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Abstract

Few-shot learning for visual recognition aims to
adapt to novel unseen classes with only a few im-
ages. Recent work, especially the work based on
low-level information, has achieved great progress.
In these work, local representations (LRs) are typ-
ically employed, because LRs are more consis-
tent among the seen and unseen classes. However,
most of them are limited to an individual image-
to-image or image-to-class measure manner, which
cannot fully exploit the capabilities of LRs, espe-
cially in the context of a certain task. This paper
proposes an Adaptive Task-aware Local Represen-
tations Network (ATL-Net) to address this limita-
tion by introducing episodic attention, which can
adaptively select the important local patches among
the entire task, as the process of human recogni-
tion. We achieve much superior results on multiple
benchmarks. On the minilmagenet, ATL-Net gains
0.93% and 0.88% improvements over the com-
pared methods under the 5-way 1-shot and 5-shot
settings. Moreover, ATL-Net can naturally tackle
the problem that how to adaptively identify and
weight the importance of different key local parts,
which is the major concern of fine-grained recogni-
tion. Specifically, on the fine-grained dataset Stan-
ford Dogs, ATL-Net outperforms the second best
method with 5.39% and 9.69% gains under the 5-
way 1-shot and 5-shot settings.

1

Deep learning based methods [Krizhevsky et al., 2012; He et
al., 2016] have achieved state-of-the-art performance on a va-
riety of visual recognition tasks. These supervised methods
need a lot of labeled data with diverse visual variations to ef-
fectively train a network. However, collecting a large amount
of labeled data is time-consuming and laborious. In contrast,
humans can recognize classes with extremely few labeled ex-
amples. Therefore, for machine learning algorithms, how to
recognize classes with extremely few labeled examples, i.e.,
few-shot learning, has attracted a lot of interests. Few-shot
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learning attempts to transfer the knowledge like humans, for
generalizing to novel classes with very few supervisions.

To address few-shot learning tasks, a lot of methods have
been proposed. However, most of these methods [Vinyals et
al., 2016; Snell et al., 2017] adopt an image-level feature for
classification and make an assumption that the image-level
deep embedding space for the seen classes is extensively ef-
fective for the unseen classes, which is somewhat idealistic
in practice. Fortunately, although the image-level embedding
space is not equally effective for the seen and unseen classes,
the low-level information, i.e., the local representations (LRs)
of semantic patches, among the seen and unseen classes, gen-
erally remain similar. Some recent methods [Li et al., 2019¢;
Li et al., 2019b; Sung et al., 2018] have taken feature repre-
sentations of semantic patches (i.e., LRs) into consideration,
but they do not fully exploit the capabilities of LRs in the
context of the entire task. Recall the way that humans recog-
nize an instance (object) into one of several unseen classes. It
is quite natural that he/she will look for the distinct semantic
patches which are only shared between the certain class and
the query image. In other words, the semantic patches com-
monly shared by all classes are not truly important for recog-
nizing a novel instance. For example, the way we recognize
a “bird” among the “dog” and “cat” is quite different from
the one among the “airplane” and “dragonfly”. For the for-
mer one, the wings are important but are not the key concern
for the latter one. Similarly, the fur and feather are more im-
portant for the latter one than the former. In other words, the
importance of the semantic patches changes with the tasks.

As described above, the existing LRs based few-shot meth-
ods have not yet made full use of the information provided by
the LRs mainly in two aspects: (1) the LRs are only consid-
ered inside one image or one class individually (i.e., image-
to-image or image-to-class manner), rather than the entire
task; (2) the semantic local patches are weighted equally,
rather than the more discriminative patches enjoy the higher
weights. To overcome these two limitations, we design a
episodic attention mechanism, which can select and weight
the key patches without paying too much attention to the com-
mon parts among the entire task. Note that, in the work of [Li
et al., 2019b], a rank-based selection, i.e., k-nearest neighbor
(k-NN) selection, is utilized to select k (e.g., K = 3) most
related patches in each class for a query local instance. How-
ever, the number of related semantic patches for a query local
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instance shall be dynamically changed according to the con-
text of the current task. It means that we may need more dis-
criminative patches to recognize an object in one task, but just
need much fewer patches to recognize the same object in an-
other task. By contrast, the value range of the relationship be-
tween the related semantic patches mainly depends on seman-
tic patches’ nature, and remains relatively stable in chang-
ing tasks, so that we propose a value-based selection with a
threshold to replace the rank-based selection. And then, we
name the network with the above episodic attention mecha-
nism as Task-aware Local Representations Network (TL-Net).

