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ABSTRACT Unmanned aerial vehicles (UAVs) have played an important role in recent high-tech local wars.

Seizing air control rights with UAVs will undoubtedly be a popular topic in future military development.

Autonomous air combat is complex, antagonistic and mutable, and consequently, the decision-making that

depends on unmanned systems is extremely challenging with very little research having been conducted on

it. An intelligent air combat learning system inspired by the learning mechanisms of the brain is proposed

in this paper. In accordance with research on learning, knowledge and memory, we constructed a cognitive

mechanism model of the brain. Based on this model and the inferential abilities of humans, a long short-

term hierarchical multi-line learning system is established. Then, the bio-inspired architecture and the basic

learning principle of the system are clarified. Taking advantage of the conclusions of studies on information

theory, the relationship between the knowledge updating cycle and the system learning performance is

analysed. The updating cycle length adjustment problem is transformed into an optimization problem

optimization problem, and system performance improvement is guaranteed. Experiments show that the

system designed in this paper can acquire confrontation abilities through self-learning without prior rules;

the parallel universe mechanism can significantly improve the system’s learning speed when the number

of parallels is within 40, and the performance of the system improves gradually and continuously. The

system can master actions similar to classical tactical manoeuvres such as the high yo-yo and the barrel-roll-

attack without prior knowledge. Compared with the Bayesian inference and moving horizon optimization

(BI&MHO) method, the learning system proposed in this paper is more flexible in situation assessment and

in the prediction of opponents’ actions. Although it cannot be deployed quickly, it has a continuous learning

ability.

INDEX TERMS Autonomous air combat, bio-inspired, cognitive mechanism, long short-term memory,

learning system, unmanned aerial vehicles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have emerged as a new

force in recent high-tech local wars. The interweaving of

ground and air firepower will greatly threaten the survival of

pilots and fighter aircraft in modern warfare. In future wars,

if UAVs are used to achieve air supremacy, it will undoubtedly

result in another profound military revolution.

Despite the increasing importance of stand-off strikes in

modern air operations, state-of-the-art fighters such as the

F22 and F35 are still equipped with guns for close combat.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

Moreover, future UAVs may have stronger stealth capability

and smaller size, and wemay need to deal with enemy aircraft

suddenly appearing at close range in future battlefields. The

US Defence Advanced Research Projects Agency (DARPA)

is seeking proposals to automate air-to-air combat as part

of its Air Combat Evolution (ACE) programme. The ACE

programme is intended to exploit developments in artificial

intelligence (AI) to enable the automation of within-visual-

range air-to-air combat and bring UAVs to the dogfight [1].

Therefore, study on autonomous confrontation within the

visual range is crucial for future UAVs.

Virtanen et al. used an influence diagram to model the

air combat process and combined an autonomous inference

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 8129

https://orcid.org/0000-0002-0753-5097
https://orcid.org/0000-0003-1680-5877
https://orcid.org/0000-0003-2603-907X


K. Zhou et al.: Learning System for Air Combat Decision Inspired by Cognitive Mechanisms of the Brain

ability and human pilot experience in [2]; extended methods

to acquire better goals were introduced in [3], [4]. Zhong

et al. [5] took into account the decision maker’s prefer-

ences under uncertain conditions and considered an active

opponent; they solved the multistage influence diagram by

converting it into a two-level optimization problem.

Game theory [6]–[8], the moving horizon optimization

method [9] and the trial input method [10], [11] were intro-

duced to explain and solve this problem. The general ideas of

these methods are similar. They begin by using factors such

as sight angle, distance, height advantage, velocity advantage,

the weapon engagement zone and the kill probability [12]

in a prediction time domain to build an objective function.

Then, they find the optimal decision in the feasible region by

online methods. McGrew [13], [14] and MA [15] proposed

an approximate dynamic programmingmethod [16], [17], the

dimension explosion of traditional dynamic programming has

been improved. In particular, they constructed the objective

function through iterative learning. This idea provided uswith

inspiration.

There are also artificial intelligencemethods such as expert

systems [18], the artificial immune system method [19]

and others. These methods usually work by establishing a

manoeuvre database using basic fighter manoeuvres (BFM)

or elementary manoeuvres [9] so that decisions can be

made quickly. The database can be extended manually or

selected by an immunity rule. Ernest et al. presented a genetic

fuzzy tree (GFT) method [20]–[22] utilizing a collection of

fuzzy inference systems (FIS). By breaking up the prob-

lem into many sub-decisions, the solution space is signifi-

cantly reduced. The in-development simulation environment

ALPHA was highly praised by a colonel of the air force who

has been an opponent of ALPHA.

To address complex multi-step decision-making problems,

researchers have attempted to findmethods with higher levels

of intelligence. Taking into account the complex dynamics of

UAVs, Emel’Yanov et al. [23] proposed a cognitive architec-

ture control system. It can solve a broad range of tasks and

can raise the degree of autonomy of the control object signif-

icantly. Rollo et al. [24] built a modular architecture frame-

work for complex unmanned aircraft systems. They tested

the system in a cooperative collision avoidance task and

achieved good results. Furthermore, the framework enables

the study of further concepts such as additional payload and

interaction amongUAVs. Sanchez-Lopez et al. [25] presented

an open-source software framework for the development of

aerial robotic systems, which can provide higher degrees of

autonomy and is more versatile in application to different

types of hardware and different types of missions. Inspired

by a biological model of the human cognitive system, a high-

level processing approach for understanding human activities

is proposed in [26] that allows the adaptation of the flight plan

and fully autonomous surveillance in limited areas. Chithapu-

ram et al. [27], [28] developed a new guidance scheme using

Q-learning. The new guidance scheme performs better than

standard existing guidance schemes in the presence of sensor

noise and computational delays. Moreover, studies have been

performed that aim to find solutions based on the structure

and working principles of the human brain [29]–[31]. These

explorations inspired us to solve the problem of air combat

decision-making by imitating the cognitive mechanism of the

brain.

We proposed a learning architecture that imitates the cog-

nitive mechanism of the brain in our previous work [32]. The

system can learn independently through simulated training.

The training achievement is a mapping between situations

and decisions. This paper is an extension of the previous one.

The contributions of this paper are as follows:

1) A cognitive mechanism model, including multilevel

memory and different knowledge content, describing

how the brain learns and stores knowledge quickly

from practise and interaction, is proposed in this paper.

