
Learning Target Candidate Association to Keep Track of What Not to Track

Christoph Mayer Martin Danelljan Danda Pani Paudel Luc Van Gool

Computer Vision Lab, D-ITET, ETH Zürich, Switzerland

Abstract

The presence of objects that are confusingly similar

to the tracked target, poses a fundamental challenge in

appearance-based visual tracking. Such distractor objects

are easily misclassified as the target itself, leading to even-

tual tracking failure. While most methods strive to suppress

distractors through more powerful appearance models, we

take an alternative approach.

We propose to keep track of distractor objects in or-

der to continue tracking the target. To this end, we intro-

duce a learned association network, allowing us to prop-

agate the identities of all target candidates from frame-

to-frame. To tackle the problem of lacking ground-

truth correspondences between distractor objects in vi-

sual tracking, we propose a training strategy that com-

bines partial annotations with self-supervision. We con-

duct comprehensive experimental validation and anal-

ysis of our approach on several challenging datasets.

Our tracker sets a new state-of-the-art on six bench-

marks, achieving an AUC score of 67.1% on LaSOT [21]

and a +5.8% absolute gain on the OxUvA long-term

dataset [41]. The code and trained models are available at

https://github.com/visionml/pytracking

1. Introduction

Generic visual object tracking is one of the fundamen-

tal problems in computer vision. The task involves esti-

mating the state of the target object in every frame of a

video sequence, given only the initial target location. Most

prior research has been devoted to the development of ro-

bust appearance models, used for locating the target object

in each frame. The two currently dominating paradigms

are Siamese networks [2, 35, 34] and discriminative appear-

ance modules [3, 13]. While the former employs a template

matching in a learned feature space, the latter constructs

an appearance model through a discriminative learning for-

mulation. Although these approaches have demonstrated

promising performance in recent years, they are effectively

limited by the quality and discriminative power of the ap-

pearance model.

0.75 0.43
0.27

0.26

0.39
0.23 0.35

0.330.40

Target

Candidate

Association

Network

Target ObjectTarget Candidate Distractor Object
C

u
rr

e
n
t

F
ra

m
e

P
re

v
io

u
s
 F

ra
m

e

Figure 1. Visualization of the proposed target candidate associa-

tion network used for tracking. For each target candidate () we

extract a set of features such as score, position and appearance in

order to associate candidates across frames. The proposed target

association network then allows to associate these candidates ()

with the detected distractors () and the target object () of the

previous frame. Lines connecting circles represent associations.

As one of the most challenging factors, co-occurrence

of distractor objects similar in appearance to the target is

a common problem in real-world tracking applications [4,

56, 46]. Appearance-based models struggle to identify the

sought target in such cases, often leading to tracking failure.

Moreover, the target object may undergo a drastic appear-

ance change over time, further complicating the discrimi-

nation between target and distractor objects. In certain sce-

narios, e.g., as visualized in Fig. 1, it is even virtually im-

possible to unambiguously identify the target solely based

on appearance information. Such circumstances can only

be addressed by leveraging other cues during tracking, for

instance the spatial relations between objects. We therefore

set out to address problematic distractors by exploring such

alternative cues.

We propose to actively keep track of distractor objects

in order to ensure more robust target identification. To

this end, we introduce a target candidate association net-

work, that matches distractor objects as well as the target

across frames. Our approach consists of a base appearance

tracker, from which we extract target candidates in each

frame. Each candidate is encoded with a set of distinctive

features, consisting of the target classifier score, location,

and appearance. The encodings of all candidates are jointly

13444

processed by a graph-based candidate embedding network.

From the resulting embeddings, we compute the association

scores between all candidates in subsequent frames, allow-

ing us to keep track of the target and distractor objects over

time. In addition, we estimate a target detection confidence,

used to increase the robustness of the target classifier.

While associating target candidates over time provides

a powerful cue, learning such a matching network requires

tackling a few key challenges. In particular, generic visual

object tracking datasets only provide annotations of one ob-

ject in each frame, i.e., the target. As a result, there is a

lack of ground-truth annotations for associating distractors

across frames. Moreover, the definition of a distractor is not

universal and depends on the properties of the employed ap-

pearance model. We address these challenges by introduc-

ing an approach that allows our candidate matching network

to learn from real tracker output. Our approach exploits

the single target annotations in existing tracking datasets in

combination with a self-supervised strategy. Furthermore,

we actively mine the training dataset in order to retrieve rare

and challenging cases, where the use of distractor associa-

tion is important, in order to learn a more effective model.

Contributions: In summary, our contributions are as fol-

lows: (i) We propose a method for target candidate associ-

ation based on a learnable candidate matching network. (ii)

We develop an online object association method in order

to propagate distractors and the target over time and intro-

duce a sample confidence score to update the target clas-

sifier more effectively during inference. (iii) We tackle the

challenges with incomplete annotation by employing partial

supervision, self-supervised learning, and sample-mining to

train our association network. (iv) We perform compre-

hensive experiments and ablative analyses by integrating

our approach into the tracker SuperDiMP [11, 16, 3]. The

resulting tracker KeepTrack sets a new state-of-the-art on

six tracking datasets, obtaining an AUC of 67.1% on La-

SOT [21] and 69.7% on UAV123 [37].

2. Related Work

Discriminative appearance model based trackers [12, 3,

27, 25, 51, 15] aim to suppress distractors based on their

appearance by integrating background information when

learning the target classifier online. While often increas-

ing robustness, the capacity of an online appearance model

is still limited. A few works have therefore developed more

dedicated strategies of handling distractors. Bhat et al. [4]

combine an appearance based tracker and an RNN to prop-

agate information about the scene across frames. It inter-

nally aims to track all regions in the scene by maintaining

a learnable state representation. Other methods exploit the

existence of distractors explicitly in the method formula-

tion. DaSiamRPN [56] handles distractor objects by sub-

tracting corresponding image features from the target tem-

plate during online tracking. Xiao et al. [46] use the loca-

tions of distractors in the scene and employ hand crafted

rules to classify image regions into background and target

candidates on each frame. SiamRCNN [42] associates sub-

sequent detections across frames using a hand-crafted as-

sociation score to form short tracklets. In contrast, we in-

troduce a learnable network that explicitly associates target

candidates from frame-to-frame. Zhang et al. [55] propose

a tracker inspired by the multi object tracking (MOT) phi-

losophy of tracking by detection. They use the top-k pre-

dicted bounding boxes for each frame and link them be-

tween frames by using different features. In contrast, we

omit any hand crafted features but fully learn to predict the

associations using self-supervision.