Although the above mentioned value-based selection is ap-
pealing, it roughly sets a global manual threshold for all the
semantic patches of tasks, which is hard to be effective for
different semantic patches at the same time. To this end, we
develop a trainable module to adaptively learn this threshold
for each semantic patch, i.e., adaptive value-based selection.
In this way, for each certain semantic patch, we can obtain its
own relation threshold according to its nature. Typically, we
call the extended TL-Net with learnable thresholds as ATL-
Net, Adaptive Task-aware Local Representations Network, to
show the additional adaptive ability relative to TL-Net.

Our contributions can be summarized as follows:

e We propose a novel episodic attention mechanism by ex-
ploring and weighting discriminative semantic patches
inside the entire task, aiming to learn task-aware local
representations for few-shot learning. Moreover, instead
of the rank-based selection, a feasible value-based se-
lection strategy is proposed.

We further develop a trainable module to design an
adaptive value-based selection strategy, making it possi-
ble to dynamically and adaptively select discriminative
semantic patches for different tasks.

We conduct comprehensive experiments on the chal-
lenging minilmagenet and three fine-grained datasets to
verify that the proposed ATL-Net achieves superior per-
formance over the state-of-the-art methods.

2 Related Work

The recent literature of few-shot learning mainly comes from
the following two categories: meta-learning based methods
and metric-learning based methods.

2.1 Meta-learning based Methods

Meta-learning based methods learn the learning algorithm it-
self. [Santoro et al., 2016] proposes an LSTM-based meta-
learner to interact with an external memory module. The pro-
posed framework in [Santoro et al., 2016] adopts an LSTM-
based meta-learner to learn a distinct optimization algorithm
to train a classifier as well as learning a task-aware initial-
ization for this classifier. MAML and its variants [Finn et
al., 2017] train a meta-leaner to provide suitable parameter
initialization, so that they can be quickly adapted to a novel
task. Similarly, [Li ef al., 2017] adjusts the update direction
and learning rate for quickly adapting to a novel task. [Cai
et al., 2018] introduces the memory slots to construct a con-
textual learner for predicting the parameters of an embedding
module for unlabeled images.
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Nevertheless, these methods often need costly higher-order
gradients or need another complicated memory structure,
making these methods difficult to train and may lead to fail-
ure when scaling to deeper network architectures [Mishra et
al., 2018]. Compared with methods in this branch, the pro-
posed ATL-Net can achieve competitive results with a much
simpler network architecture, which is trained from scratch
without fine-tuning.

2.2 Metric-learning based Methods

Metric-learning based methods address the few-shot classifi-
cation problem by “learning to compare”. [Koch er al., 2015]
proposes a Siamese neural network to learn generic image
representations, which is conducted as a binary classifica-
tion network and trained by a regularized cross-entropy loss.
[Vinyals et al., 2016] introduces an episodic training mech-
anism into few-shot learning and proposes the Matching Net
by using attention and memory together. [Snell ef al., 2017]
proposes a Prototypical Net by measuring the Euclidean dis-
tance between the class-mean feature and the query feature.

However, the above methods usually adopt an image-level
global feature to represent each image based on a somewhat
ideal assumption that the seen and unseen classes sharing a
relatively consistent embedding space. In contrast, the low-
level information, i.e., the local representations (LRs) of se-
mantic patches, is more consistent and transferable than the
high-level global features among the seen and unseen classes,
which has been verified in some recent work. For example,
[Sung er al., 2018] measures the distances between the query
images and the support images by applying convolution lay-
ers on the concatenated feature maps, which implicitly uses
the LRs. [Li et al., 2019b] proposes DN4 to explicitly utilize
the LRs through a k-nearest neighbor selection and enlarges
the image-to-image search space to a more effective image-
to-class one. However, these methods only consider the rela-
tionship between query images and classes at an image-level
or a class-level without adequately mining the important in-
formation hidden behind the LRs at the task-level.

