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Abstract

Real-world applications often naturally decompose into several sub-tasks. In
many settings (e.g., robotics) demonstrations provide a natural way to specify the
sub-tasks. However, most methods for learning from demonstrations either do
not provide guarantees that the artifacts learned for the sub-tasks can be safely
recombined or limit the types of composition available. Motivated by this deficit,
we consider the problem of inferring Boolean non-Markovian rewards (also known
as logical trace properties or specifications) from demonstrations provided by an
agent operating in an uncertain, stochastic environment. Crucially, specifications
admit well-defined composition rules that are typically easy to interpret. In this
paper, we formulate the specification inference task as a maximum a posteriori
(MAP) probability inference problem, apply the principle of maximum entropy to
derive an analytic demonstration likelihood model and give an efficient approach to
search for the most likely specification in a large candidate pool of specifications.
In our experiments, we demonstrate how learning specifications can help avoid
common problems that often arise due to ad-hoc reward composition.

1 Introduction

In many settings (e.g., robotics) demonstrations provide a natural way to specify a task. For ex-
ample, an agent (e.g., human expert) gives one or more demonstrations of the task from which
we seek to automatically synthesize a policy for the robot to execute. Typically, one models the
demonstrator as episodically operating within a dynamical system whose transition relation only
depends on the current state and action (called the Markov condition). However, even if the dy-
namics are Markovian, many problems are naturally modeled in non-Markovian terms (see Ex 1).

Example 1. Consider the task illustrated in Figure 1. In this task,
the agent moves in a discrete gridworld and can take actions to move
in the cardinal directions (north, south, east, west). Further, the agent
can sense abstract features of the domain represented as colors. The
task is to reach any of the yellow (recharge) tiles without touching
a red tile (lava) – we refer to this sub-task as YR. Additionally, if a
blue tile (water) is stepped on, the agent must step on a brown tile
(drying tile) before going to a yellow tile – we refer to this sub-task
as BBY. The last constraint requires recall of two state bits of history
(and is thus not Markovian): one bit for whether the robot is wet and
another bit encoding if the robot recharged while wet. Figure 1

Further, like Ex 1, many tasks are naturally decomposed into several sub-tasks. This work aims to
address the question of how to systematically and separately learn non-Markovian sub-tasks such
that they can be readily and safely recomposed into the larger meta-task.
Here, we argue that non-Markovian Boolean specifications provide a powerful, flexible, and easily
transferable formalism for task representations when learning from demonstrations. This stands
in contrast to the quantitative scalar reward functions commonly associated with Markov Decision
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Processes. Focusing on Boolean specifications has certain benefits: (1) The ability to naturally
express tasks with temporal dependencies; (2) the ability to take advantage of the compositionality
present in many problems, and (3) use of formal methods for planning and verification [29].
Although standard quantitative scalar reward functions could be used to learn this task from demon-
strations, three issues arise. First, consider the problem of temporal specifications: reward functions
are typically Markovian, so requirements like those in Ex 1 cannot be directly expressed in the task
representation. One could explicitly encode time into a state and reduce the problem to learning
a Markovian reward on new time-dependent dynamics; however, in general, such a reduction suf-
fers from an exponential blow up in the state size (commonly known as the curse of history [24]).
When inferring tasks from demonstrations, where different hypotheses may have different historical
dependencies, naïvely encoding the entire history quickly becomes intractable.
A second limitation relates to the compositionality of task representations. As suggested, Ex 1
naturally decomposes into two sub-tasks. Ideally, we would want an algorithm that could learn each
sub-task and combine them into the complete task, rather than only be able to learn single monolithic
tasks. However, for many classes of quantitative rewards, "combining" rewards remains an ad-hoc
procedure. The situation is further exacerbated by humans being notoriously bad at anticipating or
identifying when quantitative rewards will lead to unintended consequences [11], which poses a
serious problem for AI safety [1] and has led to investigations into reward repair [9]. For instance,
we could take a linear combination of rewards for each of the subtasks in Ex 1, but depending on the
relative scales of the rewards, and temporal discount rate, wildly different behaviors would result.

(a)

(b)

Figure 2: Illustration of a
bug in the learnt quantitative
Markovian reward resulting
from slight changes in the en-
vironment.

