w,-z)$ in R^{n+1}.

Output: $g(S)=1 /(n+1)^{1 / 2} w \cdot \chi(S)$

- Theorem: For $m=\Theta(n / \epsilon), g$ approximates f to within a factor $n^{1 / 2}$ on a 1- ϵ fraction of the distribution.

Proof idea: f non-negative, monotone, submodular can be approximated within $\mathrm{n}^{1 / 2}$ by a \backslash sqrt\{linear function\}. [GHIM, 09]

A General Lower Bound

Theorem

No algorithm can PMAC learn the class of non-neg., monotone, submodular fns with an approx. factor $\tilde{o}\left(n^{1 / 3}\right)$.

Plan:

Use the fact that any matroid rank fnc is submodular.
Construct a hard family of matroid rank functions.

High=n¹/3

$\mathrm{L}=\mathrm{n}^{\log \log \mathrm{n}}$

Low=log 2 n

Vast generalization of partition matroids.

Partition Matroids

$A_{1}, A_{2}, \ldots, A_{k} \subseteq V=\{1,2, \ldots, n\}$, all disjoint; $u_{i} \leq\left|A_{i}\right|-1$
Ind=\{I: $\left|I \cap A_{j}\right| \leq u_{j}$, for all $\left.j\right\}$
Then (V, Ind) is a matroid.

If sets A_{i} are not disjoint, then (V, Ind) might not be a matroid.

- E.g., $n=5, A_{1}=\{1,2,3\}, A_{2}=\{3,4,5\}, u_{1}=u_{2}=2$.
- $\{1,2,4,5\}$ and $\{2,3,4\}$ both maximal sets in Ind; do not have the same cardinality.

Almost partition matroids

$k=2, A_{1}, A_{2} \subseteq V$ (not necessarily disjoint); $u_{i} \leq\left|A_{i}\right|-1$
Ind $=\left\{I:\left|I \cap A_{j}\right| \leq u_{j},\left|I \cap\left(A_{1} \cup A_{2}\right)\right| \leq u_{1}+u_{2}-\left|A_{1} \cap A_{2}\right|\right\}$
Then (V,Ind) is a matroid.

Almost partition matroids

More generally

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots, A_{k} \subseteq V=\{1,2, \ldots, n\}, u_{i} \leq\left|A_{i}\right|-1 ; f: 2^{[k]} \rightarrow Z \\
& \quad f(J)=\sum_{j \in J} u_{j}+|A(J)|-\sum_{j \in J}\left|A_{j}\right|, \forall J \subseteq[k] \\
& \text { Ind }=\{I:|I \cap A(J)| \leq f(J), \forall J \subseteq[k]\}
\end{aligned}
$$

Then (V, Ind) is a matroid (if nonempty).

Rewrite $f, f(J)=|A(J)|-\sum_{j \in J}\left(\left|A_{j}\right|-u_{j}\right), \forall J \subseteq[k]$

Almost partition matroids

More generally $f: 2^{[k]} \rightarrow Z$

$$
\begin{aligned}
& f(J)=|A(J)|-\sum_{j \in J}\left(\left|A_{j}\right|-u_{j}\right), \forall J \subseteq[k] \\
& \text { Ind }=\{I:|I \cap A(J)| \leq f(J), \forall J \subseteq[k]\}
\end{aligned}
$$

Then (V, Ind) is a matroid (if nonempty).
$f: 2^{[k]} \rightarrow Z, f(J)=|A(J)|-\sum_{j \in J}\left(\left|A_{j}\right|-u_{j}\right), \forall J \subseteq[k] ; u_{i} \leq\left|A_{i}\right|-1$
Note: This requires $k \leq n$ (for $k>n, f$ becomes negative)
More tricks to allow $k=n^{\log \log n}$.

Learning submodular valuations

Theorem

No algorithm can PMAC learn the class of non-neg., monotone, submodular fns with an approx. factor õ $\left(n^{1 / 3}\right)$.

High=n ${ }^{1 / 3}$

$L=n^{\log \log n}$
Low=log 2 n

$$
A_{1} \quad A_{2} \quad A_{3} \quad \ldots \ldots \ldots \ldots . \quad A_{L}
$$

Worst Case Analysis ©

Moral: Exploit Additional Structure

- Product distribution.
[Balcan-Harvey,STOC'11][Feldman-Vondrak,FOCS'13]
- Bounded Curvature (i.e., almost linear)
[Iyer-Jegelka-Bilmes, NIPS'13]
- Learning valuation fns from AGT and Economics.
[Balcan-Constantin-Iwata-Wang, COLT'12]
[Badanidiyuru-Dobzinski-Fu- Kleinberg-Nisan-Roughgarden, SODA'12]
- Learning influence fns in information diffusion networks [Du, Liang, Balcan, Song, ICML'14; NIPS'14]
- Learning values of coalitions in cooperative game theory [Balcan, Procacia, Zick, IJCAI'15]

Learning Valuation Functions

- Target dependent learnability for classes of valuation fns have a succinct description.
[Balcan-Constantin-Iwata-Wang, COLT 2012]

Well-studied subclasses of subadditive valuations.
[Algorithmic game theory and Economics]
Additive \subseteq OXS \subseteq Submodular \subseteq XOS \subseteq Subadditive
[Sandholm'99] [Lehman-Lehman-Nisan'01]

XOS valuations

Functions that can be represented as a MAX of SUMs.