Applying this working principle to decision-making

in autonomous air combat manoeuvres, we build an

architecture that can learn by itself using interactive

data. To our best knowledge, this is the first study to

propose such a data-learning cognitive architecture.

2) Imitating the multi-line reasoning ability of humans,

a simulation and data acquisition mechanism, which

we call parallel universe, is designed. Increasing the

number of parallel universes within a certain range can

significantly improve learning efficiency.

3) Using relative entropy [33] (Section 2.6) to express the

differences between the two policies, we analyse the

relationship between the new and old policies under

practical operation sampling conditions and prove that

an appropriate length of the consolidation learning

cycle (CLC) can ensure the stable increase in the learn-

ing performance. Transforming the CLC length adjust-

ment problem into an optimization problem, a feasible

method to guarantee learning performance improve-

ment is given.

This paper is organized as follows. In Section II, we intro-

duce some basic definitions. In Section III we introduce

the biological study of learning, memory and knowledge,

establish a model of the brain, and present the architecture

of the learning system inspired by the cognitive mecha-

nism of the brain. Next, the basic bio-inspired learning princi-

ple of the system is illustrated. Then, we add restrictions to the

update of short-term procedural knowledge so that the perfor-

mance of the system can be non-decreasing. Then, a detailed

implementation of the method is presented. In Section IV,

experiments are presented to illustrate the effectiveness of the

proposed method. Conclusions are drawn in Section V.

II. PRELIMINARIES

First, some relevant definitions are given. We use an

infinite-horizon Markov process to describe air combat

confrontations. The elements are represented by the tuple

(S,A,P,R, π, γ ), where S is a finite situation space; A

is a finite action space; P : S × A × S → R is the
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situation transition probability matrix; R : S → R is

the reward matrix; and π : S × A ∼ N
(

µ, σ 2
)

denotes

a stochastic action policy, which is a Gaussian distribution

with mean µ and variance σ 2. γ ∈ (0, 1) is the discount

factor [34], the closer it is to 1, the higher proportion of the

afterwards situation is. First, we define the situation-value

and the situation-action-value in the form that is commonly

used in reinforcement learning [35], [36].

Definition 1: The situation-value is the expected dis-

counted reward in the rest of the Markov process:

Vπ (st) = Eat ,st+1,at+1,...

[

∞
∑

l=0

γ lr (st+l)

]

(1)

where at , at+1 . . . ∈ A ∼ π , at denotes the action at time

t , st+1, . . . ∈ S ∼ P , st+1 is the situation at time t + 1,

r (st+l) ∈ R, and r (st+l) denotes the reward in the situation

st+l .

Definition 2: The situation-action-value is the expected

return of doing action at in situation st :

Qπ (st , at)

= Est+1,at+1,...

[

r (st , at)+ γ

[

∞
∑

l=0

γ lr (st+1+l)

]]

= Est+1,at+1,...
[r (st , at)+ γVπ (st+1)] (2)

In some situations, the actions do not have obvious influence

on the situation-value or the situation-action-value. For exam-

ple, when two aircraft are very far apart, most manoeuvres

do not cause a significant change in the value of Vπ (st) or

Qπ (st , at). To make learning more sensitive in these situ-

ations, we separate the action-value and give the following

definition.

Definition 3: The action-value is the expected profit of

doing action at at time t:

Aπ (st , at)

= Qπ (st , at)− Vπ (st)

= Est+1,at+1,...
[r (st , at)+ γVπ (st+1)− Vπ (st)] (3)

Then, we can see that in a continuous Markov process, if we

haveVπ (st+1) andVπ (st), the action-valueAπ (st , at) can be

obtained. A similar idea can be found in [37]; we expand it

to a continuous problem, and we do not need neural networks

with special structures for the calculation of Aπ .

III. PROPOSED BRAIN-INSPIRED AIR COMBAT

LEARNING SYSTEM

A. COGNITIVE MECHANISM OF THE BRAIN

Conventional methods seem to be less reliable and effective

in dealing with complex decision-making problems. Some

researchers have been trying to find answers from the brain.

The Schultz team found that the error between the expected

situation and the actual situation could activate midbrain

dopamine neurons [38], whichmight be amotive force behind

learning activity in the brain [39]. In recent years, additional

studies have confirmed this view [40]–[43], which indicates

that the distinction between cognition and real situations is

one of the most important motivations for the brain to learn.

These findings also provide a biological and neurological

basis for reinforcement learning [44]–[46]. In our opinion,

the learning process in the brain is not completely similar to

reinforcement learning, so we look for other evidence in the

study of biological neurology.

Learning achievement, that is, knowledge, is stored in

short-term and long-term memory [47]–[49]. Short-term

memory is a preliminary product of rapid learning; if the

short-term knowledge can be proved to correctly represent

the world in continuous learning, it will consolidate into long-

term knowledge. Long-termmemory is stable knowledge that

cannot easily be changed by isolated experience. It is the

type of memory we rely on to guide practice and to assess

situations. Some studies suggest that long-term memory and

short-term memory are stored in the same neural struc-

ture, differing in the method and extent of activation [47].

Moreover, there is another special type of memory in our

brain called working memory [39], [47]. The working mem-

ory retains sequences of events temporarily. It stores exter-

nal information obtained from the environment and internal

information generated by the brain itself for some time during

the learning process. To learn how to deal with a complex

decision-making task, the brain divides knowledge into two

types, declarative and procedural knowledge, and assigns

them to different brain regions, so that complex learning

tasks are simplified, and sub-tasks are allocated to different

regions [47], [50]. By synthesizing the evidence from the

study of the brain, a cognitive mechanism model of the brain

in the decision-making learning process is established, as

shown in Figure 1.

FIGURE 1. Cognitive mechanism of the brain during the decision-making
learning process.

B. ARCHITECTURE OF THE LEARNING SYSTEM

The brain guides practice according to long-term knowledge,

acts in the environment, stores the interactive information in
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FIGURE 2. Architecture of the brain-inspired air combat learning system.

working memory, and then transforms the interactive infor-

mation into error signals according to long-term knowledge.

