
LEARNING TAGS THAT VARY WITHIN A SONG

Michael I Mandel, Douglas Eck, Yoshua Bengio

LISA Lab, Université de Montréal
{mandelm,eckdoug}@iro.umontreal.ca, yoshua.bengio@umontreal.ca

ABSTRACT

This paper examines the relationship between human gener-

ated tags describing different parts of the same song. These

tags were collected using Amazon’s Mechanical Turk ser-

vice. We find that the agreement between different people’s

tags decreases as the distance between the parts of a song

that they heard increases. To model these tags and these

relationships, we describe a conditional restricted Boltz-

mann machine. Using this model to fill in tags that should

probably be present given a context of other tags, we train

automatic tag classifiers (autotaggers) that outperform those

trained on the original data.

1. INTRODUCTION

Social tags are short free-form descriptions of music that

users apply to songs, albums, and artists. They have proven

to be a popular way for users to organize and discover music

in large collections [5]. There remain, however, millions

of tracks that have never been tagged by a user that cannot

be included in these systems. Automatic tagging, based on

an analysis of the audio of these tracks and user tagging

behavior, could enable them to be included in these systems

immediately. To this end, this paper explores the relation-

ship between audio and the tags that humans apply to it,

especially at different time scales and at different points

within the same track.

We perform this examination in the context of a “Human

Intelligence Task” (HIT) on the Mechanical Turk website 1 ,

where users are paid small amounts of money to perform

tasks for which human intelligence is required. Mechan-

ical Turk has been used extensively in natural language

processing [10] and vision [11, 13], but to our knowledge

has not been used in music information retrieval before.

Mechanical Turk is one means to the end of human compu-

tation, the field of cleverly harnessing human intelligence to

solve computational problems. This field has been growing

in popularity recently, especially in the context of games

for collecting descriptions of music [6, 7, 12]. While these

1 http://mturk.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2010 International Society for Music Information Retrieval.

games have proven popular among researchers for collect-

ing these data, they require significant investment of devel-

opment time and effort in order to attract and retain players.

By using Mechanical Turk, a researcher can trade a little

extra money for significant savings in development time.

This paper makes three contributions. First, in Section 2

we discuss data collection and analysis from a new source,

Mechanical Turk, and Section 2.1 shows that clips from

different parts of the same song tend to be described dif-

ferently from one another. Second, Section 3.1 presents

a probabilistic model of tags and their relationships with

each other to combat the sparsity of music tagging data.

Section 3.3 shows that explicitly including information link-

ing tags from the same user, track, and clip improves the

likelihood of held out data under the model. Finally, we use

this model to “smooth” tag data, i.e. to infer tags that were

not provided, but perhaps should have been, given the tags

that were. Section 4 shows that these smoothed tags are

more “learnable” from the audio signal than the raw tags

provided directly by the users, especially when fewer users

have seen a given clip.

2. DATA COLLECTION

Users of the Mechanical Turk website, known as “turk-

ers”, were asked to listen to a clip from a song and de-

scribe its unique characteristics using between 5 and 15

words. The task was free response, but to provide some

guidance, we requested tags in 5 categories: Styles/Genres,

Vocals/Instruments, Overall sound/feel (global qualities like

production and rhythm), Moods/Emotions, Other (sounds

alike artists, era, locale, song section, audience, activities,

etc.). In order to avoid biasing the turkers’ responses, no

examples of tags in each category were provided. Turkers

were paid between $0.03 and $0.05 per clip, on which they

generally spent about one minute.

The music used in the experiment was collected from

music blogs that are indexed by the Hype Machine 2 . We

downloaded the front page of each of the approximately

2000 blogs and recorded the URLs of any mp3 files linked

from them, a total of approximately 17,000 mp3s. We

downloaded 1500 of these mp3s at random, of which ap-

proximately 700 were available, error free, and at least 128

kbps while still being below 10 megabytes (to avoid DJ sets,

podcasts, etc). Of these, we selected 185 at random.