Many online trackers [12, 3, 13] employ a memory to

store previous predictions to fine-tune the tracker. Typically

the oldest sample is replaced in the memory and an age-

based weight controls the contribution of each sample when

updating the tracker online. Danelljan et al. [14] propose to

learn the tracking model and the training sample weights

jointly. LTMU [10] combines an appearance based tracker

with a learned meta-updater. The goal of the meta-updater

is to predict whether the employed online tracker is ready to

be updated or not. In contrast, we use a learned target candi-

date association network to compute a confidence score and

combine it with sample age to manage the tracker updates.

The object association problem naturally arises in

MOT. The dominant paradigm in MOT is tracking-by-

detection [5, 1, 49, 40, 52], where tracking is posed as the

problem of associating object detections over time. The

latter is typically formulated as a graph partitioning prob-

lem. Typically, these methods are non-causal and thus re-

quire the detections from all frames in the sequence. Fur-

thermore, MOT typically focuses on a limited set of ob-

ject classes [17], such as pedestrians, where strong object

detectors are available. In comparison we aim at tracking

different objects in different sequences solely defined by

the initial frame. Furthermore, we lack ground truth cor-

respondences of all distractor objects from frame to frame

whereas the ground-truth correspondences of different ob-

jects in MOT datasets are typically provided [17]. Most

importantly, we aim at associating target candidates that are

defined by the tracker itself, while MOT methods associate

all detections that correspond to one of the sought objects.

3. Method

In this section, we describe our tracking approach, which

actively associates distractor objects and the sought target

across multiple frames.

3.1. Overview

An overview of our tracking pipeline is shown in Fig. 2.

We use a base tracker with a discriminative appearance

13445

{hi}
N

i=1

C
a
n
d

id
a
te

 E
m

b
e
d

d
in

g

N
e
tw

o
rk

Feature

 encoding

S
A

)

hh

)

hh

B
a
c
k
b

o
n

e

Target

Candidate

Extraction

Target Classifier

Feature

 encoding

Target Classifier Target

Candidate

Extraction

Conv Layer

Candidate

Matching

Conv Layer

s

{z0
i
}N

0

i=1

{h0

i
}N

0

i=1

{zi}
N

i=1

{vi}
N

i=1

{v0
i
}N

0

i=1

{(c0
i
, s

0

i
, f

0

i
)}N

0

i=1

{(ci, si, fi)}
N

i=1

O
b

je
c
t

A
s
s
o

c
ia

ti
o

n
 M

o
d

u
le

Oô

ô
0
O

0

ô

β

B
a
c
k
b

o
n

e

s
0

O

·

Base Tracker Target Candidate Extraction Target Candidate Association Network

T
im

e

Figure 2. Overview of the entire online tracking pipeline, processing the previous and current frames jointly to predict the target object.

model and internal memory. In particular, we adopt the Su-

perDiMP [11, 26] tracker, which employs the target classi-

fier in DiMP [3] and the probabilistic bounding-box regres-

sion from [16], together with improved training settings.

We use the base tracker to predict the target score map s

for the current frame and extract the target candidates vi
by finding locations in s with high target score. Then, we

extract a set of features for each candidate. Namely: tar-

get classifier score si, location ci in the image, and an ap-

pearance cue fi based on the backbone features of the base

tracker. Then, we encode this set of features into a single

feature vector zi for each candidate. We feed these repre-

sentations and the equivalent ones of the previous frame –

already extracted beforehand – into the candidate embed-

ding network and process them together to obtain the en-

riched embeddings hi for each candidate. These feature

embeddings are used to compute the similarity matrix S and

to estimate the candidate assignment matrix A between the

two consecutive frames using an optimal matching strategy.

Once having the candidate-to-candidate assignment

probabilities estimated, we build the set of currently visi-

ble objects in the scene O and associate them to the previ-

ously identified objects O′, i.e., we determine which objects

disappeared, newly appeared, or stayed visible and can be

associated unambiguously. We then use this propagation

strategy to reason about the target object ô in the current

frame. Additionally, we compute the target detection con-

fidence β to manage the memory and control the sample

weight, while updating the target classifier online.

3.2. Problem Formulation

Let the set of target candidates, which includes distrac-

tors and the sought target, be V = {vi}Ni=1, where N de-

notes the number of candidates present in each frame. We

define the target candidate sets V ′ and V corresponding to

the previous and current frames, respectively. We formu-

late the problem of target candidate association across two

subsequent frames as, finding the assignment matrix A be-

tween the two sets V ′ and V . If the target candidate v′i cor-

responds to vj then Ai,j = 1 and Ai,j = 0 otherwise.

In practice, a match may not exist for every candidate.

Therefore, we introduce the concept of dustbins, which is

commonly used for graph matching [38, 18] to actively han-

dle the non-matching vertices. The idea is to match the can-

didates without match to the dustbin on the missing side.

Therefore, we augment the assignment matrix A by an ad-

ditional row and column representing dustbins. It follows

that a newly appearing candidate vj – which is only present

in the set V – leads to the entry AN ′+1,j = 1. Similarly, a

candidate v′i that is no longer available in the set V results

in Ai,N+1 = 1. To solve the assignment problem, we de-

sign a learnable approach that predicts the matrix A. Our

approach first extracts a representation of the target candi-

dates, which is discussed below.