Target dependent Upper Bound for XOS

Theorem: (Polynomial number of Sum trees) $O\left(R^{\epsilon}\right)$ approximation in time $O\left(n^{1 / \epsilon}\right)$.

Main Idea:

- Target approx within $O\left(R^{\epsilon}\right)$ by a linear function over $O\left(n^{1 / \epsilon}\right)$ feature space (one feature for each $n^{1 / \epsilon}$-tuple of items).

- Reduction to learning a linear separator in a higher dim. feature space.

Highlights importance of considering the complexity of the target function.

Learning Influence Functions in Information Diffusion Networks

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]

Influence Function in Networks

- $V=$ set of nodes.
- $f(S)=$ expected number of nodes S will influence.

Fact: in classic diffusion models (discrete time independent cascade model/random threshold model, continuous time analogues, etc), the influence function is coverage function. [Kleinberg-Kempe-Tardos'03]
$\mathrm{f}(\mathrm{S})=\mathrm{E}_{\mathrm{G}}[\#$ reachable from $\mathrm{S} \mid \mathrm{G}]$
probabilistic reachability fnc

Discrete-time independent cascade model

- Each edge has a weight $w \in[0,1]$
- Cascade generative process for a source set S
- presence of edge is sampled independently according to w
- influenced nodes are those reachable from at least one of the source nodes in the resulting "live edge graph"
- Influence of S is expected number of nodes influenced under this random process

Learning Influence Functions in Information Diffusion Networks

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]
Fact: in classic diffusion models, the influence function is a coverage function.
$f(S)=E_{G}[\#$ reachable from $S \mid G]$ probabilistic reachability fnc

- Note 1: Do not know better guarantees for efficient algorithms if access only to value queries.
- Note 2: Do better theoretically and empirically, if have access to information diffusion traces or cascades.

Learning Influence Functions based on information propagation traces (cascades)

Another cascade

Learning the influence function

Input: past influence cascades $\left\{\left(\mathrm{S}_{1}, \mathrm{I}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{I}_{2}\right), \ldots,\left(\mathrm{S}_{\mathrm{m}}, \mathrm{I}_{\mathrm{m}}\right)\right\}$.
Goal: learn Influence function $\mathrm{f}(\mathrm{S})=\mathrm{E}[$ \#influenced $(\mathrm{S})]$.

Assumption: $f(S)$ is a probabilistic coverage function.
I.e., there is a distribution p_{R} over reachability matrices R s.t.:

$$
f(S)=E_{R \sim p_{R}}[\# \text { influenced }(S \mid R)]
$$

$$
\begin{gathered}
R_{s j}=1 \text { if } s \text { can reach } j, \\
R_{s j}=0 \text { otherwise. }
\end{gathered}
$$

Learning the influence function

Input: past influence cascades $\left\{\left(\mathrm{S}_{1}, \mathrm{I}_{1}\right),\left(\mathrm{S}_{2}, \mathrm{I}_{2}\right), \ldots,\left(\mathrm{S}_{\mathrm{m}}, \mathrm{I}_{\mathrm{m}}\right)\right\}$.
Goal: learn Influence function $\mathrm{f}(\mathrm{S})=\mathrm{E}[$ \#influenced $(\mathrm{S})]$.

Idea: $f(S)=\sum_{j} f_{j}(S)$, where $f_{j}(S)=\operatorname{Pr}_{R \sim p_{R}}(j$ is influenced by $S)$.
For each j , will learn $\hat{\mathrm{f}}_{\mathrm{j}}(\mathrm{S})$. Output $\sum_{\mathrm{j}} \hat{\mathrm{f}}_{\mathrm{j}}(\mathrm{S})$.

Algorithm for learning f_{j}
Use "random kitchen sink" approach:

- choose random binary vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{K}}$ from q .
- Parametrize $\hat{f}_{\mathrm{j}}(\mathrm{S})$ as $\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \cdot \mathrm{I}\left[\left\langle\mathrm{I}_{\mathrm{S}}, \mathrm{v}_{\mathrm{i}}\right\rangle \geq 1\right]\left(\sum_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} \leq 1, \mathrm{w}_{\mathrm{i}} \geq 0\right)$

Learn weights via maximum conditional likelihood.

Influence estimation in real data

[Du, Liang, Balcan, Song, ICML 2014 , NIPS'14]

- Memetracker Dataset, blog data cascades : "apple and jobs", "tsunami earthquake", "william kate marriage"

Conclusions

Learnability of submodular, other combinatorial fns

- Can model problems of interest to many areas.
- Very strong lower bounds in the worst case.
- Much better learnability results for classes with additional structure.

Conclusions

Learnability of submodular functions

- Very strong lower bounds in the worst case.
- Highlight the importance of considering the complexity of the target function.

Open Questions:

- Exploit complexity of target for better approx guarantees. [for learning and optimization]
- What is a natural description language for submodular fns?
- Other interesting applications.

