
Learning Task Models from Multiple Human Demonstrations

Staffan Ekvall and Danica Kragic*
Computational Vision and Active Perception and Centre for Autonomous Systems

Royal Institute of Technology, Stockholm, Sweden
ekvall,kragic@nada.kth.se

Abstract— In this paper, we present a novel method for learn-
ing robot tasks from multiple demonstrations. Each demon-
strated task is decomposed into subtasks that allow for segmen-
tation and classification of the input data. The demonstrated
tasks are then merged into a flexible task model, describing the
task goal and its constraints. The two main contributions of
the paper are the state generation and contraints identification
methods. We also present a task level planner, that is used to
assemble a task plan at run-time, allowing the robot to choose
the best strategy depending on the current world state.

I. I NTRODUCTION

Robot task teaching has during the past years received sig-
nificant attention [1]–[8] and it has been recognized that more
natural teaching methods are necessary so to allow ordinary
users to teach robots new tasks by simply demonstrating
them. From the viewpoint of task learning in humans it is
known that such a strategy where a teacher’s demonstration
is used as a starting point of learning significantly speeds up
the process and reduces the amount of trial-and-error steps.
In robotics, such an approach to learning has been considered
in frameworks of Learning by Imitation or Programming
by Demonstration (PbD). In our previous work, we have
considered the integration of different sensory modalities for
task model generation in a PbD framework, [8].

An important issue to consider is that the initial task
setting will change between the demonstration and execution
time. A robot that has to set-up a dinner table may have
to plan the order of handling plates, cutlery and glasses in
a different way that previously demonstrated by a human
teacher. Hence, it is not sufficient to just replicate the
human movements but the robot i) must have the ability to
recognize what parts of the whole task can be segmented and
considered as subtasks so to ii) perform online planning for
task execution given the current state of the environment.
The important problem here is how to instruct or teach
the robot the essential order of the subtasks for which the
execution order may or may not be crucial. As an example,
the main dish plate should always be under the appetizer
or a soup plate and the order in which these are placed on
the table is important. One way of addressing this problem
is to demonstrate a task to the robot multiple times and let
the robot learn which order of the subtasks is essential. In
relation, the two main contributions in this paper are the state

This work has been supported by EU through the project PACO-PLUS,
FP6-2004-IST-4-27657 and Swedish Research Council.

generation and contraints identification methodologies based
on multiple human demonstrations.

In this work, the proposed methodologies are evaluated in
the framework of robotic object manipulation tasks. Learning
such tasks is considered a hard problem since robots have a
very limited world knowledge to start with and are mainly
constrained by the type of available sensory modalities. For
humans, much of the background knowledge is innate and
one demonstration is often sufficient. This is not a case
when considering a robot. There are two possible directions
here: either we let the robot assume that the actions can be
executed in any order, or that the actions have to be executed
in the same order as the demonstration. The first alternative
requires that the human instructs the robot of the possible
task constraints during the demonstration. In this paper, we
have chosen the latter alternative since it allows the robot to
learn from multiple observations and improve the task model
over time.

II. M OTIVATION AND RELATED WORK

In our work we would like to teach the robot of how to
set-up a dinner table, slice a cucumber or put in dishes into a
dishwasher. Setting up a dinner table task can be viewed as
a sequence of pick-and-place object manipulation subtasks,
[9]. For this task, the robot is required to recognize objects,
grasp them and put them on the table in specific geometric
relation to each other. The relationship between objects can
be represented relative to one object, e.g. main plate. Cutting
a cucumber is more difficult since the robot has to learn
that a knife should be held in a specific way related to
the cucumber. Different from the first example, the relative
relationship between objects changes during task execution.
Mobile manipulation tasks such as mail delivery [10] include
constraints, for example that the mail has to be collected
before it can be delivered but the order of delivery may be
irrelevant. In summary, for some of the tasks a specific order
of subtasks is required and for some it is not. Here, the
problem of learning object or mobile manipulation tasks is
solved by identifying the goal state and the spatio-temporal
constraints of the task.