3.3. Target Candidate Extraction

Here, we describe how to detect and represent target can-

didates and propose a set of features and their encoding. We

define the set of target candidates V as all unique coordi-

nates ci that correspond to a local maximum with minimal

score in the target score map s. Thus, each target candi-

date vi and its coordinate ci need to fulfill the following

two constraints,

φmax(s, ci) = 1 and s(ci) ≥ τ, (1)

13446

where φmax returns 1 if the score at ci is a local maximum

of s or 0 otherwise, and τ denotes a threshold. This defini-

tion allows us to build the sets V ′ and V , by retrieving the

local maxima of s′ and swith sufficient score value. We use

the max-pooling operation in a 5 × 5 local neighbourhood

to retrieve the local maxima of s and set τ = 0.05.

For each candidate we build a set of features inspired

by two observations. First, we notice that the motion of

the same objects from frame to frame is typically small and

thus similar locations and similar distances between differ-

ent objects. Therefore, the position ci of a target candi-

date forms a strong cue. In addition, we observe only small

changes in appearance for each object. Therefore, we use

the target classifier score si = s(ci) as another cue. In or-

der to add a more discriminative appearance based feature

fi = f(ci), we process the backbone features (used in the

baseline tracker) with a single learnable convolution layer.

Finally, we build a feature tuple for each target candidate

as (si, fi, ci). These features are combined in the following

way,

zi = fi + ψ(si, ci), ∀vi ∈ V,
where ψ denotes a Multi-Layer Perceptron (MLP), that

maps s and c to the same dimensional space as fi. This

encoding permits jointly reasoning about appearance, tar-

get similarity, and position.

3.4. Candidate Embedding Network

In order to further enrich the encoded features and in

particular to facilitate extracting features while being aware

of neighbouring candidates, we employ a candidate embed-

ding network. On an abstract level, our association problem

bares similarities with the task of sparse feature matching.

In order to incorporate information of neighbouring candi-

dates, we thus take inspiration from recent advances in this

area. In particular, we adopt the SuperGlue [38] architecture

that establishes the current state-of-the-art in sparse feature

matching. Its design allows to exchange information be-

tween different nodes, to handle occlusions, and to estimate

the assignment of nodes across two images. In particular,

the features of both frames translate to nodes of a single

complete graph with two types of directed edges: 1) self

edges within the same frame and 2) cross edges connect-

ing only nodes between the frames. The idea is then to ex-

change information either along self or cross edges.

The adopted architecture [38] uses a Graph Neural Net-

work (GNN) with message passing that sends the messages

in an alternating fashion across self or cross edges to pro-

duce a new feature representation for each node after ev-

ery layer. Moreover, an attention mechanism computes the

messages using self attention for self edges and cross atten-

tion for cross edges. After the last message passing layer a

linear projection layer extracts the final feature representa-

tion hi for each candidate vi.

3.5. Candidate Matching

To represent the similarities between candidates v′i ∈ V ′

and vj ∈ V , we construct the similarity matrix S. The

sought similarity is measured using the scalar product:

Si,j = ⟨h′
i,hj⟩, for feature vectors h′

i and hj correspond-

ing to the candidates v′i and vj .

As previously introduced, we make use of the dustbin-

concept [18, 38] to actively match candidates that miss their

counterparts to the so-called dustbin. However, a dustbin is

a virtual candidate without any feature representation hi.

Thus, the similarity score is not directly predictable be-

tween candidates and the dustbin. A candidate corresponds

to the dustbin, only if its similarity scores to all other can-

didates are sufficiently low. In this process, the similarity

matrix S represents only an initial association prediction

between candidates disregarding the dustbins. Note that

a candidate corresponds either to an other candidate or to

the dustbin in the other frame. When the candidates v′i

and vj are matched, both constraints
∑N ′

i=1 Ai,j = 1 and
∑N

j=1 Ai,j = 1 must be satisfied for one-to-one match-

ing. These constraints however, do not apply for missing

matches since multiple candidates may correspond to the

same dustbin. Therefore, we make use of two new con-

straints for dustbins. These constraints for dustbins read

as follows: all candidates not matched to another candi-

date must be matched to the dustbins. Mathematically,

this can be expressed as,
∑

j AN ′+1,j = N − M and
∑

i Ai,N+1 = N ′ − M , where M =
∑

(i≤N ′,j≤N) Ai,j

represents the number of candidate-to-candidate matching.

In order to solve the association problem, using the dis-

cussed constraints, we follow Sarlin et al. [38] and use the

Sinkhorn [39, 8] based algorithm therein.

3.6. Learning Candidate Association

Training the embedding network that parameterizes the

similarity matrix used for optimal matching requires ground

truth assignments. Hence, in the domain of sparse keypoint

matching, recent learning based approaches leverage large

scale datasets [19, 38] such as MegaDepth [36] or Scan-

Net [9], that provide ground truth matches. However, in

tracking such ground truth correspondences (between dis-

tractor objects) are not available. Only the target object and

its location provide a single ground truth correspondence.

Manually annotating correspondences for distracting candi-

dates, identified by a tracker on video datasets, is expensive

and may not be very useful. Instead, we propose a novel

training approach that exploits, (i) partial supervision from

the annotated target objects, and (ii) self-supervision by ar-

tificially mimicking the association problem. Our approach

requires only the annotations that already exist in standard

tracking datasets. The candidates for matching are obtained

by running the base tracker on the given training dataset.

13447

Partially Supervised Loss: For each pair of consecutive

frames, we retrieve the two candidates corresponding to the

annotated target, if available. This correspondence forms

a partial supervision for a single correspondence while all

other associations remain unknown. For the retrieved can-

didates v′i and vj , we define the association as a tuple

(l′, l) = (i, j). Here, we also mimic the association for re-

detections and occlusions by occasionally excluding one of

the corresponding candidates from V ′ or V . We replace the

excluded candidate by the corresponding dustbin to form

the correct association for supervision. More precisely, the

simulated associations for redetection and occlusion are ex-

pressed as, (l′, l) = (N ′ + 1, j) and (l′, l) = (i, N + 1),
respectively. The supervised loss, for each frame-pairs, is

then given by the negative log-likelihood of the assignment

probability,

Lsup = − logAl′,l. (2)

Self-Supervised Loss: To facilitate the association of dis-

tractor candidates, we employ a self-supervision strategy.