From each of these 185 tracks, we extracted five 10-

second clips evenly spaced throughout the track. We pre-

2 http://hypem.com/list

399

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

User Track Clip Tags Num pairs

+ + + 6.0370 ± 0.0290 2,566

+ + − 2.3797 ± 0.0511 690

+ − − 1.2006 ± 0.0026 227,006

− + + 1.1137 ± 0.0142 4,838

− + − 1.0022 ± 0.0083 13,560

− − − 0.5240 ± 0.0004 3,702,481

Table 1. Average number of tags (± 1 standard error)

shared by HITs with various characteristics in common and

number of such pairs of HITs. A + indicates that the clips

shared that characteristic, a − that they differed in it.

sented these clips to turkers in a random order, and gener-

ally multiple clips from the same track were not available

simultaneously. Each clip was seen by 3 different turkers.

Mechanical Turk gives the “requester” the opportunity

to accept or reject completed HITs either manually or au-

tomatically. In order to avoid spammers, we designed a

number of rules for automatically rejecting HITs based on

analyses of each and all of a user’s HITs. Individual HITs

were rejected if: (1) they had fewer than 5 tags, (2) a tag

had more than 25 characters, or (3) less than half of the tags

were found in a dictionary of Last.fm tags. All of a users’

HITs were rejected if: (1) that user had a very small vocabu-

lary compared to the number of HITs they performed (fewer

than 1 unique tag per HIT), (2) they used any tag too fre-

quently (4 tags were used in more than half of their HITs),

(3) they used more than 15% “stop words” like nice, music,

genre, etc., or (4) at least half of their HITs were rejected

for other reasons. The list of stop words was assembled by

hand from HITs that were deemed to be spam.

We pre-processed the data by transforming tags into a

canonical form. We normalized the spelling of decades and

the word “and”, removed words like “sounds like” from the

beginning of tags, removed words like “music”, “sound”,

and “feel” from the ends of tags, and removed punctuation.

We also stemmed each word in the tag so that different forms

of the same word would match each other, e.g. drums,

drum, and drumming.

We posted a total of 925 clips, each of which was to be

seen by 3 turkers for a total of 2775 HITs. We accepted

2566 completed HITs and rejected 305 HITs. Some of

the rejected HITs were re-posted and others were never

completed. The completed HITs included 15,500 (user, tag,

clip) triples from 209 unique turkers who provided 2100

unique tags. Of these tags, 113 were used by at least 10

turkers, making up 13,000 of the (user, tag, clip) triples.

We paid approximately $100 for these data, although this

number doesn’t include additional rounds of data collection

and questionnaire tuning.

2.1 Co-occurrence analysis

The first analysis that can be applied to these data is a simple

counting of the number of tags shared by pairs of HITs. By

categorizing the relationships between two HITs in terms of

the users, tracks, and clips involved, an interesting picture

60 40 20 0 20 40 60
Separation (% of track)

0.40

0.45

0.50

0.55

0.60

0.65

C
o
-o

cc
u
rr

in
g
 t

a
g
s

a
b
o
v
e
 b

a
se

lin
e

Figure 1. Average number of tags above the baseline shared

by HITs from the same track as a function of the separation

between the clips measured as % of a track.

emerges. Table 1 shows the first analysis of the number of

shared tags for all possible pairs of HITs grouped by the

relationships of these characteristics.

The bottom row of the table shows that HITs with noth-

ing in common still share 0.5240 tags on average because

of the distribution of tags and music in this dataset. The

second line from the bottom shows that HITs involving dif-

ferent users and different clips within the same track share

1.002 tags on average. And the third to last row shows that

HITs with different users, but the same clip share 1.11 tags

on average, significantly more than HITs that only share

the same track. This same pattern also holds for HITs from

the same user, but with higher co-occurrences. The large

difference between HITs from the same user and HITs from

different users can probably be attributed to the lack of

feedback to the users in the task, allowing somewhat id-

iosyncratic vocabularies to perpetuate. Note that the top

row of the table shows the average number of tags per HIT.