In fact, the third limitation - brittleness due to simple changes in the
environment - illustrates that often, the correctness of the agent can
change due to a simple change in the environment. Namely, imagine
for a moment we remove the water and drying tiles from Fig 1 and
attempt to learn a reward that encodes the “recharge while avoid lava”
task in Ex 1. Fig 2a illustrates the reward resulting from performing
Maximum Entropy Inverse Reinforcement Learning [35] with the
demonstrations shown in Fig 1 and the binary features: red (lava tile),
yellow (recharge tile), and “is wet”. As is easy to verify, a reward
optimizing agent,

∑∞
i=0 γ

iri(s), with a discount factor of γ = 0.69
would generate the trajectory shown in Fig 2a which avoids lava and
eventually recharges.
Unfortunately, using the same reward and discount factor on a nearly
identical world can result in the agent entering the lava. For example,
Fig 2b illustrates the learned reward being applied to a change in
the gridworld where the top left charging tile has been removed. An
acceptable trajectory is indicated via a dashed arrow. Observe that
now the discounted sum of rewards is maximized on the solid arrow’s
path, resulting in the agent entering the lava! While it is possible to
find new discount factors to avoid this behavior, such a supervised
process would go against the spirit of automatically learning the task.
Finally, we briefly remark that while non-Markovian Boolean rewards
cannot encode all possible rewards, e.g., “run as fast as possible”,
often times such objectives can be reframed as policies for a Boolean
task. For example, consider modeling a race. If at each time step there
is a non-zero probability of entering a losing state, the agent will run
forward as fast as possible even for the Boolean task “win the race”.
Thus, quantitative Markovian rewards are limited as a task representation when learning tasks
containing temporal specifications or compositionality from demonstrations. Moreover, the need to
fine tune learned tasks with such properties seemingly undercuts the original purpose of learning task
representations that are generalizable and invariant to irrelevant aspects of a task [21].
Related Work: Our work is intimately related to Maximum Entropy Inverse Reinforcement Learning.
In Inverse Reinforcement Learning (IRL) [23] the demonstrator, operating in a stochastic environment,
is assumed to attempt to (approximately) optimize some unknown reward function over the trajectories.
In particular, one traditionally assumes a trajectory’s reward is the sum of state rewards of the
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trajectory. This formalism offers a succinct mechanism to encode and generalize the goals of the
demonstrator to new and unseen environments.
In the IRL framework, the problem of learning from demonstrations can then be cast as a Bayesian
inference problem [26] to predict the most probable reward function. To make this inference procedure
well-defined and robust to demonstration/modeling noise, Maximum Entropy IRL [35] appeals to the
principle of maximum entropy [12]. This results in a likelihood over the demonstrations which is no
more committed to any particular behavior than what is required for matching the empirically observed
reward expectation. While this approach was initially limited to learning a linear combination of
feature vectors, IRL has been successfully adapted to arbitrary function approximators such as
Gaussian processes [19] and neural networks [8]. As stated in the introduction, while powerful,
traditional IRL provides no principled mechanism for composing the resulting rewards.
To address this deficit, composition using soft optimality has recently received a fair amount of
attention; however, the compositions are limited to either strict disjunction (do X or Y) [30] [31]
or conjunction (do X and Y) [10]. Further, because soft optimality only bounds the deviation from
simultaneously optimizing both rewards, optimizing the composition does not preclude violating
safety constraints embedded in the rewards (e.g., do not enter the lava).
The closest work to ours is recent work on inferring Linear Temporal Logic (LTL) by finding the
specification that minimizes the expected number of violations by an optimal agent compared to
the expected number of violations by an agent applying actions uniformly at random [16]. The
computation of the optimal agent’s expected violations is done via dynamic programming on the
explicit product of the deterministic Rabin automaton [7] of the specification and the state dynamics.
A fundamental drawback to this procedure is that due to the curse of history, it incurs a heavy run-time
cost, even on simple two state and two action Markov Decision Processes. We also note that the
literature on learning logical specifications from examples (e.g., [15, 33, 20]), does not handle noise in
examples while our approach does. Finally, once a specification has been identified, one can leverage
the rich literature on planning using temporal logic to synthesize a policy [17, 28, 27, 13, 14].
Contributions: (i) We formulate the problem of learning specifications from demonstrations in
terms of Maximum a Posteriori inference. (ii) To make this inference well defined, we appeal to the
principle of maximum entropy culminating in the distribution given (9). The main contribution of this
model is that it only depends on the probability the demonstrator will successfully perform task and
the probability that the task is satisfied by performing actions uniformly at random. Because these
properties can be estimated without explicitly unrolling the dynamics in time, this model avoids many
of the pitfalls characteristic to the curse of history. (iii) We provide an algorithm that exploits the
piece-wise convex structure in our posterior model (9) to efficiently perform Maximum a Posteriori
inference for the most probable specification.
Outline: In Sec 2, we define specifications and probabilistic automata (Markov Decision Processes
without rewards). In Sec 3, we introduce the problem of specification inference from demonstrations,
and inspired by Maximum Entropy IRL [35], develop a model of the posterior probability of a
specification given a sequence of demonstrations. In Sec 4, we develop an algorithm to perform
inference under (9). Finally, in Sec 5, we demonstrate how due to their inherent composability,
learning specifications can avoid common bugs that often occur due to ad-hoc reward composition.