The proposed approach first extracts a set of candidates V ′

from any given frame. The corresponding candidates for

matching, say V , are identical to V ′ but we augment its fea-

tures. Since the feature augmentation does not affect the

associations, the initial ground-truth association set is given

by C = {(i, i)}Ni=1. In order to create a more challenging

learning problem, we simulate occlusions and redetections

as described above for the partially supervised loss. Note

that the simulated occlusions and redetections change the

entries of V , V ′, and C. We make use of the same notations

with slight abuse for simplicity. Our feature augmentation

involves, randomly translating the location ci, increasing or

decreasing the score si, and transforming the given image

before extracting the visual features fi. Now, using the sim-

ulated ground-truth associations C, our self-supervised loss

is given by,

Lself =
∑

(l′,l)∈C

− logAl′,l. (3)

Finally, we combine both losses as Ltot = Lsup + Lself . It

is important to note that the real training data is used only

for the former loss function, whereas synthetic data is used

only for the latter one.

Data Mining: Most frames contain a candidate corre-

sponding to the target object and are thus applicable for

supervised training. However, a majority of these frames

are not very informative for training because they contain

only a single candidate with high target classifier score and

correspond to the target object. Conversely, the dataset con-

tains adverse situations where associating the candidate cor-

responding to the target object is very challenging. Such

situations include sub-sequences with different number of

candidates, with changes in appearance or large motion be-

tween frames. Thus, sub-sequences where the appearance

model either fails and starts to track a distractor or when

the tracker is no longer able to detect the target with suffi-

cient confidence are valuable for training. However, such

failure cases are rare even in large scale datasets. Similarly,

we prefer frames with many target candidates when creat-

ing synthetic sub-sequences to simultaneously include can-

didate associations, redetections and occlusions. Thus, we

mine the training dataset using the dumped predictions of

the base tracker to use more informative training samples.

Training Details: We first retrain the base tracker Su-

perDiMP without the learned discriminative loss parameters

but keep everything else unchanged. We split the LaSOT

training set into a train-train and a train-val set. We run the

base tracker on all sequences and save the search region and

score map for each frame on disk. We use the dumped data

to mine the dataset and to extract the target candidates and

its features. We freeze the weights of the base tracker dur-

ing training of the proposed network and train for 15 epochs

by sampling 6400 sub-sequences per epoch from the train-

train split. We sample real or synthetic data equally likely.

We use ADAM [30] with learning rate decay of 0.2 every

6th epoch with a learning rate of 0.0001. We use two GNN

Layers and run 10 Sinkhorn iterations. Please refer to the

supplementary for additional details about training.

3.7. Object Association

This part focuses on using the estimated assignments

(see Sec. 3.5) in order to determine the object correspon-

dences during online tracking. An object corresponds either

to the target or a distractor. The general idea is to keep track

of every object present in each scene over time. We imple-

ment this idea with a database O, where each entry corre-

sponds to an object o that is visible in the current frame.

Fig. 3 shows these objects as circles. An object disappears

from the scene if none of the current candidates is associ-

ated with it, e.g., in Fig. 3 the purple and pink objects (,)

no longer correspond to a candidate in the last frame. Then,

we delete this object from the database. Similarly, we add

a new object to the database if a new target candidate ap-

pears (, ,). When initializing a new object, we as-

sign it a new object-id (not used previously) and the score

si. In Fig. 3 object-ids are represented using colors. For

objects that remain visible, we add the score si of the cor-

responding candidate to the history of scores of this object.

Furthermore, we delete the old and create a new object if

the candidate correspondence is ambiguous, i.e., the assign-

ment probability is smaller than ω = 0.75.

If associating the target object ô across frames is unam-

biguous, it implies that one object has the same object-id

as the initially provided object ôinit. Thus, we return this

object as the selected target. However, in real world sce-

narios the target object gets occluded, leaves the scene or

associating the target object is ambiguous. Then, none of

13448

#243

#244

#245

#246

#247

#561

#562

#563

#564

#565

T
im

e

Base Tracker Base TrackerOurs Ours

Figure 3. Visual comparison of the base tracker and our tracker.

The bounding boxes represent the tracker result, green [■] indi-

cates correct detections and red [■] refers to tracker failure. Each

circle represents an object. Circles with the same color are con-

nected to indicate that the object-ids are identical. If a target can-

didate cannot be matched with an existing object we add a new

object (, ,). Similarly, we delete the object if no candidate

corresponds to it anymore in the next frame (, ,).

the candidates corresponds to the sought target and we need

to redetect. We redetect the target if the candidate with the

highest target classifier score achieves a score that exceeds

the threshold η = 0.25. We select the corresponding object

as the target as long as no other candidate achieves a higher

score in the current frame. Then, we switch to this candidate

and declare it as target if its score is higher than any score

in the history (of the currently selected object). Otherwise,

we treat this object as a distractor for now, but if its score

increases high enough, we will select it as the target object

in the future. Please refer to the supplementary material for

the detailed algorithm.

3.8. Memory Sample Confidence

While updating the tracker online is often beneficial, it

is disadvantageous if the training samples have a poor qual-

ity. Thus, we describe a memory sample confidence score,

that we use to decide which sample to keep in the memory

and which should be replaced when employing a fixed size

memory. In addition, we use the score to control the con-

tribution of each training sample when updating the tracker

online. In contrast, the base tracker replaces frames using a

first-in-first out policy if the target was detected and weights

samples during inference solely based on age.

First, we define the training samples in frame k as

(xk, yk). We assume a memory size m that stores sam-

ples from frame k ∈ {1, . . . , t}, where t denotes the current

frame number. The online loss then given by,

J(θ) = λR(θ) +

t
∑

k=1

αkβkQ(θ;xk, yk), (4)

where Q denotes the data term, R the regularisation term,

λ is a scalar and θ represents appearance model weights.