Many of the current robot instruction systems concentrate
on learning by imitation or PbD based on a single demonstra-
tion. However, the robot should be able to update the initial
task model by observing humans or another robot performing
the task. In other words, we need a task level learning system
that builds constraints automatically identified from multiple
demonstrations.

This problem has been studied for robot navigation and
mobile pick-and-place tasks, [11] where a task is represented
by the alternate paths shown during the teaching phase.
Compared to our work, the robot is still required to follow
one of the human demonstrations unless the task is refined.
In this paper, we focus on object manipulation tasks which
require that objects are represented in relation to each other.
Thus, our work differs both in the state representation and
the task generalization.

In [4], generation of task models based on multiple hu-
man is presented.Essential interactionsthat represent the
important hand movements during a manipulation task are
identified. Compared to our approach, the above system
represents the task using generalized trajectories. This makes
the method easier to adapt to different situations, but also less
flexible, as it requires the world state to be roughly the same
as during the demonstration. In our work, we do not store the
hand trajectories, but instead what has been done. The robot
can then reproduce the results of the human demonstration
at execution time by planning a sequence of actions to reach
the goal state.

III. SYSTEM OVERVIEW

In a PbD framework, the robot learns the task by observing
a human or another robot. In most systems, the user only
demonstrates the task a single time. A more complete task
model can be made if recordings from several user demon-
strations are available. The system is designed so that several
independent building blocks work together to produce the
desired results. Figure 1 illustrates the program flow from
demonstration to final execution.

Task Generalization

State Generation

Planning

Execution

Grasp Planning

Visual Servoing

Perception

Are the task goals achieved? Done

Segmentation

Demonstration

No

Yes

Fig. 1. The building blocks of our system.

We shortly summarize each of the building blocks of the
system.
Segmentation- The segmentation of the task into isolated
operations is an important research issue, [1]–[3], [12]. The
task as a whole is unlikely to be observed again because
of the minor variations that occur from demonstration to
demonstration. We view the task as a composite of specific

actions,primitives, which can be easily recognized.
State Generation - To enable generalization over multiple
demonstrations, the subtasks are modeled as states, describ-
ing the impact of a certain action to the current world state,
e.g.,“Knife moved 10 cm to the right of the plate”. Thestate
generationblock takes all demonstrations into account and
searches for similar subtasks which are represented by the
same state. The similarity is measured in terms of effects on
the world state.
Task Generalization - This block is used to identify which
states must occur before others and possibly which states that
are irrelevant for the task goal. From a single demonstration,
the task is carried out in the exact same order unless some
prior knowledge is available. From multiple demonstrations,
the robot acquires more knowledge about the task and
achieves the goal by assembling its own action sequence
from a combination of all demonstrations. An example of a
constraint is that the plate has to be moved first, before food
can be served on it.
Planning - The robot has to be able to plan task execution
and reaching the goal state given the current state of the
environment. Planning is also needed when a failure is
detected and the task execution has to be replanned. In the
task space, the robot first plans and then executeswhich
objects must be movedwhereto achieve the goal given the
task constraints.
Execution - Once a plan of how to reach the goal state has
been generated, the execution of the task commences. Here,
grasp planning and robust visual servoing play an important
role for the task success. Currently there is no robot even
near having the human capabilities of grasping objects, much
because our superior sensory feedback. In our current work,
we consider grasping of simple objects since the main focus
is on planning and task model generation.
Perception - The level of task complexity that the robot
is able to perform is strongly dependent on the sensory
perception and modeling and it is usually a bottleneck of
any PbD system. Pose estimation in general is a difficult
problem, and in this work we settled for a simple vision
system able to estimate the pose of cubic blocks.