2 Background

We seek to learn specifications from demonstrations provided by a teacher who executes a sequence
of actions that probabilistically changes the system state. For simplicity, we assume that the set of
actions and states are finite and fully observed. The system is naturally modeled as a probabilistic
automaton1 formally defined below:

Definition 1 (Probabilistic Automaton). A probabilistic automaton is a tuple M =
(S, s0, A, δ), where S is the finite set of states, s0 ∈ S is the initial state, A is the finite
set of actions, and δ : S ×A× S → [0, 1] specifies the transition probability of going from s to
s′ given action a, i.e. δ(s, a, s′) = Pr(s′ | s, a) and

∑
s′∈S

Pr(s′ | s, a) = 1 for all states s.

1Probabilistic Automata are often constructed as a Markov Decision Process, M , without its Markovian
reward map R, denoted M \R.
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Definition 2 (Trace). A sequence of state/action pairs is called a trace (trajectory, demonstra-
tion). A trace of length τ ∈ N is an element of (S ×A)τ .

Next, we develop machinery to distinguish between desirable and undesirable traces. For simplicity,
we focus on finite trace properties, referred to as specifications, that are decidable within some fixed
τ ∈ N time steps, e.g., “event A occurred in the last 20 steps”.

Definition 3 (Specification). Given a set of states S, a set of actions A, and a fixed trace length
τ ∈ N, a specification is a subset of traces ϕ ⊆ (S × A)τ . We define true

def
= (S × A)τ ,

¬ϕ def
= true \ ϕ, and false

def
= ¬true . A collection of specifications, Φ, is called a concept class.

Finally, we abuse notation and use ϕ to also denote its indicator function (interpreted as a
non-Markovian Boolean reward),

ϕ(ξ)
def
=

{
1 if ξ ∈ ϕ
0 otherwise

. (1)

Specifications may be given in formal notation, as sets or automata. Further, each representation
facilitates defining a plethora of composition rules. For example, consider two specifications, ϕA, ϕB
that encode tasksA andB respectively and the composition rule ϕA∩ϕB : ξ 7→ min

(
ϕA(ξ), ϕB(ξ)

)
.

Because the agent only receives a non-zero reward if ϕA(ξ) = ϕB(ξ) = 1, a reward maximizing
agent must necessarily perform tasks A and B simultaneously. Thus, ϕA ∩ ϕB corresponds to
conjunction (logical and). Similarly, maximizing ϕA ∪ ϕB : ξ 7→ max

(
ϕA(ξ), ϕB(ξ)

)
corresponds

to disjunction (logical or). One can also encode conditional requirements using subset inclusion, e.g.,
maximizing ϕA ⊆ ϕB : ξ 7→ max

(
1− ϕA(ξ), ϕB(ξ)

)
corresponds to task A triggering task B.