A related analysis can be performed measuring the de-

pendence of tag co-occurrence on the distance between

clips in the same track. Figure 1 shows the average tag co-

occurrence of two clips in the same track above the baseline

level of co-occurrences for two clips from different tracks.

It reveals that the number of tags shared by clips decreases

as the clips get farther apart. The error bars show that this

result is not quite statistically significant, but it is still a no-

table trend. Results are similar for HITs from the same user

and for cosine similarity instead of plain co-occurrence.

3. DATA MODELING

While stemming can make connections between certain

tags in the dataset, it is only able to do this for tags which

are syntactically related to one another. Another kind of

model is required to capture relationships between tags like

indie and rock. We choose to capture these relationships

using a restricted Boltzmann machine (RBM), a generative

400

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

probabilistic model. The RBM observes binary vectors

representing the tags that a single user gave to a single clip.

Once trained, the model can compare the relative likelihood

of two such observations and can draw samples from the

observation distribution.

3.1 Conditional restricted Boltzmann machine

More formally, an RBM [9] is a probabilistic model of the

relationship between binary visible units, denoted, vi and

binary hidden units, denoted hj . Conditioned on the visible

units, the hidden units are independent of one another, and

vice-versa. The joint probability density function is

p(v, h) =
1

Z
exp

(

vTWh+ bT v + cTh
)

(1)

where the partition function Z ≡
∑

v,h p(v, h) is compu-

tationally intractable (exponential either in the number of

visibles or of hiddens). The likelihood of the observation

v is obtained by marginalizing over h: p(v) =
∑

h p(v, h),
and can be computed easily up to Z. In this paper, we

condition the model on “auxiliary” hidden units, a,

p(v, h | a) =
1

Z
exp

(

vTWh+ vTWaa+ bT v + cTh
)

(2)

where the partition function is now conditioned on a as

well, Z =
∑

v,h p(v, h | a). Conditional RBMs have been

used for collaborative filtering [8], although in that case the

conditioning variables influenced the hidden states, whereas

in our model they directly influence the visible units. The

matrices W and Wa and the bias vectors c and b are learned

using the contrastive divergence algorithm [4]. In addition

to the normal contrastive divergence updates, we place an

L1 penalty on Wa to promote sparseness of its entries.

In practice, the vector a is set a priori to represent the

user, the artist, the track, and/or the clip using a so-called

one hot representation. For example, each user has their

own column of the Wa matrix, providing a different bias

to the tag probabilities. We sometimes refer to the quantity

Waa as the auxiliary biases for this reason. Each user in

effect has a different baseline probability for the visible

units, meaning that they tend to use the tags in different

proportions. Because the entries of the Wa matrix are L1-

penalized, the user columns tend to represent discrepancies

between a user’s tags and the global average, which is cap-

tured in the bias vector b. Thus the Wa matrix is like a term

frequency-inverse document frequency (TF-IDF) represen-

tation (see e.g. [14]) of the variables that it is modeling, but

learned in a more probabilistically grounded way.

3.2 Purely textual datasets

We apply this model to three different tag datasets with the

goal of discovering relationships between tags, and the tags

that are used unexpectedly frequently or infrequently on

particular items. The first dataset is purely textual, from

Last.fm [1]. It includes (artist, tag) pairs, along with the

number of times that that pair appears. The second dataset,

from MajorMiner [7], includes (clip, user, tag) triples and

also includes the audio associated with each clip. The third

dataset, from the Mechanical Turk experiments described

in Section 2, similarly includes (clip, user, tag) triples and

audio. While it is smaller than the MajorMiner data, it

includes many more clips per track, and so can provide per-

haps more insight into clip-level and track-level modeling.

The dataset from [1] was collected from Last.fm in the

spring of 2007. It includes the tags that users applied to

approximately 21,000 unique artists and the number of

users who applied each tag to each artist. There are ap-

proximately 100,000 unique tags, and 7.2 million (artist,

tag) pairs, including duplicates. To reduce the size of the

required model, we discarded tags that had been applied

to fewer than 8000 artists (98 tags), and only kept the 200

most frequently tagged artists.