The error signal is converted into embryonic knowledge

quickly and stored in short-term memory. As learning goes

on, the short-term knowledge is consolidated gradually into

stable knowledge, and the updated long-term knowledge will

play a role in subsequent interactions and learning. This

cognitivemechanism of the brainmakes it possible for human

beings to learn quickly from practice. The long- and short-

term learning mechanism allows us to obtain knowledge

quickly and to avoid the mutation of knowledge structure

caused by low-probability events. Expecting the machine to

have the ability to learn how to make decisions, we designed

an air combat learning system by drawing lessons from the

cognitive mechanism of the brain. The architecture of the

system is shown in Figure 2.

Knowledge is divided into procedural and declarative parts.

Pilots can clearly describe why a manoeuvre should be exe-

cuted in a situation and what will happen after this action.

Declarative knowledge plays the main role in this process.

Outstanding pilots can respond in a very short time, as if

the ability to fight is inborn, and they seem to defeat their

opponents using intuition rather than thinking. This process

is mainly based on procedural knowledge. Thus, declarative

knowledge can be represented as a mapping: S → Ṽ :

Ṽπξ (st), where the superscript symbol �̃ represents an esti-

mation by the knowledge, ξ is a matrix that determines the

value of Ṽπξ (st) and ξ is fitted by learning. The content of

procedural knowledge can be represented as S → π : πω (s),

where ω is a parameter matrix that determines the value of

πω (s). The goal of learning is to obtain a policy which can

maximize the profit [36]:

max
ω

J (πω) =

∫

S

γ tPπ (s)

∫

A

πω (a|s)A (s, a)dads

= Es∼Pπ ,a∼πω

[

γ tA (s, a)
]

(4)

where Pπ (s) is the situation transition probability under the

policy π . Thus, an accurate valuation A (s, a) and an excellent

action policy πω (a|s) mean that both declarative and proce-

dural knowledge will be promoted in learning. It has been

proved that artificial neural networks can approximate func-

tions with arbitrary complexity [51]. It is appropriate to use

neural networks here to describe two kinds of knowledge; ξ

and ω are the weights of the neural networks. The knowledge

structures in long and short-term memory are identical, and

the differences are learning principle and frequency.

In addition, we noted that human beings could make mul-

tiple predictions about a future time based on the current

situation. For example, excellent boxers can roughly predict

several possible actions of their opponents and formulate a

variety of coping strategies, as if he has performed several

mock fights in multiple parallel universes. This is not an

actual process occurring in the real world but a speculative

process simulated in the mind. This means that the brain

can store multi-branch simulation information in the working

memory in parallel. The prediction of multiple steps and

multiple possibilities in the future enables us to understand

the value of the current situation more accurately and make a

better decision. This is why only one who can predict many

moves can be a top chess player. This mechanism could

be used to improve learning efficiency. Therefore, we add

a parallel universe that contains n identical training envi-

ronments to the system. Different training environments are

responsible for simulation on different timelines. Because

the action policy π ∼ N
(

µ, σ 2
)

is a random distribution,

the situation in each training environment will develop in

different directions. The working memory stores the data

generated by the parallel universe for a short period of time.

Taking training environment i (1 ≤ i ≤ n) as an example, the

working memory takes a first-in-first-out principle to record

the interactive data; the information flow diagram is shown

in Figure 3.
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FIGURE 3. Information flow diagram of the working memory when
recording the interactive data of the i th training environment.

We focus on building a system that can use data for self-

learning. Compared with the existing cognitive frameworks,

the functions of our system do not cover all features of

cognition, such as social, reflective, deliberative, executive,

reactive and physical layers. We perform self-learning using

interactive data, including the architecture design, the simu-

lation environment design, the data structure design and the

method to ensure performance improvement.

In contrast to the existing research on autonomous air com-

bat, there is no need to summarize the tactical manoeuvres

created by human pilots, and because it is not dependent

on exercise data, the system can learn from simulated train-

ing by itself. There is no need to construct a cost function

or a score function artificially, and the system can learn a

more objective data-driven optimization goal. The format

of the decision outputs can meet the input requirement of

general flight control systems for aircraft. Compared with

the BFM or elementary manoeuvres, it has higher flexibility.

From the experiment, we found that without prior knowledge,

the system could master strategies such as classical tactical

manoeuvres created by human pilots.

C. BASIC LEARNING PRINCIPLE OF THE SYSTEM

Long- and short-term memory have the same structure; both

contain declarative and procedural knowledge. Long-term

memory does not update as frequently as short-term memory.

Short-term memory uses the data in the working memory

for learning directly while long-term memory comes from

the enhancement of short-term memory. Thus, the learning

principle for long-term memory is designed as follows. Once

the short-term knowledge has been updated nclc times, the

long-term knowledge clones the short-term knowledge in one

round that we called a consolidation learning cycle (CLC);

nclc is called the length of the CLC. The parameters of the

network in long- and short-term memory are recorded as

ξL, ωL, ξS and ωS, and the consolidation learning can be

expressed as:

{

ξL = ξS

ωL = ωS

(5)

In Section III-D, we will illustrate that the length of the

CLC nclc has an impact on learning performance (see The-

orem 1). Thus, finding a method of deciding of the CLC

becomes an important problem. The detailed principle will

be clarified in the next section. Humans use stable knowledge

to guide practice, imitating this mechanism, and the learning

system selects actions and assesses situations according to the

knowledge in long-term memory, that is:
{

at+1 ∼ πωL
(st+1)

Ṽ (st) = ṼξL
(st)

(6)

The motivation of short-term learning, similar to what

occurs in the biological brain, comes from cognitive bias,

in other words, it comes from the error signal in this digital

learning system. The short-term knowledge updates more

often than that in long-term memory. Using the data stored in

the working memory to build the error signals is an impor-

tant problem in this stage of learning. In actual operation,

calculating the situation-value according to Equation (1) is

difficult because it must wait until the mission has ended.