Complicated temporal connectives can also be defined using temporal logics [25] or automata [32].
For our purposes, it suffices to informally extend propositional logic with three temporal operators:
(1) Let Ha, read “historically a”, denote that property a held at all previous time steps. (2) Let
Pa

def
= ¬(H¬a), read “once a”, denote that the property a at least once held in the past. (3) Let a S b,

read “a since b”, denote that the property a that has held every time step after b last held. The true
power of temporal operators is realized when they are composed to make more complicated sentences.
For example, H(a =⇒ (b S c)) translates to “it was always the case that if a was true, then b has
held since the last time c held.”. Observe that the property BBY from the introductory example takes
this form, H((yellow ∧ P blue) =⇒ (¬blue S brown)), i.e., “Historically, if the agent had once
visited blue and is currently visiting yellow, then the agent has not visited blue since it last visited
brown”.

3 Specification Inference from Demonstrations
In the spirit of Inverse Reinforcement Learning, we now seek to find the specification that best
explains the behavior of the agent. We refer to this as Specification Inference from Demonstrations.

Definition 4 (Specification Inference from Demonstrations). The specification inference from
demonstrations problem is a tuple (M,X,Φ) where M = (S, s0, A, δ) is a probabilistic
automaton, X is a (multi-)set of τ -length traces drawn from an unknown distribution induced
by a teacher attempting to demonstrate some unknown specification within M , and Φ a concept
class of specifications.

A solution to (M,X,Φ) is:
ϕ∗ ∈ arg max

ϕ∈Φ
Pr(ϕ |M,X) (2)

where Pr(ϕ |M,X) denotes the probability that the teacher demonstrated ϕ given the observed
traces, X , and the dynamics, M .

To make this inference well-defined, we make a series of assumptions culminating in (9).
Likelihood of a demonstration: We begin by leveraging the principle of maximum entropy to
disambiguate the likelihood distributions. Concretely, define:

w
(
ξ = (s,a),M

)
=

τ−1∏
i=0

Pr(si+1|si, ai,M) (3)
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where s and a are the projected sequences of states and actions of ξ respectively, to be the weight
of each possible demonstration ξ induced by dynamics M . Given a demonstrator who on average
satisfies the specification ϕ with probability ϕ, we approximate the likelihood function by:

Pr
(
ξ |M,ϕ,ϕ

)
= w(ξ,M) · exp(λϕϕ(ξ))

Zϕ
(4)

where λϕ, Zϕ are normalization factors such that Eξ[ϕ] = ϕ and
∑
ξ Pr(ξ | M,ϕ) = 1. For a

detailed derivation that (4) is the maximal entropy distribution, we point the reader to [18]. Next
observe that due to the Boolean nature of ϕ, (4) admits a simple closed form:

Pr(ξ |M,ϕ,ϕ) = {̃ξ} ·
{
ϕ/ϕ̃ ξ ∈ ϕ
(1− ϕ)/¬̃ϕ ξ /∈ ϕ (5)

where in general we use (̃·) to denote the probability of satisfying a specification using uniformly
random actions. Thus, we denote by {̃ξ} the probability of randomly generating demonstration ξ
within M . Further, note that by the law of the excluded middle, for any specification: ¬̃ϕ = 1− ϕ̃.

Proof Sketch. For brevity, let Wϕ
def
=
∑
ξ∈ϕ w(ξ,M) and c def

= eλϕ . Via the constraints on (4),

Zϕ · ϕ = 1 ·
∑
ξ∈ϕ

c1 · w(ξ,M) + 0 ·
∑
ξ/∈ϕ

c0 · w(ξ,M) = cWϕ

Zϕ = c1
∑
ξ∈ϕ

w(ξ,M) + c0
∑
ξ/∈ϕ

w(ξ,M) = cWϕ +W¬ϕ
(6)

Combining gives Zϕ = W¬ϕ/(1−ϕ). Next, observe that if ξ 6∈ ϕ, then eλϕϕ(ξ) = 1 and substituting
in (4) yields, Pr(ξ | ϕ,M, ξ /∈ ϕ) = wξ(1 − ϕ)/W¬ϕ. If ξ ∈ ϕ (implying Wϕ 6= 0) then
eλϕ = Zϕϕ/Wϕ and Pr(ξ | ϕ,M, ξ ∈ ϕ) = wξϕ/Wϕ. Finally, observe that ϕ̃ = Wϕ/Wtrue and
{̃ξ} = wξ/Wtrue. Substituting and factoring yields (5).