Different from the methods above, our ATL-Net can ex-
plore richer information of the LRs at the task-level and can
adaptively select the key semantic patches for a specific task,
as the progress of the human beings. Experiments on the chal-
lenging general and fine-grained datasets show the superiority
of our method compared with other state-of-the-art methods.

3 The Proposed Method

3.1 Problem Definition

In this paper, we follow the common settings of few-shot
learning methods. Given a small support set S which con-
sists of IV unseen classes with K samples per class, our goal
is to classify a query sample ¢ € Q into one of the IV support
classes, which is called an N-way K-shot task. To achieve
this goal, an auxiliary set A is employed to learn transferable
knowledge using the episodic training mechanism [Vinyals et
al., 2016]. We divide A into many N-way K-shot tasks {7},
where each 7T contains an auxiliary support set As and an
auxiliary query set Ag. In the training stage, hundreds of
tasks are fed into the model, encouraging the model to learn
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Figure 1: The overview of the proposed method under 5-way 1-shot
setting. The model mainly consists of two parts: the embedding
module Fg to learn local representations and the adaptive episodic
attention module F 4 to generate adaptive episodic attention for se-
lecting discriminative patches for a special task. The score with the
red circle indicates the predicted label. (Best viewed in color.)

transferable knowledge that can be used in new N-way K-
shot tasks (i.e., S and Q) with unseen classes. Note that S
and A own different label spaces with no intersection.

Our overall framework is illustrated in Figure 1. All the
images are first embedded into feature representations by an
embedding module Fg. A local relation map M™ is then
calculated to capture the local relationship between the query
image and the support set. Meanwhile, the adaptive episodic
attention module F 4 learns an episodic attention map M,
which can adaptively select the discriminative local patches
among the support set for a certain query patch, as the pro-
cess of human recognition. Note that the episodic attention
focuses on the relations between the local patches, not iso-
lated individuals. After that, we apply the attention map M4
onto the relation matrix M” through an element-wise mul-
tiplication to eliminate noise, i.e., the relation constructed by
the commonly shared patches among the task, and then en-
hance the discriminative information. Finally, we can directly
get the final score for classification from the processed rela-
tion matrix through naive methods, like addition.

3.2 Task-aware Local Representations

Let x € S U Q denote an input image, we first feed it
into the embedding module Fg to obtain a feature repre-
sentation Fg(x) € REOTW  Typically, we can get HW
C-dimensional LRs for each input image, making up a to-
tal number of NK HW support LRs, i.e., LS = Feo (8S) €
RONKHW and HW query LRs, i.e., L1 = Fg(q) e ROHW,
Then we calculate the relation matrix of these LRs as below:

MY = g(Ld,L5), (1)

where i € {1,..., HW}, j e {l,..., NKHW} and g(-, )
is a similarity metric, which is implemented as cosine sim-
ilarity in this paper. In contrast to previous methods that
build image-level [Sung et al., 2018] or class-level [Li et al.,
2019b] relationship, we aim to build a task-level relationship
while maintaining discriminative relations at the same time.
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Figure 2: The framework of adaptive episodic attention module F 4.
Through this module, we obtain episodic attention by £ and £°.
The components with dashed lines generate adaptive thresholds V7,
which is a fixed manual defined hyperparameter in TL-Net.

Further more, we apply a transformation layer Fy (i.e., the
1 x 1 conv layer in Figure 2) on the original LRs, and then
learn another relation matrix MY for subsequent operations:

M5 = g(Fu (L)), Fu(L5))., @)
where i € {1,..., HW},j € {1,..., NKHW}. Each row
in this matrix represents the adaptive subspace relationship of
each position in the query image to all positions of all images
in the support set. Moreover, we eliminate the noises (i.e., the
trivial relations) in the relation matrix MY by a threshold V.,
and then produce an episodic attention map M+ as below:

[(M‘P.)
My = oy 3)
T IME)
_Jz, ifz >V
I(z) = {07 otherwise. @

As Eq. (3) shown, the common patches shared by multiple
classes among the entire task will “dilute” the attention, and
thus they will enjoy relatively small attention values. Mean-
while, we find that although the influence of each noise (i.e.,
each trivial relation) is slight, it still greatly affects the distri-
bution of the episodic attention due to the large number. For
this reason, we apply Eq. (4) to construct a sparse episodic
attention. In fact, this sparse episodic attention is more simi-
lar to a selection process or a hard attention rather than a soft
attention. Next, we perform an element-wise multiplication
between M- and M™ to obtain a weighted relation matrix
MA S MR, and then collect the weighted relation between
query ¢ and the n-th class to obtain the score for n-th class:

HW Zkgw

TS Y (MAOMF).,,

i=1 j=Z7

(6))

Score,, =

where V; is a temperature for the following cross-entropy
loss, and Z}} indicates the k-th relation of K HW relations
belong to the n-th class in the N K HW relations of the en-
tire support set S. Finally, we can obtain the classification
probability P? of query ¢ by a softmax function. Note that
based on the above process, we can develop the Task-aware
Local Representations Network (TL-Net), which can be easily
implemented by two matrix multiplications, an element-wise
multiplication as well as some convolution operations.
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Dataset Stanford Dogs Stanford Cars CUB-200
Nay 120 196 200
Nirain 70 130 130
Nyai 20 17 20
Niest 30 49 50

Table 1: The splits of three fine-grained datasets. N is the total
number of classes. Nirain, Nyai and Nies: indicate the number of
classes in training (auxiliary) set, validation set and test set.

3.3 Adaptive Threshold for Episodic Attention

In the sections above, we introduce the TL-Net, where a fixed
threshold V. (i.e., a global scalar) is used to select the most
informative relationships. However, such kind of selection is
sensitive to the value of V. and not flexible for different query
patches, which is shown in Figure 3. To handle this problem,
we propose a novel adaptive episodic attention module F 4,
which can learn different thresholds for different patches.
Figure 2 shows the framework of our adaptive episodic
attention module. Different from the method mentioned in
Eq. (4), we use a Multi-Layer Perceptron (MLP) Fr to adap-
tively predict the threshold for each LR of the query image.
Specifically, Fr takes the query LRs as input and outputs a
threshold V;:
VI = o(Fr(L)), ©)

where o is a sigmoid function. Beyond that, to narrow the
search space for V}, we change the output range of sigmoid
function . However, the step function used in Eq. (4) is in-
differentiable. So we approximate it using a variant I*(-) of
sigmoid function with a hyperparameter k:

7k(zfvz))

I*(x) = o/(1 + exp , )

where V] is the corresponding threshold value for z, and =
denotes one of the values in MA. Theoretically, when k is
large enough, the I*(-) can be considered as I(-). More-
over, we call the extended TL-Net with learnable thresholds
as ATL-Net, Adaptive Task-aware Local Representations Net-
work, to show its additional adaptive ability. The training
process of the proposed ATL-Net is shown in Algorithm 1.

4 Experiments
4.1 Datasets

minilmageNet [Vinyals er al., 2016] is a subset of Ima-
geNet [Deng et al., 2009], which consists of 100 classes and
600 images per class. Following the commonly used strategy,
we divide the dataset into training (auxiliary)/validation/test
set with a percentage of 64/16/20 respectively.

We also evaluate our method on three fine-grained image
classification datasets. Stanford Dogs [Khosla ef al., 2011]
contains 120 categories with a total number of 20, 580 im-
ages. Stanford Cars [Krause er al, 2013] contains 196
classes of cars and 16, 185 images. CUB-200 [Welinder et
al., 2010] contains 200 bird species with a total number of
6,033 images. For fair comparisons, we use the data splits
of [Lieral., 2019b; Li et al., 2019¢; Huang et al., 2019], as
Table 1 shows.
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Algorithm 1 Training of ATL-Net
Input: Episodic task 7 = {As, Ag}
1: while no converge do

2: LS+ Fo (.As)
32 L2+ Fo(Ag)
4:  for £%in L2 do
5: Get relation matrix M™ by Eq. (1)
6: Calculate adaptive threshold V¥ for £ by Eq. (6)
7: Construct adaptive episodic attention M- by
Eq. (2), Eq. (3) and Eq. (7)
8: Calculate probability P9 for £? by Eq. (5)
9:  end for
10 L+ —> YVlog(P)
11:  Mini-batch Adam to minimize L, update ©, ¥ and "

12: end while

4.2 Implementation Details

Network architecture. We follow the basic feature extrac-
tion network which is used in previous works [Li et al.,
2019b; Li et al., 2019c]. The feature extraction network
Feo consists of 4 convolution blocks, each of which contains
a convolutional layer, batch normalization and LeakyReLLU
activation. The transformation layer Fy consists a 1 x 1
convolutional layer followed by batch normalization and
LeakyReLU activation. The MLP module Fr- is implemented
by two fully connected layers. In fact that only a few param-
eters are introduced by Fyg and Fr, which will be discussed
in Section 5.