In fact, human beings also cannot obtain information about

the whole process when dealing with a complex dynamic

task. We usually only depend on the temporary information

stored in working memory. On the one hand, this is because

the capacity of working memory is limited; on the other hand,

events closer to the current moment have greater impact on

decision-making, and the farther the events are in time, the

weaker the impact will be. Drawing lessons from this mech-

anism, the situation-value on a single timeline is estimated

using the data in the working memory as:

V̂ (i) (st) = r
(i)
t + γ r

(i)
t+1+. . .+γ

kr
(i)
t+k + γ k+1Ṽ

(

s
(i)
t+k+1

)

(7)

where 1 ≤ i ≤ n. This equation indicates how to use the data

from the ith training environment to estimate a new approxi-

mate situation-value. Then, the error signal for the declarative

knowledge produced by this timeline is as follows:

δ̂
(i)
D = V̂ (i) (st)− Ṽ

(

s
(i)
t

)

(8)

There are n training environments in the parallel universe,

and the multiple steps and multiple possibilities simulated

allow us to give a more accurate error signal for the declara-

tive knowledge; that is:

δ̂D =
1

n

n
∑

i=1

[

V̂ (i) (st)− Ṽ
(

s
(i)
t

)]

(9)

Let α be the learning rate of short-term declarative knowl-

edge and use ∇ to represent a gradient. The iterative learning

principle of the declarative knowledge in short-term memory

can be written as:

ξS = ξS + α∇
ξS

δ̂D (10)

The eventual aim of learning is to obtain a policy to max-

imize the profit; therefore, the gradient of the optimization
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target in Equation (4) can intuitively be the learning error of

the procedural knowledge:

δP = ∇
ω
J (πω) =

∫

S

γ tPπ (s)

∫

A

∇
ω
πω (a|s)A (s, a)dads

= Es∼Pπ ,a∼πω

[

∇
ω
log (πω (a|s)) γ

tA (s, a)

]

(11)

The A (s, a) here can be obtained by the long-term knowl-

edge, according to Definition 3:

Ât (st , at) = −ṼξL (st)+ rt + γ ṼξL
(st+1) (12)

Then, the practical error signal for procedural knowledge

learning is as follows:

δ̂P = Es∼PπL ,a∼πωL

[∇
ωs
πωS

πωL

γ t Ât

]

(13)

Let β denote the learning rate of short-term procedural

knowledge; the basic iterative learning principle can be

expressed as follows:

ωs = ωs + βδ̂P (14)

Under this learning principle, one single CLC can be con-

sidered as a process during which the short-term area learns

new knowledge based on old knowledge. In the next section,

we will illustrate how to guarantee the growth of the learning

effect under this long- and short-term asynchronous learning

principle.

D. MECHANISMS TO GUARANTEE IMPROVEMENT

In this section, we explore a way tomake learningmore stable

and effective. The most intuitive criterion for evaluating a

policy is the reward it can obtain; then, we have the following

definition:

Definition 4: The criterion for evaluating the policy π

could be defined as starting from the situation s0 to the ter-

mination of the mission, and the expected discounted reward

obtained by the policy is:

κ (π) = Ea0,s0,a1,s1,....∼π

[

∞
∑

t=t0

γ t−t0r (st)

]

(15)

Theorem 2: For different policies π1 and π2, their criteria

have the following relationship:

κ (π2)=κ (π1)+Ea0,s0,...∼π2

[

∞
∑

t=t0

γ t−t0Aπ1 (st , at)

]

(16)

Proof: According to Definition 3, we can obtain:

Ea0,s0,...∼π2

[

∞
∑

t=t0

γ t−t0Aπ1 (st , at)

]

=Ea0,s0...∼π2

[

∞
∑

t=t0

γ t−t0
(

r (st , at)+γVπ1 (st+1)−Vπ1 (st)
)

]

= Ea0,s0,...∼π2

[

−Vπ1 (s0)+

∞
∑

t=t0

γ t−t0r (st)

]

= −Es0

[

Vπ1 (s0)
]

+ Ea0,s0,...∼π2

[

∞
∑

t=t0

γ t−t0r (st)

]

= −κ (π1)+ κ (π2) (17)

Rearranging, Theorem 1 has been proved.

Theorem 1 can be written as:

κ (π2) = κ (π1)+

∞
∑

t=t0

∑

S

Pπ2 (st)

×
∑

A

π2 (at |st) γ
t−t0Aπ1 (st , at) (18)

Let

ϑπ = Pπ (s0)+ γPπ (s1)+ γ 2
P (s2)+ . . . (19)

where s0, s1, s2 . . . is a situation trajectory sampled from π .

Now, Theorem 1 can be rewritten as follows:

κ (π2) = κ (π1)+
∑

S

ϑπ2

∑

A

π2 (a|s)Aπ1 (s, a) (20)

According to Section 4, the short-term area takes further steps

learning and produces a new policy πωS based on the old

policy πωL during each CLC. Using Theorem 1, we have:

κ
(

πωS

)

= κ
(

πωL

)

+
∑

S

ϑπωS

∑

A

πωS (a|s)AπωL
(s, a)

(21)

If the learning improves in every CLC, that is, κ
(

πωS

)

≥

κ
(

πωL

)

, at the end of each CLC, we can conclude that the

learning is effective. However, ϑπωS
is determined by the

new policy πωS
, and the new policy keeps updating during

the learning process, so using Equation (20) to judge the

learning effect is inoperable. In fact, during the practical

learning process, we use long-term knowledge to guide action

and to assess the situation in a single CLC. According to

Equations (11), (12) and (13), what we truly have in practical

learning is:

κ ′
πωL

(

πωS

)

= κ
(

πωL

)

+
∑

S

ϑπωL

∑

A

πωS (a|s)AπωL
(s, a)

(22)

Next, the relationship between κ
(

πωS

)

and κ ′
πωL

(

πωS

)

is

analysed. Using T ∼ π to denote a trajectory sampled

from π , and it is evident that A (s) = Ea∼πωS

[

AπωL
(s, a)

]

,

κ
(

πωS

)

and κ ′
πωL

(

πωS

)

can be rewritten as:

κ
(

πωS

)

= κ
(

πωL

)

+ ET∼πωS

[

∞
∑

t=0

γ tA (s)

]

κ ′
πωL

(

πωS

)

= κ
(

πωL

)

+ ET∼πωL

[

∞
∑

t=0

γ tA (s)

]

(23)

The following theorem can describe the relationship between

κ
(

πωS

)

and κ ′
πωL

(

πωS

)

:

8134 VOLUME 8, 2020



K. Zhou et al.: Learning System for Air Combat Decision Inspired by Cognitive Mechanisms of the Brain

Theorem 3: Under the learning principle in Section 4,

κ ′
πωL

(

πωS

)

can be an approximate substitute for κ
(

πωS

)

to

judge the learning effect.