Likelihood of a set of demonstrations: If the teacher gives a finite sequence of τ length demonstra-
tions, X , drawn i.i.d. from (5), then the log likelihood, L, of X under (5) is:2

L(X |M,ϕ,ϕ) = log

( ∏
ξ∈X

{̃ξ}
)

+Nϕ ln

(
ϕ

ϕ̃

)
+N¬ϕ ln

(
¬ϕ
¬̃ϕ

)
(7)

where by definition we take (0 · ln(. . .) = 0) and Nϕ
def
=
∑
ξ∈X

ϕ(ξ).

Next, observe that
[
ϕ ln

(
ϕ

ϕ̃

)
+ (1− ϕ) ln

(
1− ϕ
1− ϕ̃

)]
is the information gain (KL divergence)

between two Bernoulli distributions with means ϕ and ϕ̃ resp. Syntactically, let B(µ) denote
a Bernoulli distribution with mean µ and DKL(P ‖ Q)

def
=
∑
i

P (i) ln(P (i)/Q(i)) denote the

information gain when using distribution P compared to Q. If X is “representative” such that
Nϕ ≈ ϕ · |X|, we can (up to a ϕ independent normalization) approximate (7):

Pr(X |M,ϕ,ϕ) ∝∼ exp
(
|X| ·DKL

(
B(ϕ) ‖ B(ϕ̃)

))
(8)

Where ∝∼ denotes approximately proportional to. Unfortunately, the approximation |X| · ϕ ≈
Nφ implies that, ¬ϕ = 1 − ϕ which introduces the undesirable symmetry, Pr(X | M,ϕ,ϕ) =
Pr(X |M,¬ϕ,¬ϕ), into (8). To break this symmetry, we assert that the demonstrator must be at
least as good as random. Operationally, we assert that Pr(ϕ | ϕ < ϕ̃) = 0 and is otherwise uniform.
Finally, we arrive at the posterior distribution given in (9), where 1[·] denotes an indicator function.

Pr(ϕ |M,X,ϕ) ∝∼

Demonstrator is better than random.︷ ︸︸ ︷
1[ϕ ≥ ϕ̃] · exp

(
|X| ·

Information gain over random actions.︷ ︸︸ ︷
DKL (B(ϕ) ‖ B(ϕ̃))

)
(9)

2We have suppressed a multinomial coefficient required if any two demonstrations are the same. However,
this term will not change as ϕ varies, and thus cancels when comparing across specifications.
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4 Algorithm

In this section, we exploit the structure imposed by (9) to efficiently search for the most probable
specification (2) within a (potentially large) concept class, Φ. Namely, observe that under (9), the
specification inference problem (2) reduces to maximizing the information gain over random actions.

ϕ∗ ∈ arg max
ϕ∈Φ

{
1[ϕ ≥ ϕ̃] ·DKL

(
B(ϕ) ‖ B(ϕ̃)

)}
(10)

Because gradients on ϕ̃ and ϕ are not well-defined, gradient descent based algorithms are not
applicable. Further, while evaluating if a trace satisfies a specification is fairly efficient (and thus
our Nϕ/|X| approximation to ϕ is assumed easy to compute), computing ϕ̃ is in general known
to be #P -complete [2]. Nevertheless, in practice, moderately efficient methods for computing or
approximating ϕ̃ exist including Monte Carlo simulation [22] and weighted model counting [5] via
Binary Decision Diagrams (BDDs) [3] or repeated SAT queries [4]. As such, we seek an algorithm
that poses few ϕ̃ queries. We begin with the observation that adding a trace to a specification cannot
lower its probability of satisfaction under random actions.

Lemma 1. ∀ϕ′, ϕ ∈ Φ . ϕ′ ⊆ ϕ implies ϕ̃′ ≤ ϕ̃ and ϕ′ ≤ ϕ.
Proof. The probability of sampling an element of a set monotonically increases as elements are
added to the set independent of the fixed underlying distribution over elements.

Further, note that Nϕ (and thus, our approximation to ϕ) can only take on |X|+ 1 possible values.
This suggests a piece-wise analysis of (10) by conditioning on the value of ϕ.