IV. I MPLEMENTATION

For easier understanding of the system implementation
details, let us study a specific task we want to teach a robot,
cutting-a-cucumber. The follwing objects are considered in
the task: a cutting board, a cucumber and a knife. Given
that the objects’ poses estimated, this tasks can be learned
incrementaly as shown in Table. I. Here, object positions
can be represented given either absolute coordinates or
relatively to other objects already moved. This allows tasks
to be executed with greater precision compared to a method
based only on absolute coordinates. The demonstrated tasks
are segmented, and each subtask is quantized to a state.
A demonstration is then represented as a state sequence.
Another example task used later on in the paper issetting
up a dinner table. This task consists of placing plate, knife,
fork, spoon, glass, food and napkin on a dinner table.

TABLE I

TASK cut cucumberAS MODELED IN OUR SYSTEM(z-AXIS

ANTIPARALLEL TO GRAVITY).

Object Relative Relative (x,y,z,θ,φ,ψ)
Position Orientation Pose [cm, degrees]

Cutting board None None (393, 123, 0, 0, 0, 0)
Cucumber Cutting board CuttingBoard (10, 15, 1, 90, 0, 0)

Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (25, 0, 0, 90, 90, 0)
Knife Cucumber Cucumber (25, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (24, 0, 6, 90, 90, 0)
Knife Cucumber Cucumber (24, 0, 0, 90, 90, 0)

...

To decompose the task into subtasks, a method for auto-
matic detection of a subtasks beginning and end is required.
This is a largely open reasech problem and it is not consid-
ered in this work.

A. State Generation

Here, the continuous measurements are quantized from
the operations. For the tasks considered in our work, the
placement of certain objects can be defined relatively to other
objects (Place glass to the left of the main plate) but some
objects are to be placed to a specific point defined in absolute
coordinates. To decide if the position should be regarded
absolute or relative, we compute the minimum variance with
respect to already placed objects:

relob ji = argmin
∀ j moved

|cov(xi −xj)| (1)

wherexi is the position of objecti. If relob ji = i, then the
position should be regarded as absolute. The same procedure
is done for the orientation, meaning that an object can have
a relative position to one object and a relative orientation to
another object. For some tasks, there may be several positions
that are valid for a certain object. A difficult problem is how
to automatically decide when a position should be regarded
as a new state, and when it should be regarded as a variation
of an existing state. We use K-means clustering, [13], to
quantize the position and orientation for a specific object
into a number of subgroups. This quantization method is
good even though the amount of data is low which is general
the case in PbD systems. The optimal number of subgroups
are the one which yields the lowest maximum variance.
However, the clusters are not allowed to lie closer than a
certain threshold to each other, to prevent the scenario of a
single cluster for each measurement. The improved algorithm
becomes:

relob ji = argmin
∀ j moved, c ∈ [1,Ndemo]

c
max
k=1

|cov(xk
i −xk

j)| (2)

The minimum maximum covariance is sought over all objects
and cluster possibilities. Here,xk

i denotes subsetk when
objecti is clustered intoc clusters. With this approach, we are
able to identify multiple possible positions and orientations
for a single object, e.g., for aset tabletask, the spoon can
be either above or to the right of the plate.

B. Task Generalization

After the demonstrations have been abstracted to state
sequences, the robot can analyze all sequences to build a
general task model. Fig. 2 illustrates how this is done.

A

A

A B

E

E

B

G

F G

E B G

 A < B A < E A < G

 A < F B < F B < G E < G

 F < G E < F

Possible
Execution
Sequence

Constraints

Demonstration 2

Demonstration 1

Fig. 2. Top: Two demonstrations given to the robot. Center: Nine
constraints are identified. Note that state B and E are not constrained.
Bottom: One of the possible sequences to follow at execution time

In this example, there are two demonstrations. From
these, nineconstraintsare identified. Initially, all actions are
constrained to the order they were demonstrated. When two
or more constraints contradict each other, they are removed.
Thus, in the example above the constraintsB< E andE < B
have been removed. The robot is then free to reach any of
the goal states demonstrated, as long as it does not violate
any of the constraints. As more demonstrations are added,
the list is modified. It is important to note that this approach
requires aplanner, that calculates a sequence to achieve the
goal under the constraints. However, this is not a drawback
as the planner is needed anyway if an operation cannot be
performed directly (target position may be blocked). Also
note that as the sequence is calculated at run-time, the robot
does not have to follow any of the human examples.