Proof: Policies in long- and short-term memory are

identical at the starting point of every CLC, so κ ′
πωL

(

πωS

)

and

κ
(

πωS

)

are first order approximations at ωS = ωL, that is:

κ ′
πωL

(

πωS

)

∣

∣

∣

ωS=ωL

= κ
(

πωS

)∣

∣

ωS=ωL

∇
ωS

κ ′
πωL

(

πωS

)

∣

∣

∣

∣

ωS=ωL

= ∇
ωS
κ

(

πωS

)

∣

∣

∣

∣

ωS=ωL

(24)

κ ′
πωL

(

πωS

)

and κ
(

πωS

)

have the same initial value and

change direction at the beginning of each CLC, so the gradi-

ent direction of κ ′
πωL

(

πωS

)

is approximately the same as that

of κ
(

πωS

)

near πωL in each CLC. Combined with Equation

(13), we have:

∇
ωS

κ
(

πωS

)

=∇
ωS

[

κ
(

πωS

)

−κ
(

πωL

)]

≈ ∇
ωS

κ ′
πωL

(

πωS

)

= δ̂P

(25)

We use the error signal δ̂P to drive the short-term procedu-

ral knowledge learning. δ̂P directly affects the change of the

value of κ ′
πωL

(

πωS
)

. In each CLC, near πωL , the development

of κ ′
πωL

(

πωS
)

can represent the real worth of the new policy

κ
(

πωS
)

. If the length of CLC nclc is too large, the signs of

∇
ωS

κ ′
πωL

(

πωS

)

and ∇
ωS
κ

(

πωS

)

may be opposite, and the error

signal δ̂P sampled by the old policy πωL cannot guarantee the

improvement of learning performance. On the other hand,

if nclc is too small, long-term memory will be updated fre-

quently and brief data variations will have an impact on the

long-term memory, making the stability of the system weak.

Theorem 2 does not give an explicit constraint. To ensure

that κ ′
πωL

(

πωS
)

is always representative in the learning pro-

cess, we must give further constraints.

Definition 5: Let π1 be the marginal distribution of a1 and

π2 be the marginal distribution of a2; that is, P {a1|s} = π1 (s)

and P {a2|s} = π2 (s). If P {a1 6= a2|s} = ε, we call the joint

distribution (π1, π2) ε − coupling policies.

If we use the ε − coupling policies πωS and πωL to

sample and obtain two trajectories (aSi, aLi) |s, where i =

0, 1, 2, . . . t , and let nt denote the number of times aSi 6= aLi
when i < t , then we have:

Es∼πωS
[A (st)] = P (nt = 0)Est∼πωS

|nt=0 [A (st)]

+P (nt > 0)Est∼πωS
|nt>0 [A (st)]

Es∼πωL
[A (st)] = P (nt = 0)Est∼πωL

|nt=0 [A (st)]
+P (nt > 0)Est∼πωL

|nt>0 [A (st)] (26)

Obviously, P (nt = 0) = (1 − ε)t and P (nt > 0) = 1 −

(1 − ε)t . When nt = 0,

Est∼πωS
|nt=0 [A (st)] = Est∼πωL

|nt=0 [A (st)] (27)

Then, Equation (26) becomes:

Es∼πωS
[A (st)] = (1 − ε)t Est∼πωS

|nt=0 [A (st)]

+
[

1 − (1 − ε)t
]

Est∼πωS
|nt>0 [A (st)]

Es∼πωL
[A (st)] = (1 − ε)t Est∼πωL

|nt=0 [A (st)]

+
[

1 − (1 − ε)t
]

Est∼πωL
|nt>0 [A (st)]

(28)

We can obtain
∣

∣

∣
Es∼πωS

[A (st)] − Es∼πωL
[A (st)]

∣

∣

∣

=
[

1 − (1 − ε)t
]

∣

∣

∣
Est∼πωS

|nt>0 [A (st)]

−Est∼πωL
|nt>0 [A (st)]

∣

∣

∣

≤
[

1 − (1 − ε)t
]

∣

∣

∣
Est∼πωS

|nt>0 [A (st)]

∣

∣

∣

+
∣

∣

∣
Est∼πωL

|nt>0 [A (st)]

∣

∣

∣

≤ 2
[

1 − (1 − ε)t
]

max
s

|A (st)| (29)

Then,
∣

∣

∣
κ

(

πωS

)

− κ ′
πωL

(

πωS

)

∣

∣

∣

=

∞
∑

t=0

γ t
∣

∣

∣
Es∼πωS

[A (st)] − Es∼πωL
[A (st)]

∣

∣

∣

≤
2εγ

(1 − γ ) (1 − γ (1 − ε))
max
s

|A (st)|

≤
2εγ

(1 − γ )2
max
s

|A (st)| (30)

In addition, using the fact that Ea∼πωL

[

AπωL
(s, a)

]

= 0,

we have

A (s) = Ea∼πωS

[

AπωL
(s, a)

]

= E(aS,aL)∼
(

πωS
,πωL

)

[

AπωL
(s, aS)− AπωL

(s, aL)
]

= P (aS 6= aL)E(aS,aL)∼
(

πωS
,πωL

)

×
[

AπωL
(s, aS)− AπωL

(s, aL)
]

(31)

Then, we obtain

|A (s)| ≤ 2εmax

∣

∣

∣
AπωL

(s, a)

∣

∣

∣
(32)

So,
∣

∣

∣
κ

(

πωS

)

− κ ′
πωL

(

πωS

)

∣

∣

∣

≤
4ε2γ

(1 − γ )2
max
s

∣

∣

∣
AπωL

(s, a)

∣

∣

∣
(33)

κ
(

πωS

)

≥ κ ′
πωL

(

πωS

)

−
4ε2γ

(1 − γ )2
max
s

∣

∣

∣
AπωL

(s, a)

∣

∣

∣
(34)

According to Section 4.2 in [52], ifµ is the distribution of x

and ν is distribution of y, then P {x 6= y} = ‖µ− ν‖TV, where

‖.‖TV is the total variation distance.Writingmax
s

∣

∣

∣
AπωL

(s, a)

∣

∣

∣

as δ and ‖.‖TV as DTV (.), we have

κ
(

πωS

)

≥ κ ′
πωL

(

πωS

)

−
4γ

(1 − γ )2
δDTV

(

πωL
, πωS

)2
(35)
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In addition, Pinsker’s inequality [53] (Lemma 2.5) states

that

sup
{

‖µ− ν‖TV
}

≤

√

1

2
DKL (µ, ν) (36)

where DKL (µ, ν) is the Kullback-Leibler divergence or rel-

ative entropy [33] (Section 2.6). Thus, we can obtain the

following theorem.