Definition 5. Given candidate specifications Φ and a subset of demonstrations S ⊆ X define,

ΦS
def
= {ϕ ∈ Φ : ϕ ∩X = S} J|S|(x)

def
= 1

[
|S|
|X|
≥ x

]
·DKL

(
B(
|S|
|X|

) ‖ B(x)

)
(11)

The next key observation is that J|S| : [0, 1]→ R≥0 monotonically decreases in x.

Lemma 2. ∀S ⊆ X, x < x′ =⇒ J|S|(x) ≤ J|S|(x′)

Proof. To begin, observe that DKL is always non-negative. Due to the 1[ |S||X| ≥ x] indicator,
J|S|(x) = 0 for all x > |S|/|X|. Next, observe that J|S| is convex due to the convexity of the
DKL on Bernoulli distributions and is minimized at x = |S|/|X| (KL Divergence of identical
distributions is 0). Thus, J|S|(x) monotonically decreases as x increases.

Space of Trajectories

φ₁
φ₂

φ₃
φ₄

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2

4

J
6
(x
)

ϕ1

ϕ2 ϕ3 ϕ4

Illustration of Thm 1

Figure 3: Left: An example of a series of specifications ϕ1, . . . , ϕ4 ordered by subset inclusion. The
dots represent demonstrations, and so each specification has ϕi = 6/9. Right: Plot of J|S|(x) for
hypothetical values of ϕ̃i annotated as points. Notice that the sequence of specifications is ordered on
the x-axis, and thus the maximum must occur at the start of the sequence.

These insights are then combined in Theorem 1 and illustrated in Fig 3.

Theorem 1. If A denotes a sequence of specifications, ϕ1, . . . , ϕn, ordered by subset inclusion
j ≤ k =⇒ ϕj ⊆ ϕk and S ⊆ X is an arbitrary subset of demonstrations, then:

max
ϕ∈A

J|S|(ϕ̃) = J|S|(ϕ̃1) (12)
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Proof. ϕ̃ is monotonically increasing on A (Lemma 1). Via Lemma 2 J|S|(x) is monotonically
decreasing and thus the maximum of J|S|(ϕ̃) must occur at the beginning of A.

Lattice Concept Classes.

false

true

anti-chain
ϕ3ϕ2 ϕ4

ϕ0

ϕ6ϕ7

Figure 4: Hasse Diagram of an ex-
ample lattice Φ with an anti-chain
annotated. Directed edges represent
known subset relations and paths
represent chains.

Theorem 1 suggests specializing to concept classes where
determining subset relations is easy. We propose studying con-
cept classes organized into a finite (bounded) lattice, (Φ,E),
that respects subset inclusion: (ϕ E ϕ′ =⇒ ϕ ⊆ ϕ′). To
enforce the bounded constraint, we assert that true and false
are always assumed to be in Φ and act as the bottom and top of
the partial order respectively. Intuitively, this lattice structure
encodes our partial knowledge of which specifications imply
other specifications. These implication relations can be rep-
resented as a directed graph where the nodes correspond to
elements of Φ and an edge is present if the source is known
to imply the target. Because implication is transitive, many of
the edges can be omitted without losing any information. The
graph resulting from this transitive reduction is called a Hasse
diagram [6] (See Fig 4). In terms of the graphical model, the
Hasse diagram encodes that for certain pairs of specifications,
ϕ,ϕ′, we know that Pr(ϕ(ξ) = 1 | ϕ′(ξ) = 1,M) = 1 or
Pr(ϕ(ξ) = 0 | ϕ′(ξ) = 0,M) = 1.
Inference on chain concept classes. Sequences of specifications ordered by subset inclusion gener-
alize naturally to ascending chains.

Definition 1 (Chains and Anti-Chains). Given a partial order (Φ,E), an ascending chain (or
just chain) is a sequence of elements of A ordered by E. The smallest element of the chain is
denoted, ↓ (A). Finally, an anti-chain is a set of incomparable elements. An anti-chain is called
maximal if no element can be added to it without making two of its elements comparable.