Training and testing detail. We implement our experi-
ments using PyTorch [Paszke er al., 2019]. All the images are
resized to 84 x 84. During the training stage, we randomly
construct 250, 000 episodes from the training (auxiliary) set
for the minilmagenet dataset and the Stanford Car dataset,
and 150, 000 for the other two datasets to avoid overfitting. In
each episode, we collect 15 query images per class. For ex-
ample, under 5-way 1-shot setting, we have 5 support images
and 75 query images in each task. We use Adam [Kingma and
Ba, 2015] optimizer with a cross-entropy loss to train the net-
work. The initial learning rate is set to 0.001. During the test,
we evaluate the proposed ATL-Net on 600 randomly sampled
tasks. The mean accuracy, as well as the 95% confidence in-
terval will be reported after being repeated five times. Note
that the whole model is trained from scratch in an end-to-end
manner without any data augmentation and weight decay, nei-
ther do fine-tune in the test stage '

4.3 Baselines

To evaluate the proposed ATL-Net on the minilmagenet, we
make comparisons with eleven state-of-the-art models, in-
cluding Matching Net [Vinyals er al., 2016], MAML [Finn et
al., 20171, Prototypical Net [Snell ef al., 2017], GNN [Sator-
ras and Estrach, 2018], Relation Net [Sung er al., 2018],
MetaGAN [Zhang et al., 2018], MM-Net [Cai er al., 2018],
MEPS [Chu et al., 20191, CovaMNet [Li et al., 2019c],
DN4 [Li et al., 2019b] and GCR [Li et al., 2019al.

'The source code can be available from https:/github.com/
LegenDong/ATL-Net
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Model Backbone Additional Stage 5-way 1-shot 5-way 5-shot
Matching Net [Vinyals ef al., 2016]  Conv-64F N 43.56 £0.84  55.31 £0.73
MAML [Finn et al., 2017] Conv-32F Y 48.70 = 1.84 63.11 +0.92
Prototypical Net [Snell ez al., 2017]  Conv-64F N 49.42 +£0.78 68.20 £+ 0.66
GNN [Satorras and Estrach, 2018] Conv-256F N 50.33 £+ 0.36 66.41 £+ 0.63
Relation Net [Sung et al., 2018] Conv-64F N 50.44 +0.82 65.32 +0.70
MetaGAN [Zhang et al., 2018] Conv-64F N 52.71 £ 0.64 68.63 + 0.67
MM-Net [Cai et al., 2018] Conv-64F N 53.37 £ 0.48 66.97 £ 0.35
MEPS [Chu et al., 2019] Conv-64F N 51.03 £0.78 67.96 £0.71
CovaMNet [Li et al., 2019c] Conv-64F N 51.19 +0.76 67.65 £+ 0.63
DN4 [Li et al., 2019b] Conv-64F N 51.24 +0.74 71.02 +0.64
GCR [Li et al., 2019a] Conv-64F Y 53.21 +£0.40 72.34 +£0.32
ATL-Net (Ours) Conv-64F N 54.30 £0.76 73.22 4+ 0.63

Table 2: Comparisons with other methods on minilmagenet. The second column shows which kind of embedding module is employed.
The third column denotes whether the model contains additional training stage, e.g. pretrain stage or fine-tune stage. We use the officially
provided results for all the other methods. For each setting, the best and the second best results are highlighted.