Theorem 4: Under the learning principle in Section 4,

the κ
(

πωS

)

have the following lower bound:

κ
(

πωS

)

≥ κ ′
πωL

(

πωS

)

−
2γ

(1 − γ )2
δDKL

(

πωL
, πωS

)

(37)

From the definitions of κ
(

πωS

)

and κ ′
πωL

(

πωS

)

, we obtain

κ
(

πωL

)

= κ ′
πωL

(

πωL

)

(38)

Combining (38) with Theorem 3, we obtain

κ
(

πωS

)

− κ
(

πωL

)

≥ κ ′
πωL

(

πωS

)

− κ ′
πωL

(

πωL

)

−
2γ

(1 − γ )2
δDKL

(

πωL
, πωS

)

(39)

Thus, we can conclude that, by maximizing κ ′
πωL

(

πωS

)

−

2γ δ
/

(1 − γ )2DKL

(

πωL
, πωS

)

at each CLC, the true learn-

ing objective κ
(

πωS

)

is guaranteed non-decreasing. That is,

the length of the CLC nclc is not definite but a variable

constrained by 2γ δ
/

(1 − γ )2DKL

(

πωL
, πωS

)

, and the learn-

ing of the procedural knowledge in a single CLC can be

considered as an optimization problem:

max
ωS

[

κ ′
πωL

(

πωS

)

− 2γ δ
/

(1 − γ )2DKL

(

πωL
, πωS

)

]

(40)

In practice, δ is not definite, and 2γ δ
/

(1 − γ )2 is a rel-

atively large value, so using Equation (40) above directly

makes the learning step size very small. Therefore, we use

a heuristic method instead; using a constant λ as the penalty

coefficient, as shown in Equation (41), we found that the

algorithm was not very sensitive to λ (See Section IV-B-2).

max
ωS

[

κ ′
πωL

(

πωS

)

− λDKL

(

πωL
, πωS

)

]

(41)

That is, to guarantee the growth of the learning effect,

we need to impose a restriction on the error signal for pro-

cedural knowledge on the basis of Equation (13), as follows:

δ̂P=Es∼PπL ,a∼πωL
∇
ωs

[

πωS

πωL

γ t Ât−λDKL

(

πωL
, πωS

)

]

(42)

E. NEURAL NETWORKS IN DECLARATIVE KNOWLEDGE

AND PROCEDURAL KNOWLEDGE

In this study, we use neural networks as approximators. There

are two kinds of structures, because the networks of long- and

short-term memory are the same.

1) NEURAL NETWORKS IN PROCEDURAL KNOWLEDGE

The inputs of procedural knowledge are situation vectors,

such as st in Equation (44). The outputs of procedural

knowledge are the action policies, corresponding to at =
[

nx nz φ
]

t
; the concrete form of the outputs are three pairs

of mean and variance, which are µnx and σ 2
nx
, µnz and σ

2
nz
,

and µφ and σ 2
φ . We use multi-layer non-convolutional deep

belief nets (DBN) [54] to express procedural knowledge,

as demonstrated in Figure 4. The activation functions of the

hidden layers are selected as a rectified linear unit (ReLU)

[55]. In the output layer, the activation functions of the mean

units are selected as tanh, and softplus functions [56] are

selected as the activation functions of the variance units.

We use an empirical and heuristic method to determine the

net nodes. Ultimately, the structure of the neural networks

in procedural knowledge is confirmed as 16-500-500-300-6;

that is, there are 16 input nodes, 3 hidden layers with 500,

500, and 300 nodes, and 6 output nodes.

FIGURE 4. Structure of the neural networks in procedural knowledge.

2) NEURAL NETWORKS IN DECLARATIVE KNOWLEDGE

The inputs of declarative knowledge are same as those of

procedural knowledge. The output of declarative knowledge

is the situation-value Vπ (st). We use another multi-layer

DBN to express declarative knowledge, as demonstrated

in Figure 5. The activation functions of the hidden layers

are selected as ReLUs, and a linear function was selected as

the activation function of the output layer. The structure of

the nets in declarative knowledge are ultimately selected as

16-300-300-300-1.

F. DETAILED LEARNING PROCESS OF THE SYSTEM

First, we use the Xavier method [57] to initialize the param-

eters of the four neural networks. Then, the action policy

πωL
consisting of µnx , σ

2
nx
, µnz , σ

2
nz
, µφ and σ 2

φ produced

by long-term procedural knowledge is used to simple the

action and act on the parallel training environment. The

working memory collects the interactive data until its storage

limit is reached. Next, according to Equations (9) and (42),

the error signal for the short-term declarative and procedural
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FIGURE 5. Structure of the neural networks in declarative knowledge.

knowledge, respectively, are produced. Next, a stochastic

gradient ascent method called Adam [58] is used to update

the parameters ωs and ξS of networks in short-term memory.

Finally, the short-term knowledge is consolidated into the

long-term one, and the parameter of the short-term knowl-

edge is cloned to long-term knowledge. Then, the learning

process starts the next cycle until the reward obtained in each

round is stable. After training, mature procedural knowledge

is used to guide the confrontation process.

The training algorithm can be expressed as:

Algorithm 1 Training Algorithm of the Learning System

While (not stop) do

For i = 1, . . . , n do

Run policy πωL
for k timesteps in each parallel

universe

Store
[

s
(i)
t a

(i)
t r

(i)
t

]

in the working memory

End for

Estimate the action-value:

Ât (st , at) = −ṼξL
(st)+ rt + γ ṼξL

(st+1)

Use a stochastic gradient ascent method to update the

short-term procedural knowledge ωS and to maximize
πωS
πωL

γ t Ât − λDKL

(

πωL
, πωS

)

Use a stochastic gradient descend method to update

the short-term declarative knowledge ξS to minimize

1
n

n
∑

i=1

[

r
(i)
t +γ r

(i)
t+1+...+γ

kr
(i)
t+k+γ

k+1Ṽ
(

s
(i)
t+k+1

)

−Ṽ
(

s
(i)
t

)]

Consolidate the short-term knowledge into long-term

knowledge: ξL = ξS,ωL = ωS

IV. EXPERIMENT

A. DESIGN OF THE TRAINING ENVIRONMENT

AND REWARD

The training environment plays the role of calculating the

position and attitude of the two planes to provide the reward

data for the training. It can also test the training results as

a simulator. Assuming the aircraft is a rigid body, angles of

attack and sideslip are usually ignored, and the kinematic

model of the aircraft can be expressed as [9], [59]–[61]:

ẋ = v cos θ cosψ

ẏ = v cos θ sinψ

ż = v sin θ

v̇ = g (nx − sin θ)

θ̇ =
g

v
(nz cosφ − cos θ)

ψ̇ =
gnz sinφ

v cos θ
(43)

where θ is the climbing flight path angle, ψ is the heading

angle measured from north, φ is the roll angle, v is the ground

reference speed, x, y, z are the position of the aircraft in north-

east-height (NEH) coordinates, and nx and nz are the coeffi-

cients of forward and normal overload. The movement of the

aircraft is controlled by
[

nx nz φ
]

, and the manoeuvrability

of an aircraft is determined by the ranges of nx , nz and v. The

output action of the learning system is at =
[

nx nz φ
]

t
.