Recasting Theorem 1 in the parlance of chains yields:

Corollary 1. If S ⊆ X is a subset of demonstrations and A is a chain in (ΦS ,E) then:

max
ϕ∈A

J|S|(ϕ̃) = J|S|(↓̃ (A)) (13)

Observe that if the lattice, (Φ,E) is itself a chain, then there are at most |X| + 1 non-empty
demonstration partitions, ΦS . In fact, the non-empty partitions can be re-indexed by the cardinality of
S, e.g., ΦS 7→ Φ|S|. Further, note that since chains are totally ordered, the smallest element of each
non-empty partition can be found by performing a binary search (indicated by find_smallest below).
These insights are combined into Algorithm 1 with a relativized run-time analysis given in Thm 2.

Algorithm 1 Inference on chains

1: procedure CHAIN_INFERENCE(X, (A,E))

2: Ψ←
{

(i,find_smallest(A, i))
∣∣ i ∈ {0, 1, . . . , |X|}} . O(|Tdata|X| ln(|A|)).

3: return i, ϕ∗ ← arg max
i,ϕ∈Ψ

Ji(ϕ̃) . O(Trand|X|)

Theorem 2. Let Tdata and Trand respectively represent the worst case execution time of comput-
ing ϕ and ϕ̃ for ϕ in chain A. Given demonstrations X , Alg 1 runs in time:

O

(
|X|
(
Tdata ln(|A|) + Trand

))
(14)
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Proof Sketch. A binary search over |A| elements takes ln(|A|) time. There are |X| binary
searches required to find the smallest element of each partition. Finally, for each smallest
element, a single random satisfaction query is made.

Lattice inference. Of course, in general, (Φ,E) is not a chain, but a complicated lattice. Nevertheless,
observe that any path from false to true is a chain. Further, the smallest element of each partition
must either be the same specification or incomparable in (Φ,E). That is, for each k ∈ {0, 1, . . . |X|},
the set:

Bk
def
=

{
↓ (ΦS) : S ∈

(
X

k

)}
(15)

is a maximal anti-chain. Thus, Corollary 1 can be extended to:

Corollary 2. Given a lattice (Φ,E) and demonstrations X:

max
ϕ∈Φ

JNϕ
(ϕ̃) = max

k∈0,1,...,|X|
max
ϕ∈Bk

Jk(ϕ̃) (16)

Recalling that Nϕ increases on paths from false to true , we arrive at the following simple algorithm
which takes as input the demonstrations and the lattice ϕ encoded as a directed acyclic graph rooted
at false. (i) Perform a breadth first traversal (BFT) of the lattice (Φ,E) starting at false (ii) During
the traversal, if specification ϕ has a larger Nϕ than all of its direct predecessors, then check if it is
more probable than the best specification seen so far (if so, make it the most probable specification
seen so far). (iii) At the end of the traversal, return the most probable specification. Pseudo code is
provided in Algorithm 2 with a run-time analysis given in Theorem 3.

Algorithm 2 Inference on Partial Orders

1: procedure PARTIALORDER_INFERENCE(X, (Φ,E))
2: (ϕ∗, best_info_gain)← (false, 0)
3: for ϕ in breadth_first_traversal((Φ,E)) do
4: parents← direct_predecessors(ϕ)
5: if ∃ϕ′ ∈ parents . Nϕ′ = Nϕ then
6: continue
7: info_gain← JNϕ(ϕ̃)
8: if info_gain > best_info_gain then
9: (ϕ∗, best_info_gain)← (ϕ, info_gain)

10: return ϕ∗

Theorem 3. Let (Φ,E) be a bounded partial order encoded as a Directed Acyclic Graph (DAG),
G = (V,E), with vertices V and edges E. Further, let B denote the largest anti-chain in Φ. If
Tdata and Trand respectively represent the worst case execution time of computing ϕ and ϕ̃, then
for demonstrations X , Alg 2 runs in time:

O
(
E + Tdata · V + Trand · |B||X|

)
(17)

Proof sketch. BFT takes O(V + E). Further, for each node, ϕ is computed (O(Tdata · V )).
Finally, for each node in each of the candidate anti-chains Bk, ϕ̃ is computed. Since |B| is the
size of the largest anti-chain, this query happens no more than |B||X| times.