Another method for task generalization is presented in
[11]. The method is based on the longest common subse-
quence (LCS) of the state sequences, and the LCS of several
demonstrations constitute the generalize task model, in which
the other actions appear as alternate paths. However, this
approach is not suitable for manipulation tasks. Many pick-
and-place tasks can be performed in arbitrary order, so the
LCS for those tasks may be as short as a single state. Instead,
we propose to build up a list of constraints that describes
which states must occur before others.

Among the constraints generated in the example above,
some are unnecessary, e.g.,A< G, when the constraintsA<
B andB < G are present. These types of constraints can be
removed, but they actually serve a purpose: they make the
planning go faster. The planner does not have to tryG−A−
B, which is a dead end.

C. Planning

At execution time, the robot must be able to plan a
sequence of actions to reach the demonstrated goal state. The
objects to be manipulated are not necessarily at the same po-
sitions as during the demonstrations. Inspired by the STRIPS

planner, [14], our planner is based on operations which
contain several preconditions and effects. These describe the
changes on the world state if the operator is executed. The
second part of a planner is the problem file, which is designed
to reflect the current world state. The file contains all objects
in the current scene and their locations and destinations. The
grasp type for an object is selected automatically at run-time.
We let each object have a couple of predefined grasps. For
planning, a grasp must be chosen so that is does not cause
collisions with the other objects. A graspg at locationa is
not possible if there is a nearby locationb occupied with an
object, that would cause a collision when graspg is applied
to a. For all location pairs, the robot tests all grasps against
all objects using apath planner. A path planner works at a
lower level compared to a task planner, see [15] for more
information. If the path planner fails to find a solution, then
the location pair is marked with the grasp type that is not
possible. The other objects are provided to the path planner
as obstacles, with a slightly bigger size to account for motor
inaccuracies in the execution phase. As the isolated gripping
task is relatively simple, the planner quickly returns the
solution if there is any. Using a path planner for planning
the entire task is not feasible as the complexity of the task
would make the planner search a very long time. Also, it
is hard to accurately incorporate the dynamics of the actual
grasping into the path planner.

This approach allows the robot to select the best grasp
depending on the target pose of the object. The robot reasons
much like a human being in this sense - if the object would
be at the target location, would it then be graspable with
the current grasp? If the workspace is cluttered with other
objects, it may happen that to reach the goal state only one
grasp position is possible. Below is an example of a problem
described to our planner in XML. Each problem file starts
with declaring all variables. The variable types are objects,
locations and grasps. The objects are declared first:
<object name="fork" type="Object"/>
<object name="food" type="Object"/>
<object name="cup" type="Object"/>
<object name="box" type="Object"/>

Then several locations are declared. These correspond to
both the starting and end poses of each object found during
the demonstration. Also, a couple of free-space locations are
given.
<object name="loc264" type="Location"/>
<object name="loc293" type="Location"/>
<object name="freespace1" type="Location"/>
...

The possible grasps are generated depending on which
objects were found present in the scene:
<object name="grasp1" type="Grasp"/>
<object name="grasp2" type="Grasp"/>
...

After the variable declarations, the current state at run-time
is provided. The state consists of the location and grasp types
of each object, and the list of location pairs that may be in
collision for certain grasp types.
<state>

<arg name="fork loc10"/>

<arg name="food loc15"/>
<arg name="cup loc22"/>
<arg name="box loc264"/>

<arg name="fork grasp1"/>
<arg name="food grasp2"/>
<arg name="food grasp3"/>
<arg name="cup grasp4"/>
<arg name="cup grasp5"/>
<arg name="box grasp6"/>

<arg name="loc10 loc15 grasp1"/>
<arg name="loc15 loc15 grasp4"/>
<arg name="loc15 loc22 grasp5"/>
<arg name="loc264 loc293 grasp1"/>
<arg name="loc264 loc293 grasp2"/>
<arg name="loc264 loc293 grasp4"/>
<arg name="loc264 loc293 grasp6"/>