The weights αk ≥ 0 control the impact of the sample from

frame k, i.e., a higher value increases the influence of the

corresponding sample during training. We follow other ap-

pearance based trackers [3, 12] and use a learning parameter

γ ∈ [0, 1] in order to control the weights αk = (1−γ)αk+1,

such that older samples achieve a smaller value and their

impact during training decreases. In addition, we propose a

second set of weights βk that represent the confidence of the

tracker that the predicted label yk is correct. Instead of re-

moving the oldest samples to keep the memory fixed [3], we

propose to drop the sample that achieves the smallest score

αkβk which combines age and confidence. Thus, if t > n

we remove the sample at position k = argmin1≤k≤nαkβk
by setting αk = 0. This means, that if all samples achieve

similar confidence the oldest is replaced, or that if all sam-

ples are of similar age the least confident sample is replaced.

We describe the extraction of the confidence weights as,

βt =

{√
σ, if ô = ôinit

σ, otherwise,
(5)

where σ = maxi s
t
i denotes the maximum value of the tar-

get classifier score map of frame t. For simplicity, we as-

sume that σ ∈ [0, 1]. The condition ô = ôinit is fulfilled if

the currently selected object is identical to the initially pro-

vided target object, i.e., both objects share the same object

id. Then, it is very likely, that the selected object corre-

sponds to the target object such that we increase the confi-

dence using the square root function that increases values

in the range [0, 1). Hence, the described confidence score

combines the confidence of the target classifier with the

confidence of the object association module, but fully relies

on the target classifier once the target is lost.

Inference details: We propose KeepTrack and the speed

optimized KeepTrackFast. We use the SuperDiMP parame-

ters for both trackers but increase the search area scale from

6 to 8 (from 352 to 480 in image space) for KeepTrack. For

the fast version we keep the original scale but reduce the

number of bounding box refinement steps from 10 to 3. In

addition, we skip running the association module if only one

target caidndate with a high score is present in the previous

and current frame. Overall, both trackers follow the target

longer until it is lost such that small search areas occur fre-

quently. Thus, we reset the search area to its previous size

if it was drastically decreased before the target was lost, to

facilitate redetections. Please refer to the supplementary for

more details.

13449

4. Experiments

We evaluate our proposed tracking architecture on seven

benchmarks. Our approach is implemented in Python using

PyTorch. On a single Nvidia GTX 2080Ti GPU, KeepTrack

and KeepTrackFast achieve 18.3 and 29.6 FPS, respectively.

4.1. Ablation Study

We perform an extensive analysis of the proposed

tracker, memory sample confidence, and training losses.

Online tracking components: We study the importance of

memory sample confidence, the search area protocol, and

target candidate association of our final method KeepTrack.

In Tab. 1 we analyze the impact of successively adding

each component, and report the average of five runs on the

NFS [24], UAV123 [37] and LaSOT [21] datasets. The first

row reports the results of the employed base tracker. First,

we add the memory sample confidence approach (Sec. 3.8),

observe similar performance on NFS and UAV but a sig-

nificant improvement of 1.5% on LaSOT, demonstrating its

potential for long-term tracking. With the added robustness,

we next employ a larger search area and increase it if it was

drastically shrank before the target was lost. This leads to

a fair improvement on all datasets. Finally, we add the tar-

get candidate association network, which provides substan-

tial performance improvements on all three datasets, with a

+1.3% AUC on LaSOT. These results clearly demonstrate

the power of the target candidate association network.

Training: In order to study the effect of the proposed

training losses, we retrain the target candidate association

network either with only the partially supervised loss or

only the self-supervised loss. We report the performance on

LaSOT [21] in Tab. 2. The results show that each loss indi-

vidually allows to train the network and to outperform the

baseline without the target candidate association network

(no TCA), whereas, combining both losses leads to the best

tracking results. In addition, training the network with the

combined loss but without data-mining decreases the track-

ing performance.

Memory Sample Search area Target Candidate

Confidence Adaptation Association Network NFS UAV123 LaSOT

– – – 64.4 68.2 63.5

✓ – – 64.7 68.0 65.0

✓ ✓ – 65.2 69.1 65.8

✓ ✓ ✓ 66.4 69.7 67.1

Table 1. Impact of each component in terms of AUC (%) on three

datasets. The first row corresponds to our SuperDiMP baseline.

Loss no TCA Lsup Lself Lsup + Lself Lsup + Lself

Data-mining n.a. ✓ ✓ - ✓

LaSOT, AUC (%) 65.8 66.0 66.9 66.8 67.1

Table 2. Analysis on LaSOT of association learning using different

loss functions with and without data-mining.

Sample Replacement Online updating Conf. score LaSOT

with conf. score with conf. score threshold AUC (%)

– – – 63.5

✓ – – 64.1

✓ ✓ 0.0 64.6

✓ ✓ 0.5 65.0

Table 3. Analysis of our memory weighting component on LaSOT.

Memory management: We not only use the sample con-

fidence to manage the memory but also to control the im-

pact of samples when learning the target classifier online.

In Tab. 3, we study the importance of each component by

adding one after the other and report the results on La-

SOT [21]. First, we use the sample confidence scores only

to decide which sample to remove next from the memory.

This, already improves the tracking performance. Reusing

these weights when learning the target classifier as de-

scribed in Eq. (4) increases the performance again. To

suppress the impact of poor-quality samples during online

learning, we ignore samples with a confidence score bellow

0.5. This leads to an improvement on LaSOT. The last row

corresponds to the used setting in the final proposed tracker.

4.2. State­of­the­art Comparison

We compare our approach on seven tracking bench-

marks. The same settings and parameters are used for all

datasets. In order to ensure the significance of the results,

we report the average over five runs on all datasets unless

the evaluation protocol requires otherwise. We recompute

the results of all trackers using the raw predictions if avail-

able or otherwise report the results given in the paper.

LaSOT [21]: First, we compare on the large-scale La-

SOT dataset (280 test sequences with 2500 frames in av-

erage) to demonstrate the robustness and accuracy of the

proposed tracker. The success plot in Fig. 4a shows the

overlap precision OPT as a function of the threshold T .

Trackers are ranked w.r.t. their area-under-the-curve (AUC)

score, denoted in the legend. Tab. 4 shows more results in-

cluding precision and normalized precision. KeepTrack and

KeepTrackFast outperform the recent trackers AlphaRe-

fine [47], TransT [6] and TrDiMP [43] by a large margin

and the base tracker SuperDiMP by 4.0% or 3.7% in AUC.