5 Experiments and Discussion

Scenario. Recall our introductory gridworld example Ex 1. Now imagine that the robot is pre-
programmed to perform task the “recharge and avoid lava” task, but is unaware of the second
requirement, “do not recharge when wet”. To signal this additional constraint to the robot, the
human operator provides the five demonstrations shown in Fig 1. We now illustrate how learning
specifications rather than Markovian rewards enables the robot to safely compose the new constraint
with its existing knowledge to perform the joint task in a manner that is robust to changes in the task.
To begin, we assume the robot has access to the Boolean features: red (lava tile), blue (water tile),
brown (drying tile), and yellow (recharge tile). Using these features, the robot has encoded the
“recharge and avoid lava” task as: H(¬red) ∧ P (yellow).

8



Concept Class. We designed the robot’s concept
class to be the conjunction of the known require-
ments and a specification generated by the gram-
mar on the right. The motivation in choosing this
grammar was that (i) it generates a moderately
large concept class (930 possible specifications
after pruning trivially false specifications), and
(ii) it contains several interesting alternative tasks
such as H(red =⇒ (¬brown S blue)), which
semantically translates to: “the robot should be
wet before entering lava”. To generate

Concept Class Grammar:

〈φ〉 |= 〈H ψ〉 | 〈P ψ〉
〈ψ〉 |= 〈β〉 | 〈β〉 =⇒ 〈β〉
〈β〉 |= 〈α〉 | 〈α〉 ∧ 〈α〉 | 〈α〉 S 〈α〉
〈α〉 |= AP | ¬AP
〈AP〉 |= yellow | red | brown | blue

the edges in Hasse diagram, we unrolled the formula into their corresponding Boolean formula and
used a SAT solver to determine subset relations. While potentially slow, we make three observations
regarding this process: (i) the process was trivially parallelizable (ii) so long as the atomic predicates
remain the same, this Hasse diagram need not be recomputed since it is otherwise invariant to the
dynamics (iii) most of the edges in the resulting diagram could have been syntactically identified
using well known identities on temporal logic formula.
Computing ϕ̃. To perform random satisfaction rate queries, ϕ̃, we first ran Monte Carlo to get a
coarse estimate and we symbolically encoded the dynamics, color sensor, and specification into a
Binary Decision Diagram to get exact values. This data structure serves as an incredibly succinct
encoding of the specification aware unrolling of the dynamics, which in practice avoids the exponential
blow up suggested by the curse of history. We then counted the number of satisfying assignments and
divided by the total possible number of satisfying assignments.3 On average in these candidate pools,
each query took 0.4 seconds with a standard deviation of 0.32 seconds.
Results. Running a fairly unoptimized implementation of Algorithm 2 on the concept class and
demonstrations took approximately 95 seconds and resulted in 172 ϕ̃ queries (≈ 18% of the concept
class). The inferred additional requirement was H((yellow∧P blue) =⇒ (¬blue S brown)) which
exactly captures the do not recharge while wet constraint. Compared to a brute force search over the
concept class, our algorithm offered an approximately 5.5 fold improvement. Crucially, there exists
controllable trajectories satisfying the joint specification:(

H¬red ∧ P yellow
)
∧H

(
(yellow ∧ P blue) =⇒ (¬blue S brown)

)
. (18)

Thus, a specification optimizing agent must jointly perform both tasks. This holds true even under task
changes such as that in Fig 2. Further, observe that it was fairly painless to incorporate the previously
known recharge while avoiding lava constraints. Thus, in contrast to quantitative Markovian rewards,
learning Boolean specifications enabled encoding compositional temporal specifications that are
robust to changes in the environment.

6 Conclusion and Future work
Motivated by the problem of compositionally learning from demonstrations, we developed a technique
for learning binary non-Markovian rewards, which we referred to as specifications. Because of their
limited structure, specifications enabled first learning sub-specifications for subtasks and then later
creating a composite specifications that encodes the larger task. To learn these specifications from
demonstrations, we applied the principle of maximum entropy to derive a novel model for the
likelihood of a specification given the demonstrations. We then developed an algorithm to efficiently
search for the most probable specification in a candidate pool of specifications in which some subset
relations between specifications are known. Finally, in our experiment, we gave a concrete instance
where using traditional learning composite reward functions is non-obvious and error-prone, but
inferring specifications enables trivial composition. Future work includes extending the formalism
to infinite horizon specifications, continuous dynamics, characterizing the optimal set of teacher
demonstrations under our posterior model [34], efficiently marginalizing over the whole concept
class and exploring alternative data driven methods for generating concept classes.
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