In order to transform this dataset into a form that can be

used by the RBM model, we simulated taggings from indi-

vidual users. We characterized each artist with independent

Bernoulli probabilities over each tag and drew multi-tag

samples from this distribution. The probability of each tag

was proportional to the number of times each tag was ap-

plied to an artist, so the counts were first normalized to sum

to 1. These normalized counts were multiplied by 5 (and

truncated to prevent probabilities greater than 1) so that the

expected total number of tags was 5, a number that a typical

user might provide. To create the dataset, we repeatedly

drew an artist at random and simulated a user’s tagging of

that artist. The artists’ tag probabilities provided a baseline

against which to measure the estimation of the relevant Wa

columns, which only modeled artist auxiliary information.

The dataset from [7] was collected from the MajorMiner

music labeling game over the course of the last three years.

It includes approximately 80,000 (clip, user, tag) triples

with 2600 unique clips, 650 unique users, and 1000 unique

tags. Each observation was encoded as a binary vector

indicating the tags that a single user applied to a single clip.

The a vector in this case indicated both the clip, the track

that it came from, and the user. On average, each track was

represented by fewer than two clips.

Finally, this new Mechanical Turk dataset provides (clip,

user, tag) triples along with relationships between clips and

tracks. While it contains the fewest triples, it contains the

most structure of the datasets because by design there are

five clips per track. To model it, the a vector represents the

user, the track, and the clip, so there is a separate auxiliary

term learned for each of them.

3.3 Textual experiments

Qualitative experiments on the Last.fm dataset showed that

our model successfully learned the auxiliary inputs, i.e.

the Wa matrix acted as a sort of TF-IDF model for tags.

Specifically, the W matrix modeled relationships between

pairs of tags, the b vector modeled overall popularity of

individual tags, and the columns of Wa modeled any tags

that were unusually prevalent or absent for an artist given

its other tags. For example, Nirvana’s Wa column included

a large value for grunge, and the Red Hot Chili Peppers’

included a large value for funk, both of which might not

401

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

have been expected from their other tags like rock and

alternative. Similarly, the Beatles have a negative bias for

seen live because presumably fewer Last.fm listeners have

seen the Beatles live than other artists tagged rock and pop.

These issues are addressed more quantitatively below.

All three of the datasets described in Section 3.2 can be

used in a leave-one-out tag prediction task. In this task,

the relative probability of a novel observation is compared

to that of the same observation with one bit flipped (one

tag added or deleted). If the model has captured important

structure in the data, then it will judge the true observation

to be more likely than the bit-flipped version of it. This ratio

is directly connected to the so-called pseudo-likelihood of

the test set [2]. Because it is a ratio of probabilities, it does

not require the computation of the partition function, Z,

which is very computationally intensive. Mathematically,

the pseudo-likelihood is defined as

PL(v | a) ≡
∏

i

p(vi | v\i, a) =
∏

i

p(v | a)

p(v | a) + p(ṽi | a)

(3)

where vi is the ith visible unit, v\i is all of the visible units

except for the ith unit, and ṽi is the observation v with the

ith bit flipped. Even though our observation vectors are

generally very sparse (∼4% of the bits were 1s), the 1s are

more important than the 0s, so we compute the average log

pseudo-likelihood over the 1s and 0s separately and then

average those two numbers together. This provides a better

indication of whether the model can properly account for

the tags that are present, than the tags that aren’t present.

This leave-one-out tag prediction can be done with any

model that computes the likelihood of tags. Thus we can

train models with different combinations of auxiliary vari-

ables, or different models entirely, as long as they can pre-

dict the likelihood of novel data. A baseline comparison

to all of our RBMs is a factored model that estimates the

probability of each tag independently from training data

and then measures the likelihood of each tag independently

on test data. Because of the independence of the variables,

in this case the pseudo-likelihood is identical to the true

likelihood.