We abandoned the index functions summarized by the

existing research [9], [19], [62], [63], in which the reward

is encouraged or punished determined only by the suc-

cess or failure of the mission. The purpose is to exclude

subjective human factors, to learn more objectives A (s, a)

and policies πω (a|s) using the reward data generated by

simulated combat, and to verify whether the method can

achieve autonomous learning in the absence of human prior

knowledge.

The goal of air combat is to attain and maintain a position

of advantage in the rear of the enemy. That is, the learning

system needs to guide the blue aircraft in Figure 6 to keep the

angles η and τ as small as possible, while the goal of the red

aircraft is the opposite. Therefore, we set a score principle

for the reward feedback. Once η ≤ 20◦, τ ≤ 30◦ and the

distance from the enemy is between 100 and 500 metres,

we call the situation Almost lock and return a reward r = 1

at this situation. If the Almost lock situation is maintained for

more than 5 seconds, then the situation becomes Lock; in this

case, a reward r = 10 is returned. Otherwise, if the enemy

occupies the advantaged position, the situations are called

Almost be locked and Be locked and the reward is r = −1

and r = −10, respectively. Moreover, if the altitude is lower

than 10 m or the distance from the enemy aircraft is less than

10 m, the situation is judged to be Crashed, and a reward

r = −10 is returned. In situations other than the above,

r = −0.1 is returned each time. The learning system sends

the guidance command and asks for the situation states and

reward every 0.5 seconds. The vector shown in Equation (44)

is the situation states returned by the training environment.

st = [x1 x2 y1 y2 z1 z2 v1 v2 φ1 φ2 ψ1 ψ2 θ1 θ2 η τ ]t (44)

B. EXPERIMENTAL RESULTS

We evaluated our approach on four common aerial encounter

scenarios. The opposing aircraft have the same manoeuvra-

bility as ours, so that the experimental data can better reflect
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FIGURE 6. Diagram of η and τ .

the performance of the method. From the initial states until

the situation is judged as Lock,Be locked orCrashed, or could

not achieve any one above after 10,000 steps, we recorded one

process like this as one confrontation round. The two aircraft

are reset to the initial states to prepare for another round of

training when the previous confrontation round ends. The

discount factor is set as γ = 0.999 and the working memory

storage length as k = 50. The experiments described in

the rest of this section are performed on a computer with

Intel i7-8700k CPU, NVIDIA GTX1070 GPU, 32 GB RAM

and the Ubuntu 16.04 operating system.

In the first scenario, the initial speed of both sides was

the same and the opposing aircraft marked as red appeared

ahead of the blue one’s nose; however, the blue aircraft was

not located in the rear attack zone but instead on the side of

the red one. The red aircraft was escaping with max roll angle

to leave the area in front of the blue and to expand the angles

η and τ . The initial states of both sides are shown in Table 1.

In the second scenario, the blue and red aircraft engaged

nose-to-nose. The red one turned left, across the tail of the

blue, trying to approach in a nose-to-tail fashion. The initial

states are shown in Table 2.

TABLE 1. Initial states of both sides in the lateral encounter scenario.

TABLE 2. Initial states of both sides in the head-on encounter scenario.

TABLE 3. Initial states of both sides in the lag-pursuit roll scenario.

TABLE 4. Initial states of both sides in the rolling scissors scenario.

In the third scenario, the blue aircraft is located behind

its opponent, its velocity is too great, and its initial pitch

angle is too large. The red one tries to detour behind the

blue through a horizontal turn. If the blue aircraft tries to

directly lock the red one in the current state, it may over-

shoot because of the high speed and go from a position of

advantage to one of disadvantage. The initial states are shown

in Table 3.

In the fourth scenario, the headings of the two aircraft

are perpendicular, and the blue side is faster and its pitch

angle is smaller. Whether the situation is an advantage or

disadvantage to each side is unclear. The red side is looking

for breakthrough opportunities through a continuous rolling

scissors manoeuvre. See Table 4 for the initial states of both

sides.

1) COMPARISON OF THE NUMBER OF PARALLEL

UNIVERSES

First, we illustrate the effect of the parallel spaces through

comparative experiments. We evaluated the algorithm with

a number of parallel universes n = 8, 16, 24, 32, 40 and

with KL penalty coefficient λ = 10 on the four encounter

scenarios. We executed the learning algorithm for 10000 sec-

onds under each parameter setting. Figure 7 shows the reward

obtained by the system during the learning; the curve is the

mean value of the 20 experiments, and the shadow represents

the boundary of the experimental data. It can be seen that

the number of parallel spaces has a significant effect on the

learning speed and the reward distribution. As the number

of parallel spaces increases, the amount of data that needs

to be processed also increases, it takes up more CPU and

memory resources, and the speed-up dividends do not always

increase.
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FIGURE 7. Reward obtained during the parallel universe comparison
experiment.

2) COMPARISON OF THE PENALTY COEFFICIENTS

Next, we give the experimental results under different KL

penalty coefficients λ. We use the same hyperparameters as

in the previous experiment and set the number of parallel

universes PL=40, taking λ = 0.5, 1, 2, 5, 10 heuristically.

As in the previous section, we tested 20 times with each

parameter on the two scenarios and executed the learning

algorithm for 10000 seconds under each parameter setting;

the score during the learning is shown in Figure 8. As we

can see, the learning is not very sensitive to the KL penalty

coefficient λ in the range of [0.5, 10]; a smaller λ leads to

relatively faster learning but also a greater variance, and a

greater λ makes the learning relatively slower but performs

better on stability.