<arg name="hand-empty"/>
</state>

The last part of the problem file describes the desired goal
state:
<goal>

<arg name="fork loc35"/>
<arg name="food loc264"/>
<arg name="cup loc293"/>

</goal>

To solve the problem, the planner uses two operators:
GRASP and PUTDOWN. Using a breadth-first search, the
shortest solution that does not cause any collisions is found:
GRASP box loc264 grasp6
PUT_DOWN box freespace1 grasp6
GRASP food loc15 grasp2
PUT_DOWN food loc264 grasp2
GRASP fork loc10 grasp1
PUT_DOWN fork loc35 grasp1
GRASP cup loc22 grasp4
PUT_DOWN cup loc293 grasp4

V. EXPERIMENTAL RESULTS

We evaluate the performance of the system in two different
experimental settings. The first experiment is in a virtual en-
vironment and shows how the state generation block operates
on multiple demonstrations to generate state representations.
The second experiment is shown in a realmicro-world,
consisting of cubic blocks. The experiment shows the task
generalization over multiple demonstrations, and also the
robot execution and planning capabilities.

A. Experiment 1: Virtual Environment

In this experiment, theset table taskdescribed in Sec-
tion IV is considered. The task was demonstrated by the user
three times in a virtual environment where each object was
only allowed to be moved, not rotated. The state of each
object can then be represented using only two degrees of
freedom (table plane is assumed known) which makes this
experiment easy to analyze.

Fig. 3 shows the result of each demonstration. Demonstra-
tion 1 and 3 were similar but the objects were not moved in
the same order. Demonstration 2 was different because of the
spoon being put to the right of the plate, instead of behind
it. Table II shows the states generated by the system. As
expected, the knife, fork and napkin are specified relative to
the plate. Because the glass position varied too much relative
to the plate, its position is specified in absolute coordinates.
The system correctly identifies the two possible placements

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Plate KnifeFork
Spoon
Glass Food

Napkin

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Plate

Glass

SpoonKnifeFork

Food

Napkin

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

PlateFork Knife

FoodGlass
Spoon

Napkin

Fig. 3. The three demonstrations in Experiment 1.

of the spoon (state D and H). State J arises since the fork
actually has lower variance towards the glass compared to
the plate. In the first demonstration the fork was put down
before the glass and positions can only be specified towards
already placed objects. Table III shows the generated state
sequences for the demonstrations. From these, a total of 32
constraints were identified. In this example, the constraints
make sure that when an object is to be placed, its ’relative’
object is already in desired position.

TABLE II

EXPERIMENT 1: THE STATES GENERATED FROM THE DEMONSTRATIONS.

State Object Relative Position (x,y)

A Plate (0.52, 0.44)

B Knife Plate (0.1, 0)

C Fork Plate (-0.07, 0)

D Spoon Knife (-0.08, 0.04)

E Glass (0.52, 0.56)

F Food (0.62, 0.56)

G Napkin Plate (-0.01, -0.02)

H Spoon Plate (0.02, 0.04)

I Knife Spoon (0.08, -0.04)

J Fork Glass (-0.07, -0.12)

TABLE III

THE STATE SEQUENCES FOUND IN THE DEMONSTRATIONS.

Demonstration 1 A-B-C-D-E-F-G

Demonstration 2 A-E-H-I-J-F-G

Demonstration 3 A-C-B-F-E-D-G

B. Experiment 2: Blocks World

In the second experiment, the operator demonstrated a
task in an environment consisting of colored blocks. There
were three equal-sized blocks of different colors available,
which we labeled ’red’, ’green’ and ’wood’. The task was
to stack a pyramid of blocks according to Fig. 4, with the
red block on top. The purpose of the experiment is to show
that the robot can acquire knowledge about the world from
human demonstrations, in this case that the red block has
to be placed last. Thus, such facts does not have to be

Fig. 4. Left: The task demonstrated by the human operator. Center: The
state of the environment at run-time. Note that the parallel-jaw gripper can
only grasp one of the blocks. Right: The robot is placing the final block on
top of the others.

incorporated into the planner. The experiment will also show
the capabilities of our proposed task planner. At execution
time, the blocks were organized so that they block each other,
and only one block is graspable to begin with.