We performed this experiment with the textual compo-

nent of these three datasets, dividing the data 60-20-20 into

training, validation, and test sets. The observations were

shuffled, but then rearranged slightly to ensure that all of the

auxiliary classes appeared at least once in the training set to

avoid “out-of-vocabulary” problems. We ran a grid search

over the number of hidden units, the learning rate, and the

regularization coefficients using only the track-based aux-

iliary variables, those with the most even coverage. This

grid search involved training approximately 500 different

models, each taking 10 minutes on average. We selected the

system with the best hyperparameters based on the pseudo-

likelihood of the validation dataset. Once we had selected

reasonable hyperparameters, we ran experiments using all

combinations of the auxiliary variables with the other hyper-

parameters held constant. Five different random divisions

of the data allowed the computation of standard errors.

The log pseudo-likelihoods of the test datasets under

Auxiliary info

Dataset User Track Item log(PL)± stderr

MajorMiner + + + −0.9179±0.0088
MajorMiner + + − −0.9189±0.0070
MajorMiner + − − −0.9416±0.0074
MajorMiner − − − −1.0431±0.0095
MajorMiner baseline −1.4029±0.0024

Mech. Turk + + − −0.893 ± 0.015
Mech. Turk + − − −0.904 ± 0.013
Mech. Turk + + + −0.914 ± 0.012
Mech. Turk − − − −1.039 ± 0.013
Mech. Turk baseline −1.300 ± 0.007

Last.fm − − + −0.5623±0.0042
Last.fm − − − −0.7082±0.0029
Last.fm baseline −1.1825±0.0018

Table 2. Average per-bit log pseudo-likelihood (less neg-

ative is better) for restricted Boltzmann machines condi-

tioned on different types of auxiliary information. A +
indicates that the auxiliary information was present, a − in-

dicates that it was absent. The baseline system is a factored

model evaluated in the same way.

these systems are shown in Table 2. The results are not

strictly comparable across datasets because they involved

slightly different numbers of visible units. The results are

shown on a per-bit basis, however, to facilitate compari-

son. These results show first that non-conditional restricted

Boltzmann machines (rows with three −s) are much more

effective than the factored models at modeling test data.

This is because in addition to modeling the relative frequen-

cies of tags, the RBM also models the relationships between

tags through its hidden units. Conditioning the RBM on

auxiliary information (rows with at least one +) further

improves the pseudo-likelihoods. Specifically, it seems that

the most useful auxiliary variable is the identity of the user,

but the identity of the track helps as well. Including clip

information is slightly detrimental, although not statistically

significantly so, possibly because it introduces a large num-

ber of extra parameters to estimate in the Wa matrix from

few observations.

4. AUTOTAGGING EXPERIMENTS

The final set of experiments involves not just the textual

tags, but also the audio for both the MajorMiner dataset

and this new data collected from Mechanical Turk. In this

experiment, we measure the usefulness of the RBM model

from Section 3.1 for “smoothing” the tag data. Specifically,

we create two datasets: the first, labeled “raw”, consists of

just the original (clip, user, tag) triples in the dataset. The

second, labeled “smoothed”, consists of labels imputed by

the RBM trained with all of the available auxiliary informa-

tion. For each clip, we drew 1000 samples from the RBM

conditioned on that sample’s auxiliary information, but with

no user indicated. We factored out the user so the taggers

were trained from a general point of view, not that of any

402

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

Mechanical Turk

Tested

Trained Raw Smoothed

Raw 56.87 ± 0.52 56.56 ± 0.36

Smoothed 61.43 ± 0.51 63.40 ± 0.35

MajorMiner

Tested

Trained Raw Smoothed

Raw 65.97 ± 0.49 60.58 ± 0.35

Smoothed 66.67 ± 0.49 63.09 ± 0.35

Table 3. Average classification accuracy and standard errors of autotaggers trained and tested on different tag labelings for

Mechanical Turk and MajorMiner data. The tags were either raw or smoothed from RBM samples.

particular user. Because the model assumes the effects of

user, track, and clip are additive on the tag probabilities,

the effect of one can be factored out by not adding it. This

is further ensured by the regularization of the Wa matrix,

which forces many of the elements of the matrix to 0 and

the rest to be small.