Model Stanford Dogs Stanford Cars CUB-200

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
Matching Net 35.80 £0.99 47.50 £1.03 34.80 £0.98 44.70 £1.03 45.30 £1.03 59.50 + 1.01
Prototypical Net  37.59 + 1.00 48.19 £1.03 40.90 £ 1.01 52.93 +1.03 37.36 + 1.00 45.28 +1.03
GNN 46.98 £ 0.98 62.27 £0.95 55.85 £0.97 71.25 £ 0.89 51.83 £0.98 63.69 £ 0.94
DN4 45.41 +0.76 63.51 +0.62 59.84 4+ 0.80 88.65 +0.44 46.84 + 0.81 74.92 +0.64
CovaMNet 49.10 £ 0.76 63.04 £ 0.65 56.65 + 0.86 71.33 £0.62 52.42 + 0.76 63.76 + 0.64
PABN+; 45.65 +0.71 61.24 +0.62 54.44 +0.71 67.36 £ 0.61 - -
LRPABN, 45.72 +0.75 60.94 £ 0.66 60.28 £ 0.76 73.29 + 0.58

ATL-Net (Ours)

54.494+0.92 73.20+0.69 67.95+0.84 89.16 £ 0.48 6091:|:091

77.05 + 0.67

Table 3: Comparisons with other methods on three fine-grained datasets. We adopt the results from [Li et al., 2019c] for the first three
methods and the officially provided results for the other methods. For each setting, the best and the second best results are highlighted.

For fine-grained image classification datasets, we com-
pare our method with six few-shot methods, Matching
Net [Vinyals et al., 2016], Prototypical Net [Snell et al.,
20171, GNN [Satorras and Estrach, 20181, DN4 [Li et al.,
2019b] and CovaMNet [Li et al., 2019c], and the fine-grained
methods PABN+,/LRPABN,; [Huang er al., 2019].

4.4 Comparisons with the SOTA Methods

We make comparisons with several state-of-the-art methods
under 5-way 1-shot and 5-way 5-shot settings.

Results on minilmagenet.  The results on minilmagenet
are summarized in Table 2. It can be seen that our method
significantly outperforms other methods under both settings.
We achieve 54.30% under the 5-way 1-shot setting, with
an improvement of 0.93% from the second best [Cai ef al.,
2018]. Moreover, compared with [Cai et al., 2018], the pro-
posed ATL-Net introduces simpler additional structures (i.e.,
Fg and Fr) than the complex memory-addressing architec-
tures. Similarly, our ALT-Net also gets higher performance,
0.88% improvement than previous methods [Li ez al., 2019a]
that uses data augmentation, data hallucination [Wang et al.,
2018] and pretrains the feature extractor on the whole train-
ing set. Note that the proposed ATL-Net achieves an im-
provement of 3.06%/2.20% under 5-way 1-shot/5-shot set-
tings than the most relevant work [Li ef al., 2019b], which
exploits the relation at the class-level by k-NN selection.
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Such a great improvement further proves the superiority of
our method that select the distinct patches, which are only
shared between a certain class and query images.

Results on fine-grained datasets. The results on the three
fine-grained datasets are summarized in Table 3. Due to the
results for [Huang et al., 2019] on the CUB-200 [Welinder et
al., 2010] dataset is not provided, we leave them blank. It can
be observed that our method achieves the best performance
compared with both general and fine-grained-specific few-
shot learning methods. Compared with the general few-shot
learning methods, our method is 5.39%, 8.11% and 8.49%
better than the second best under the 5-way 1-shot setting.
The results compared with the fine-grained few-shot learn-
ing methods are similar, we obtain 7.67% improvements at
least. The reason for these great improvements is that ATL-
Net can naturally tackle the major challenge of identifying
and weighting the importance of the key parts [Sun et al.,
2018]. The proposed method will not be fooled by the sim-
ilar global geometry and appearances, and thus pay more at-
tention to their subtle differences behind the key parts.

4.5 Ablation Study

To further verify the effectiveness of the proposed ATL-Net,
we conduct ablation studies on minilmagenet, the results are
reported in Table 4. We remove Fy and JFr from the network
respectively to confirm that each part of the model is indis-
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Factor 5-way 1-shot 5-way 5-shot
(i) baseline 50.94 +0.79 65.16 £ 0.72
(ii) w/o Fr (TL-Net)  53.24 +0.80 71.87 +0.65
(iii) w/o Fg 53.80 +0.81 72.95 + 0.64

ATL-Net (Ours) 54.30 = 0.76 73.22 + 0.63

Table 4: Ablation study on minilmagenet for the proposed ATL-Net.