In the experiment, we use an ActiveMedia PowerBot robot
platform with an 6DOF arm on the top and a single camera
mounted on the robot gripper. The robot first moved its arm
to a top view of the scene to estimate the pose of each block.
For this experiment it is sufficient to estimate the(x,y,θ)
parameters, i.e., the position and orientation in the plane. The
height of the tablez was known. A four-dimensional Hough
transform was used to estimate(x,y,θ,s) of each block,s
being the length of a side of a block. As we do not use
stereo vision, we cannot measure thez-position of blocks
stacked on each other. Instead, we estimate the position of
each block every time a block is moved. If a block that was
visible change to fully or partly occluded, it is concluded
that the last block moved was placed upon that block.

For this experiment, a path planner was not necessary to
check for collisions. Instead, we used a simple approach:
Location a is colliding with locationb for grasp typeg if
|bp − (ap ± ĝp)| < r + gr , where r is the radius of a block,
gr is the space required for the robot gripper, also set tor,
p denotes the corresponding translation vector, andĝp is gp
rotated with the same rotation vector asa. For all blocks,
there are two valid grasps.

Two demonstrations were conducted. First in the order
wood - green - red, then in the order green - wood - red. Ta-
ble IV shows the states generated from these demonstrations,
and Table V shows the state sequences. Note that although it
would be nice if the second state sequence was B-A-D, this
is not possible as state B needs the coordinates of the wood
block, which is not moved yet in demonstration 2.

TABLE IV

EXPERIMENT 2: THE STATES GENERATED FROM THE DEMONSTRATIONS.

State Object Relative Relative (x,y,z,θ)

Position Orientation

A Wood (0.34, 0.04, 0.00, 0)

B Green Wood Wood (0.06, 0.00, 0, 0)

C Red Wood Wood (0.03, 0.00, 0.04, 0)

D Green (0.40, 0.04, 0.00, 0)

TABLE V

EXPERIMENT 2: THE STATE SEQUENCES FOUND IN THE

DEMONSTRATIONS.

Demonstration 1 A-B-C

Demonstration 2 D-A-C

From the two demonstrations, four constraints were gener-
ated. The only real constraint is thatC should occur last, but
due to the few demonstrations, some other constraints follow
as well. The center of Fig. 4 shows the status of the blocks at
execution time. As seen, only the red block is graspable. The
robot generates two plans, one for each demonstration. Of
these, the plan for the first demonstration is five steps, while
the plan for second demonstration is only four steps:Move
red away, move green to position, move wood to position
and finally move red on top of green and wood. The right
part of Fig. 4 shows the robot executing the final subtask.
Several other experiments were conducted to test the task
level planning with different setups and up to five blocks.
Most of the time, the robot executed planned and executed
the task without any problems, although some specific setups
caused problems. Two types of faults occured. First, the
simple vision system sometimes had trouble identifying the
number of blocks and their pose if their initial positions were
too close to each other. It is because the voting maxima
in the Hough space interfere with each other. Second, the
planner had no model for the camera mounted on the hand.
Normally the camera, mounted above the gripper, is in no
risk of colliding with the blocks, but when stacking several
blocks on top of each other a new high obstacle is created
that may collide with the camera.

VI. CONCLUSION

In this paper, we dealt with the problem of learning robot
tasks from multiple demonstrations in a Programming by
Demonstration setting. Classically, this type of robot pro-
gramming has been based on individual task demonstrations.

A generalized task model is represented by the goal states
of the demonstrations, and the task constraints. At run-time,
the task model is used to build a task sequence using a
planner. Experiments are used to show the generated task
model in two different settings. In one of these, a robot is
used to reproduce the result of the human demonstrations.