To compare these datasets, we hold the acoustic fea-

tures constant, but change the labels used to train and test

classifiers. We first split the data into 5 cross-validation

folds. Then the positive and negative test examples for a

particular tag are the top- and bottom-ranked clips from

one cross-validation fold. The training examples are the

top- and bottom-ranked clips excluding that fold. Because

the cross-validation breakdowns are preserved across tag

sets, it is possible to train on one tag set and test on another.

For the smoothed dataset, we select the top and bottom 100

examples for each tag. For the raw counts, we choose for

each tag the smaller of the top 100 examples or all of the

examples verified by at least 2 people.

The autotaggers are inspired by those from [7], which

use timbral and rhythmic features and a support vector

machine (SVM) classifier. For this experiment we use Lib-

SVM’s ν-SVM as our SVM implementation, with probabil-

ity estimates and a linear kernel [3]. Performance with the

Gaussian kernel was similar. One binary SVM is trained

per tag using a balanced number of positive and negative

examples selected in order of tag affinity in the training set.

Performance is measured in terms of average accuracy on a

test dataset that is balanced in terms of positive and negative

examples to set a constant baseline of 50% for a randomly

guessing classifier. This metric is more appropriate than

overall classification accuracy for tasks like autotagging

where it is important to recognize positive examples in the

presence of a large number of negative examples. To avoid

the “album effect”, the cross-validation folds were assigned

so that clips from the same track were in the same fold

in the Mechanical Turk data and that clips from the same

album were in the same fold in the MajorMiner data.

The results of these experiments are shown in Table 3

and Figure 2. Each row of the tables represents a training

tag labeling and each column represents a test tag labeling.

The tables show these accuracies averaged over the 95 tags

used by the most people on each dataset. The first column

of each table shows the result of training on different tag

labelings and testing on the raw tags. For both the Ma-

jorMiner and Mechanical Turk datasets, smoothing with the

RBM improves test performance on the raw, user-supplied

tags, although for the MajorMiner dataset, this difference

is not statistically significant. The second column of each

table indicates the performance of both models in predicting

the smoothed data. In this case as well, the smoothed data

trains more accurate models.

The diagonals of these tables show the “learnability” of

the tag labelings. For the Mechanical Turk dataset, the

smoothed tag set is more learnable than the raw tags. For

the MajorMiner dataset, however, the raw tags are more

learnable than the smoothed tags. These accuracies may

not be directly comparable, however, because the measure-

ments differ in both the models used and the test data. The

difference in accuracy might indicate that the smoothing is

less necessary in the MajorMiner dataset due to its larger

size and larger number of repeated (clip, tag) pairs.

Figure 2 shows the autotag classification accuracy on

the raw tags when trained with the raw and smoothed tags.

The tags shown are the 50 used by the most people, and

are sorted in the plots by the performance of the best sys-

tem, that trained on the smoothed tags. For the Mechanical

Turk data, shown in Figure 2(a), these smoothed tags train

better classifiers almost across the board. Certain tags per-

form slightly better when trained on the raw data, but not

significantly so. Smoothing is particularly useful for train-

ing angry, violin, and country, where autotaggers trained

from the raw tags perform at chance levels.

For the MajorMiner data, shown in Figure 2(b), the

smoothed tags and the raw tags perform similarly to one an-

other. The smoothed tags train better autotaggers for club,

folk, pop, and funk, while the raw tags train better auto-

taggers for silence, strings, country, and acoustic. The

occurrence of the silence tag was due to the inclusion of a

few broken clips in the game, which makes it a very specific,

context-dependent tag that the RBM might not be able to

generalize. It is not clear why performance on country is

so different between the two datasets. It could be because in

the Mechanical Turk dataset the top co-occurring tags with

country are guitar 61% of the time and folk 27%, while in

MajorMiner, they are guitar 44% of the time, female 27%,

and male 26%. Thus in Mechanical Turk smoothing gives

better results for country because it occurs more frequently

with guitar and occurs with the more informative tag folk.