The improvement in OPT is most prominent for thresh-

olds T < 0.7, demonstrating the superior robustness of our

tracker. In Tab. 5, we further perform an apple-to-apple

comparison with KYS [4], LTMU [10], AlphaRefine [47]

and TrDiMP [43], where all methods use SuperDiMP as

base tracker. We outperform the best method on each met-

ric, achieving an AUC improvement of 1.8%.

Keep Keep Alpha Siam Super STM Pr DM

Track Track Refine TransT R-CNN TrDiMP Dimp Track DiMP Track LTMU DiMP Ocean

Fast [47] [6] [42] [43] [11] [23] [16] [55] [10] [3] [54]

Precision 70.2 70.0 68.0 69.0 68.4 66.3 65.3 63.3 60.8 59.7 57.2 56.7 56.6

Norm. Prec 77.2 77.0 73.2 73.8 72.2 73.0 72.2 69.3 68.8 66.9 66.2 65.0 65.1

Success (AUC) 67.1 66.8 65.3 64.9 64.8 63.9 63.1 60.6 59.8 58.4 57.2 56.9 56.0

Table 4. State-of-the-art comparison on the LaSOT [21] test set in

terms of AUC score.

13450

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

10

20

30

40

50

60

70

80

90

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

KeepTrack [67.1]
KeepTrackFast [66.8]
AlphaRefine [65.9]
TransT [64.9]
Siam R-CNN [64.8]
TrDiMP [63.9]
SuperDiMP [63.1]
STMTrack [60.6]
PrDiMP50 [59.8]
DMTrack [58.4]
LTMU [57.2]

(a) LaSOT [21]

0 0.2 0.4 0.6 0.8 1
Overlap threshold

0

10

20

30

40

50

60

70

Ov
er

la
p

Pr
ec

isi
on

 [%
]

Success plot

KeepTrack [48.2]
KeepTrackFast [46.6]
SuperDiMP [43.7]
LTMU [41.4]
DiMP [39.2]
ATOM [37.6]
DaSiamRPN [35.6]
SiamRPN++ [34.0]
SiamMask [33.2]

(b) LaSOTExtSub [20]

Figure 4. Success plots, showing OPT , on LaSOT [21] and LaSO-

TExtSub [20]. Our approach outperforms all other methods by a

large margin in AUC, reported in the legend.

KeepTrack KeepTrack AlphaRefine LTMU TrDiMP KYS SuperDiMP

Fast [47] [10] [43] [4] [16]

Precision 70.2 70.0 68.0 66.5 61.4 64.0 65.3

Norm. Prec. 77.2 77.0 73.2 73.7 – 70.7 72.2

Success (AUC) 67.1 66.8 65.3 64.7 63.9 61.9 63.1

Table 5. Results on the LaSOT [21] test set. All trackers use the

same base tracker SuperDiMP [11].

LaSOTExtSub [20]: We evaluate our tracker on the

recently published extension subset of LaSOT. LaSO-

TExtSub is meant for testing only and consists of 15 new

classes with 10 sequences each. The sequences are long

(2500 frames on average), rendering substantial challenges.

Fig. 4b shows the success plot, that is averaged over 5

runs. All results, except ours and SuperDiMP, are obtained

from [20], e.g., DaSiamRPN [56], SiamRPN++ [34] and

SiamMask [44]. Our method achieves superior results, out-

performing LTMU by 6.8% and SuperDiMP by 3.5%.

OxUvALT [41]: The OxUvA long-term dataset contains

166 test videos with average length 3300 frames. Trackers

are required to predict whether the target is present or absent

in addition to the bounding box for each frame. Trackers

are ranked by the maximum geometric mean (MaxGM) of

the true positive (TPR) and true negative rate (TNR). We

use the proposed confidence score and set the threshold for

target presence using the separate dev. set. Tab. 6 shows

the results on the test set, which are obtained through the

evaluation server. KeepTrack sets the new state-of-the-art

in terms of MaxGM by achieving an improvement of 5.8%
compared to the previous best method and exceed the result

of the base tracker SuperDiMP by 6.1%.

VOT2019LT [32]/VOT2020LT [31]: The dataset for both

VOT [33] long-term tracking challenges contains 215,294

frames divided in 50 sequences. Trackers need to predict

a confidence score that the target is present and the bound-

ing box for each frame. Trackers are ranked by the F-score,

evaluated for a range of confidence thresholds. We com-

pare with the top methods in the challenge [32, 31], as well

as more recent methods. As shown in Tab. 7, our tracker

achieves the best result in terms of F-score and outperforms

the base tracker SuperDiMP by 4.0% in F-score.

UAV123 [37]: This dataset contains 123 videos and is de-

signed to assess trackers for UAV applications. It contains

Keep Keep Super Siam DM Global Siam

Track Track LTMU DiMP R-CNN TACT Track SPLT Track MBMD FC+R TLD

Fast [10] [11] [42] [7] [55] [48] [28] [53] [41] [29]

TPR 80.6 82.7 74.9 79.7 70.1 80.9 68.6 49.8 57.4 60.9 42.7 20.8

TNR 81.2 77.2 75.4 70.2 74.5 62.2 69.4 77.6 63.3 48.5 48.1 89.5

MaxGM 80.9 79.9 75.1 74.8 72.3 70.9 68.8 62.2 60.3 54.4 45.4 43.1

Table 6. Results on the OxUvALT [41] test set in terms of TPR,

TNR, and the max geometric mean (MaxGM) of TPR and TNR.

Keep Keep Mega RLT Super Siam

Track Track LT DSE LTMU B track CLGS DiMP DiMP DW LT ltMBNet

Fast [32, 31] [10, 31] [31] [32, 31] [31] [11] [32, 31] [31]

Precision 72.3 70.6 71.5 70.1 70.3 73.9 65.7 67.6 69.7 64.9

Recall 69.7 68.0 67.7 68.1 67.1 61.9 68.4 66.3 63.6 51.4

F-Score 70.9 69.3 69.5 69.1 68.7 67.4 67.0 66.9 66.5 57.4

Table 7. Results on the VOT2019LT [32]/VOT2020LT [31] dataset

in terms of F-Score, Precision and Recall.