Model Params 5-way 5-shot
Prototypical Net 0.113M 68.20
Relation Net 0.229M 65.32
GNN 1.619M 66.41
DN4 0.113M 71.02
GCR w/o Hallucinator 1.755M 72.34
ATL-Net (Ours) 0.117M 73.22

Table 5: The number of trainable parameters along with 5-way 5-
shot performance of different models.
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Figure 3: The results of the rank-based and value-based selections
under the 5-way 5-shot setting. The abscissa is the value of hyper-
parameters near the peak for value-based/rank-based methods, from
introducing noise to losing information. The red line and green dash
line are the results of ATL-Net and TL-Net with soft attention, re-
spectively. (Best viewed in color.)

pensable, and them both as the baseline for comparison. It
can be observed that the main improvement comes from the
adaptive threshold module Fr-, without it about 1.06% and
1.35% performance loss occurring. Intuitively, g can some-
what alleviate the effects of an unsuitable threshold for a cer-
tain relation, by measuring in an adaptive subspace without
harming the original features. In contrast, Fr tries to directly
assign an adaptive threshold, making it more effective than
Fv. However, Fr still cannot handle all changeable cases,
so both F1 and Fy are indispensable. Moreover, even for
the TL-Net (i.e., ATL-Net without Fr), we also obtain com-
petitive results with only 0.13% and 0.47% lower than [Cai
et al., 2018] and [Li er al., 2019a] under 5-way 1-shot and
5-shot settings, but much better than the other methods.

5 Discussion

5.1 Value-based v.s. Rank-based Selection

To verify the superiority of value-based selection than rank-
based one [Li ef al., 2019b], we replace the adaptive attention
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module by a k-NN selection, the peak and surrounding re-
sults under 5-way 5-shot setting are reported in the Figure 3.
The results of the value-based selection are generally better
than the results of the rank-based selection. Meanwhile, we
observe that it’s difficult for the rank-based method to se-
lect enough corresponding LRs without too much noise at the
task-level. For example, the rank-based methods cannot se-
lect enough corresponding LRs for £ = 3 or 8 , while the cor-
responding LRs contain numerous noise when k£ = 32 or 64.

5.2 Influence of the Threshold V.

The results of the threshold V, are reported in Figure 3, which
shows that the choice of the threshold V. has a mild im-
pact on performance, and we observe that the performance
degradation due to information loss is more severe than the
noise introduced. To verify the importance of episodic at-
tention’s sparsity, we replace the hard attention by a soft at-
tention. The result shows that the trivial relations, even with
relatively small attention values, still greatly affect the distri-
bution of episodic attention. Beyond that, the proposed adap-
tive episodic attention module F 4 outperforms 1.35% than
the best result with a manual selection for V.. Such a great
improvement shows that the global manually set V. can only
achieve a suboptimal solution, but the adaptive threshold V}
is more robust in complex situations.

5.3 Number of Trainable Parameters

We also compare the number of trainable parameters to ver-
ify the efficiency of the proposed ATL-Net, as the Table 5
shows. Since no other trainable parameters are introduced
except for the embedding module Fg, [Snell et al., 2017;
Li et al, 2019b] become the most light-weight models.
[Satorras and Estrach, 2018] adopts a larger embedding mod-
ule (i.e., the filter number is 256), which draws a great con-
tribution from the number of parameters. [Sung et al., 2018;
Li et al., 2019a] adopt additional architectures to boost the
result, which also introduce a huge number of trainable pa-
rameters. However, the proposed ATL-Net only introduces
a small number of the trainable parameters, while achieves a
better result than the methods above.

6 Conclusions

In this paper, we propose an Adaptive Task-aware Local Rep-
resentation Network (ATL-Net) for few-shot learning, aiming
to learn more discriminative local representations by taking
a view of the entire task. Specifically, an adaptive episodic
attention mechanism is designed to adaptively select the key
semantic patches for a special task, without distracting atten-
tion by the common parts shared by most classes. Extensive
experimental results on the benchmarks verify the effective-
ness and superiority of the proposed ATL-Net.
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