In our opinion, this phenomenon is caused bymany factors.

On the one hand, we adopt a smaller learning rate in updating

the parameters of the neural network, so we can use a smaller

penalty coefficient; on the other hand, 2γ
/

(1 − γ )2δ in The-

orem 3 is a relatively large value, especially in the later stages

of learning, so larger values can also be effective.

3) DIRECT EXHIBITION OF LEARNING ACHIEVEMENTS

After the training, we connected the trained long-termmodule

directly to the training environment to verify the learning

effect, and the role of the training environment was converted

to a simulator.We obtained confrontation trajectories for each

encounter scenario as shown in Figure 9.

As can be seen, without any flight rules summarized by

humans, the system can learn from the confrontation data

by itself. We only set a score principle to help the computer

distinguish success from failure. The confrontation trajectory

shows that the system can produce different manoeuvres to

deal with different situations. It has mastered the conversion

between speed and height so that it can reverse nose quickly

with less energy loss. Manoeuvres obtained from learning

are similar to the classical fight tactic high yo-yo and the

barrel-roll attack [64].

4) COMPARISON TO OTHER ALGORITHMS

In the engagement scenarios of the previous experiments,

the opponent aircraft only performed some simple manoeu-

vres to escape. However, real air combat is consumed with

fierce attack and defence, so we created an antagonistic

opponent for the system. The red aircraft had the ability to

evaluate the situation, to predict the opponent’s intentions

and to decide on manoeuvres; it was commanded by the

Bayesian inference and moving horizon optimization method

(BI&MHO) [9]. We set up a fair arena, as shown in Table 3,

and the two aircraft engaged nose-to-nose; their manoeuvra-

bility, initial speed, height, roll angle and pitch angle were the

same.

Figure 10 (a) shows the reward obtained by the system.

We executed the learning algorithm 20 times; the curve is

the mean value of the reward in the 20 experiments, and
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FIGURE 8. Reward obtained during the penalty coefficient comparison
experiment.

FIGURE 9. The confrontation trajectories of both sides.
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TABLE 5. Initial state of both sides in the dogfight scenario.

TABLE 6. Comparison of the two methods.

the shadow represents the boundary of the reward data. The

data fluctuates greatly in the early period, and the blue side

might even be defeated by its opponent. As the learning

went on, the system understood its enemy more comprehen-

sively. Then, the fluctuation of the data reduced gradually

and the mean of the reward came to rise continuously. In the

later stage, the reward tended to be stable, and the blue

side found the action policy to lock the red within a short

time. Consider a case in which a blue aircraft driven by a

trained procedural network confronts a red aircraft driven

by the BI&MHO method in a training environment. Two

different trajectories in the dogfight experiment are shown

in Figure 10 (b), (c) and (d). The trajectories of the two con-

frontations are not the same. This is because the action policy

is a Gaussian distribution, so actions sampled according to the

policy do not have a definite value. When the opponent is an

aggressive aircraft, different action choices may cause great

changes in the development of confrontation trajectories. This

also explains the reward data fluctuation in the later stage of

learning.

In contrast to the BI&MHOmethod, our approach is a new

way to learn how to make decisions without existing rules.

First, the confrontation situations are divided into the four cat-

egories Advantage, Disadvantage,Mutual Safety andMutual

Disadvantage in the BI&MHOmethod. Then, linear addition

of the fuzzy angle, height, distance and speed membership

functions is used as the optimization objective of manoeuvre

decisions. The linear addition weights for the four kinds of

situations are set as constant, and thus, the manoeuvring

strategy may have a regular pattern that can be grasped

through learning. By contrast, our method assesses situations

FIGURE 10. Results of the dog-fight experiment.

as continuous values, and action strategies guided by this type

of assessment will be more diversified. Second, BI&MHO

uses a linear combination of five basic manoeuvres to predict

the position of the opponent. However, the blue aircraft is

directed by continuous guidance commands
[

nx nz φ
]

that
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are sampled according the Gaussian distribution policy π in

ourmethod. Themanoeuvres of the blue aircraft are equivocal

and are more complex than the ones the BI&MHO method

could predict. As the forecast period of the moving hori-

zon optimization method increases, the prediction error will

increase sharply. In our method, the situation-value considers

not only the current states but also the trend of the situation in

the future. The action choices of both sides will be reflected

in the situation-value. We do not predict the opponent’s

specific actions but establish knowledge about the situation

development tendency through statistical learning. These rea-

sons lead the learning system to a final victory. In addition,

the BI&MHO method makes decisions by solving optimal

values online. Once this method is designed, it is work-

able, because the designer puts his prior knowledge about

situation assessment, position prediction and decision basis

into the algorithm. In contrast, the method proposed in this

paper is unusable before learning. Because the algorithm is

a learning framework, the knowledge for decision-making is

obtained through interactions with the training environment.

The BI&MHO method has the ability to deploy quickly, but

no ability to learn. Our method can only be used after training

but can keep learning through interactive data.

V. CONCLUSION AND FUTURE WORK

In this paper, the learning model of the human brain was

analysed and a novel brain-like air combat learning system

was designed. The main conclusions are: By applying the

cognitive mechanism of the brain to autonomous decision

of air combat manoeuvres, the learning system designed in

this paper is an effective self-learning structure. The parallel

universe, parallel simulation and the data acquisition method

proposed can significantly improve learning efficiencywithin

a certain range. An appropriate length of the consolida-

tion learning cycle (CLC) can ensure learning performance

growth. Transforming the CLC length adjustment problem

into an optimization problem can make the algorithm easier

to execute. Good results have been achieved in digital exper-

iments.

To make the method proposed in this paper more practical,

several issues need further research: How to add humans’

prior knowledge about aircraft kinematic models, situation

assessment, intention prediction and decision-making into the

learning system so that the system will have certain availabil-

ity without training. Ideally, prior knowledge will not only

have no conflict with learning but will also be able to improve

learning speed. In this paper, we design and validate the

learning system in a 1-vs-1 scenario. To extend the method to

a multiplayer confrontation, cooperative learning framework,

reasonable reward and knowledge sharingmechanism need to

be explored. To fully apply the method in a real UAV, many

problems must be solved, including computing power, plat-

form load, power supply, sensor accuracy, communication

timeliness, safety and so on.
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