5. CONCLUSION

This paper has discussed the relationships between tags and

music at a sub-track scale. We found that Mechanical Turk

was a viable means of collecting ground truth tag data from

humans, although the lack of the immediate feedback of a

game might have contributed to lower inter-user agreement.

403

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

0.4 0.5 0.6 0.7 0.8 0.9
harmonica
classicrock
christmas
alternative

duet
love
and

happy
indie
male
funk
jazz

banjo
trance
bass
piano

female
sad

upbeat
instrumental

soft
fast
pop

country
metal
80s
loud

relaxed
femalevocals

slow
electricguitar

classic
malevocals

blues
guitar
violin
rock

synthesizer
folk
club
party

acousticguitar
acoustic

angry
rap

electronica
dance
disco

techno
hiphop

Smoothed
Raw

0.4 0.5 0.6 0.7 0.8 0.9 1.0
solo

organ
instruments

keyboard
indie
drum
fast

british
horn
bass

acoustic
trumpet
country

voice
vocal

electronic
end

punk
male

electronica
strings
guitar

sample
80s

synth
repetitive

noise
distorted
female

drummachine
saxophone

funk
pop

piano
house
slow
soft

techno
beat

ambient
dance
jazz
rock

silence
folk
loud
club
quiet
rap

hiphop

Smoothed
Raw

(a) Mechanical Turk (b) MajorMiner

Figure 2. Accuracy of autotaggers for the top 50 tags in the Mechanical Turk and MajorMiner datasets. The autotaggers

were trained on raw and smoothed tags and tested on the raw, human generated tags. Error bars show 1 standard error.

We also found that different parts of the same song tend

to be described differently, especially as they get farther

from one another. By modeling these differences with a

conditional restricted Boltzmann machine, we were able

to recover false negative tags in the user-generated data

and use these data to more effectively train autotaggers,

especially in smaller datasets. In the future we will ex-

plore additional models of tag-tag similarity, joint tag-audio

models, and models of tagging that take into account the

relationships between clips’ different distances from one

another.

Acknowledgements The authors acknowledge the support

of an NSERC Discovery grant and would like to thank

Razvan Pascanu and Johanna Devaney for their assistance.

6. REFERENCES

[1] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger: A
model for predicting social tags from acoustic features on large music
databases. J. New Music Res., 37(2):115–135, 2008.

[2] J. Besag. Statistical analysis of non-lattice data. The Statistician,
24(3):179–195, 1975.

[3] C. Chang and C. Lin. LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/

˜cjlin/libsvm.

[4] G. Hinton. Training products of experts by minimizing contrastive
divergence. Neural Computation, 14:1771–1800, 2002.

[5] P. Lamere. Social tagging and music information retrieval. J. New

Music Res., 37(2):101–114, 2008.

[6] E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie. Evaluation
of algorithms using games: the case of music annotation. In Proc.

ISMIR, pages 387–392, 2009.

[7] M. I. Mandel and D. P. W. Ellis. A web-based game for collecting
music metadata. J. New Music Res., 37(2):151–165, 2008.

[8] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted Boltzmann
machines for collaborative filtering. In Proc. ICML, pages 791–798,
2007.

[9] P. Smolensky. Information processing in dynamical systems: founda-

tions of harmony theory. MIT Press, 1986.

[10] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng. Cheap and fast – but is
it good? evaluating non-expert annotations for natural language tasks.
In Proc. Empirical Methods in NLP, pages 254–263, 2008.

[11] A. Sorokin and D. Forsyth. Utility data annotation with amazon me-
chanical turk. In CVPR Workshops, pages 1–8, 2008.

[12] D. Turnbull, L. Barrington, and G. Lanckriet. Five approaches to
collecting tags for music. In Proc. ISMIR, pages 225–230, 2008.

[13] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose
vote should count more: Optimal integration of labels from labelers of
unknown expertise. In NIPS 22, pages 2035–2043, 2009.

[14] J. Zobel and A. Moffat. Exploring the similarity space. SIGIR Forum,
32(1):18–34, 1998.

404

11th International Society for Music Information Retrieval Conference (ISMIR 2010)