Keep Keep Super Pr STM Siam Siam

Track Track CRACT TrDiMP TransT DiMP DiMP Track AttN R-CNN KYS DiMP

Fast [22] [43] [6] [11] [16] [23] [50] [42] [4] [3]

UAV123 69.7 69.5 66.4 67.5 69.1 68.1 68.0 64.7 65.0 64.9 – 65.3

OTB-100 70.9 71.2 72.6 71.1 69.4 70.1 69.6 71.9 71.2 70.1 69.5 68.4

NFS 66.4 65.3 62.5 66.2 65.7 64.7 63.5 – – 63.9 63.5 62.0

Table 8. Comparison with state-of-the-art on the OTB-100 [45],

NFS [24] and UAV123 [37] datasets in terms of AUC score.

small objects, fast motions, and distractor objects. Tab. 8

shows the results, where the entries correspond to AUC for

OPT over IoU thresholds T . Our method sets a new state-

of-the-art with an AUC of 69.7%, exceeding the perfor-

mance of the recent trackers TransT [6] and TrDiMP [43]

by 0.6% and 2.2% in AUC.

OTB-100 [45]: For reference, we also evaluate our tracker

on the OTB-100 dataset consisting of 100 sequences. Sev-

eral trackers achieve tracking results over 70% in AUC, as

shown in Tab. 8. So do KeepTrack and KeepTrackFast that

perform similarly to the top methods, with a 0.8% and 1.1%
AUC gain over the SuperDiMP baseline.

NFS [24]: Lastly, we report results on the 30 FPS ver-

sion of the Need for Speed (NFS) dataset. It contains fast

motions and challenging distractors. Tab. 8 shows that our

approach sets a new state-of-the-art on NFS.

5. Conclusion

We propose a novel tracking pipeline employing a

learned target candidate association network in order to

track both the target and distractor objects. This approach

allows us to propagate the identities of all target candidates

throughout the sequence. In addition, we propose a train-

ing strategy that combines partial annotations with self-

supervision. We do so to compensate for lacking ground-

truth correspondences between distractor objects in visual

tracking. We conduct comprehensive experimental valida-

tion and analysis of our approach on seven generic object

tracking benchmarks and set a new state-of-the-art on six.

Acknowledgments: This work was partly supported by the

ETH Zürich Fund (OK), Siemens Smart Infrastructure, the

ETH Future Computing Laboratory (EFCL) financed by a

gift from Huawei Technologies, an Amazon AWS grant,

and an Nvidia hardware grant.

13451

References

[1] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), October 2019. 2

[2] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In Proceedings of the Euro-

pean Conference on Computer Vision Workshops (ECCVW),

October 2016. 1

[3] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision (ICCV), October 2019. 1, 2, 3, 6,

7, 8

[4] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Know your surroundings: Exploiting scene infor-

mation for object tracking. In Proceedings of the European

Conference on Computer Vision (ECCV), August 2020. 1, 2,

7, 8

[5] Guillem Braso and Laura Leal-Taixe. Learning a neu-

ral solver for multiple object tracking. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2

[6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,

and Huchuan Lu. Transformer tracking. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2021. 7, 8

[7] Janghoon Choi, Junseok Kwon, and Kyoung Mu Lee. Visual

tracking by tridentalign and context embedding. In Proceed-

ings of the Asian Conference on Computer Vision (ACCV),

November 2020. 8

[8] Marco Cuturi. Sinkhorn distances: Lightspeed computation

of optimal transport. In Advances in Neural Information Pro-

cessing Systems, December 2013. 4

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Niessner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), July 2017. 4

[10] Kenan Dai, Yunhua Zhang, Dong Wang, Jianhua Li,

Huchuan Lu, and Xiaoyun Yang. High-performance long-

term tracking with meta-updater. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2, 7, 8

[11] Martin Danelljan and Goutam Bhat. PyTracking: Vi-

sual tracking library based on PyTorch. https://

github.com/visionml/pytracking, 2019. Ac-

cessed: 1/08/2020. 2, 3, 7, 8

[12] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ATOM: Accurate tracking by overlap

maximization. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 2, 6

[13] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ECO: efficient convolution operators for

tracking. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2017. 1,

2

[14] Martin Danelljan, Gustav Häger, Fahad Shahbaz Khan, and

Michael Felsberg. Adaptive decontamination of the training

set: A unified formulation for discriminative visual tracking.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 2

[15] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learning

continuous convolution operators for visual tracking. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), October 2016. 2

[16] Martin Danelljan, Luc Van Gool, and Radu Timofte. Prob-

abilistic regression for visual tracking. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 2, 3, 7, 8

[17] Patrick Dendorfer, Aljosa Osep, Anton Milan, Konrad

Schindler, Daniel Cremers, Ian Reid, Stefan Roth, and Laura

Leal-Taixé. Motchallenge: A benchmark for single-camera

multiple target tracking. International Journal of Computer

Vision (IJCV), 129(4):1–37, 2020. 2

[18] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-

novich. Superpoint: Self-supervised interest point detec-

tion and description. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), June 2018. 3, 4

[19] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-

feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-

net: A trainable cnn for joint description and detection of

local features. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 4

[20] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu, Ge

Deng, Sijia Yu, Mingzhen Huang, Juehuan Liu, Yong Xu,

et al. Lasot: A high-quality large-scale single object track-

ing benchmark. International Journal of Computer Vision

(IJCV), 129(2):439–461, 2021. 8

[21] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

Lasot: A high-quality benchmark for large-scale single ob-

ject tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2019. 1, 2, 7, 8

[22] Heng Fan and Haibin Ling. Cract: Cascaded regression-

align-classification for robust visual tracking. arXiv preprint

arXiv:2011.12483, 2020. 8

[23] Zhihong Fu, Qingjie Liu, Zehua Fu, and Yunhong Wang.