We also presented a method for performing task level
manipulation planning. This allows the robot to execute the
task although the current setup is not the same as the one

in which the training was performed. The task planner was
tested in a simple environment with equal sized objects. The
next challenge will be to use several objects with different
size and shapes, which require a more powerful perception
system.

The system scales up well, although with more objects
present, more demonstrations are needed to give the robot the
desired flexibility. If too few demonstrations are provided,
many unnecessary constraints will be encoded in the task
description.

In the current system, it is assumed that there is only one
object of each type. If there are two identical blocks present
in the second experiment, the system gets confused since this
knowledge is not explicitly defined. Our current research is
devoted to solving this problem.

REFERENCES

[1] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching,
extracting reusable task knowledge from visual observation of human
performance,” inIEEE Transactions on Robotics and Automation,
vol. 10(6), pp. 799–822, 1994.

[2] C. Atkeson and S. Schaal, “Robot learning from demonstration,” in
In Machine Learning: Proceedings of the Fourteenth International
Conference (ICML ’97) (ed. D. H. Fisher Jr.), pp. 12–20, July 1997.

[3] M. J. Mataríc, “Getting humanoids to move and imitate,” inIEEE
Intelligen Systems, pp. 18–24, jul 2000.

[4] K.Ogawara, J.Takamatsu, K.Kimura, and K.Ikeuchi, “Generation of a
task model by intergrating multiple observations of human demon-
strations,” in Proceedings of the IEEE Intl. Conf. on Robotics and
Automation (ICRA ’02), pp. 1545–1550, May 2002.

[5] H. Friedrich, R. Dillmann, and O. Rogalla, “Interactive Robot Pro-
gramming Based on Human Demonstration and Advice,” inSensor
Based Intelligent Robots, pp. 96–119, 1998.

[6] M. Ehrenmann, O. Rogalla, R. Zllner, and R. Dillmann, “Teaching
service robots complex tasks: Programming by demonstration for
workshop and household environments,” inProceedings of the 2001
International Conference on Field and Service Robots(FSR), pp. 397–
402, 2001.

[7] J. Aleotti, S. Caselli, and M. Reggiani, “Leveraging on a virtual
environment for robot programming by demonstration,” inRobotics
and Autonomous Systems, Special issue: Robot Learning from Demon-
stration, vol. 47, pp. 153–161, 2004.

[8] S. Ekvall and D. Kragic, “Grasp recognition for programming by
demonstration,” inIEEE/RSJ International Conference on Robotics
and Automation, ICRA’05, 2005.

[9] S. Ekvall and D. Kragic, “Integrating object and grasp recognition for
dynamic scene interpretation,” inIEEE International Conference on
Advanced Robotics, ICAR’05, 2005.

[10] P. Jensfelt, S. Ekvall, D. Kragic, and D. Aarno, “Integrating slam
and object detection for service robot tasks,” inIEEE International
Conference on Intelligent Robots and Systems, IROS’04, Workshop on
Mobile Manipulators: Basic Techniques, New Trends and Applications,
2005.

[11] M. N. Nicolescu and M. J. Matarić, “Natural methods for robot
task learning: Instructive demonstrations, generalization and practice,”
in Proceedings of the Second International Joint Conference on
Autonomous Agens and Multi Agent Systems, 2003.

[12] H. Friedrich, R. Dillmann, and O. Rogalla, “Interactive robot program-
ming based on human demonstration and advice,” inChristensen at al
(eds.):Sensor Based Intelligent Robots, LNAI1724, pp. 96–119, 1999.

[13] J. B. MacQueen, “Some Methods for classification and Analysis of
Multivariate Observations,” inProceedings of 5-th Berkeley Sym-
posium on Mathematical Statistics and Probability, pp. 1:281–297,
University of California Press, 1967.

[14] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,”Artificial Intelligence
2, pp. 189–205, 1971.

[15] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” inPro-
ceedings of the International Conference on Robotics and Automation,
pp. 521–528, 2000.