Stmtrack: Template-free visual tracking with space-time

memory networks. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2021. 7, 8

[24] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva

Ramanan, and Simon Lucey. Need for speed: A benchmark

for higher frame rate object tracking. In ICCV, 2017. 7, 8

[25] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.

Learning background-aware correlation filters for visual

13452

tracking. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), October 2017. 2

[26] Fredrik K Gustafsson, Martin Danelljan, Radu Timofte, and

Thomas B Schön. How to train your energy-based model

for regression. In Proceedings of the British Machine Vision

Conference (BMVC), September 2020. 3

[27] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 37(3):583–596, 2015. 2

[28] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Globaltrack:

A simple and strong baseline for long-term tracking. In Pro-

ceedings of the Conference on Artificial Intelligence (AAAI),

February 2020. 8

[29] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 34(7):1409–

1422, 2012. 8

[30] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proceedings of the International

Conference on Learning Representations (ICLR), 2014. 5

[31] Matej Kristan, Aleš Leonardis, Jiřı́ Matas, Michael Fels-

berg, Roman Pflugfelder, Joni-Kristian Kämäräinen, Martin

Danelljan, Luka Čehovin Zajc, Alan Lukežič, Ondrej Dr-

bohlav, Linbo He, Yushan Zhang, Song Yan, Jinyu Yang,

Gustavo Fernández, and et al. The eighth visual object track-

ing vot2020 challenge results. In Proceedings of the Euro-

pean Conference on Computer Vision Workshops (ECCVW),

August 2020. 8

[32] Matej Kristan, Jirı́ Matas, Aleš Leonardis, Michael Felsberg,

Roman Pflugfelder, Joni-Kristian Kämäräinen, Luka Ce-

hovin Zajc, Ondrej Drbohlav, Alan Lukezic, Amanda Berg,

Abdelrahman Eldesokey, Jani Käpylä, Gustavo Fernández,

and et al. The seventh visual object tracking vot2019 chal-

lenge results. In Proceedings of the IEEE/CVF International

Conference on Computer Vision Workshop (ICCVW), Octo-

ber 2019. 8

[33] Matej Kristan, Jiri Matas, Aleš Leonardis, Tomas Vojir, Ro-

man Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih

Porikli, and Luka Čehovin. A novel performance evalua-

tion methodology for single-target trackers. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI),

38(11):2137–2155, 2016. 8

[34] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese vi-

sual tracking with very deep networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 1, 8

[35] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 1

[36] Zhengqi Li and Noah Snavely. Megadepth: Learning single-

view depth prediction from internet photos. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), June 2018. 4

[37] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In Proceedings

of the European Conference on Computer Vision (ECCV),

October 2016. 2, 7, 8

[38] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,

and Andrew Rabinovich. Superglue: Learning feature

matching with graph neural networks. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 3, 4

[39] Richard Sinkhorn and Paul Knopp. Concerning nonnegative

matrices and doubly stochastic matrices. Pacific Journal of

Mathematics, 21(2):343–348, 1967. 4

[40] Siyu Tang, Mykhaylo Andriluka, Bjoern Andres, and Bernt

Schiele. Multiple people tracking by lifted multicut and

person re-identification. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), July 2017. 2

[41] Jack Valmadre, Luca Bertinetto, João F. Henriques, Ran Tao,

Andrea Vedaldi, Arnold W.M. Smeulders, Philip H.S. Torr,

and Efstratios Gavves. Long-term tracking in the wild: a

benchmark. In Proceedings of the European Conference on

Computer Vision (ECCV), September 2018. 1, 8

[42] Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, and

Bastian Leibe. Siam R-CNN: Visual tracking by re-

detection. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2020. 2, 7, 8

[43] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.

Transformer meets tracker: Exploiting temporal context for

robust visual tracking. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2021. 7, 8

[44] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H.S. Torr. Fast online object tracking and segmenta-

tion: A unifying approach. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 8

[45] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 37(9):1834–1848, 2015. 8

[46] Jingjing Xiao, Linbo Qiao, Rustam Stolkin, and Alevs.

Leonardis. Distractor-supported single target tracking in ex-

tremely cluttered scenes. In Proceedings of the European

Conference on Computer Vision (ECCV), October 2016. 1, 2

[47] Bin Yan, Xinyu Zhang, Dong Wang, Huchuan Lu, and Xi-

aoyun Yang. Alpha-refine: Boosting tracking performance

by precise bounding box estimation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2021. 7, 8

[48] Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, and Xi-

aoyun Yang. ’skimming-perusal’ tracking: A framework for

real-time and robust long-term tracking. In Proceedings of

the IEEE/CVF International Conference on Computer Vision

(ICCV), October 2019. 8

[49] Qian Yu, Gérard Medioni, and Isaac Cohen. Multiple tar-

get tracking using spatio-temporal markov chain monte carlo

data association. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2007. 2

13453

[50] Yuechen Yu, Yilei Xiong, Weilin Huang, and Matthew R.

Scott. Deformable siamese attention networks for visual ob-

ject tracking. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 8

[51] Jianming Zhang, Shugao Ma, and Stan Sclaroff. MEEM:

robust tracking via multiple experts using entropy minimiza-

tion. In Proceedings of the European Conference on Com-

puter Vision (ECCV), September 2014. 2

[52] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data asso-

ciation for multi-object tracking using network flows. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2008. 2

[53] Yunhua Zhang, Lijun Wang, Dong Wang, Jinqing Qi, and

Huchuan Lu. Learning regression and verification networks

for long-term visual tracking. International Journal of Com-

puter Vision (IJCV), 129(9):2536–2547, 2021. 8

[54] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and

Weiming Hu. Ocean: Object-aware anchor-free tracking. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), August 2020. 7

[55] Zikai Zhang, Bineng Zhong, Shengping Zhang, Zhenjun

Tang, Xin Liu, and Zhaoxiang Zhang. Distractor-aware fast

tracking via dynamic convolutions and mot philosophy. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2021. 2, 7, 8

[56] Zheng Zhu, Qiang Wang, Li Bo, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In Proceedings of the European Conference

on Computer Vision (ECCV), September 2018. 1, 2, 8

13454

