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Abstract

Arguably, the most difficult part of learning is deciding what to learn about. Should I associate the 

positive outcome of safely completing a street-crossing with the situation “the car approaching the 

crosswalk was red” or “the approaching car was slowing down”? In this Perspective, we 

summarize our recent research into the computational and neural underpinnings of “representation 

learning” — how humans (and other animals) construct task representations that allow efficient 

learning and decision making. We first discuss the problem of learning what to ignore when 

confronted with too much information, so that experience can properly generalize across 

situations. We then turn to the problem of augmenting perceptual information with inferred latent 

causes that embody unobservable task-relevant information such as contextual knowledge. Finally, 

we discuss recent findings regarding the neural substrates of task representations that suggest the 

orbitofrontal cortex represents “task states,” deploying them for decision-making and learning 

elsewhere in the brain.

The ubiquitous problem of representation learning

Imagine standing on a street corner and preparing to cross the street on your way home 

(Figure 1A). Even in the calmest of neighborhoods, your sensory systems will confront a 

staggering amount of information that may or may not be relevant for the decision of 

whether to go or to wait. Computationally, avoiding getting run over is daunting. 

Nevertheless, you can probably complete the street-crossing task successfully even while 

talking to a friend or mentally planning your afternoon. What allows our brains to make 

decisions in complex, multidimensional environments with such ease and efficiency?

We argue that the brain solves seemingly complex tasks by learning efficient, low 

dimensional representations that simplify these tasks. A useful task representation will focus 

on aspects of the environment that are critical to correct performance of the task, that is, it 

will include all factors that are causally related to the outcome of our actions, for instance, 

the speed and distance of the closest oncoming car. At the same time, the task representation 

will gloss over all other information: the colors of the cars, the shops across the street, etc. 

Ignoring input dimensions (color, shape) that are irrelevant for task performance and 

concentrating on the few dimensions that are critical (speed, distance) allows us not only to 

make rapid decisions, but also to generalize learning as widely as possible. That is, correctly 

ignoring irrelevant aspects of the environment will allow learning from one experience to 

inform decision making in other scenarios that share relevant features with the current 

experience and differ only in the irrelevant ones.
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Efficient representations are task-specific. When crossing the street, you should represent 

and act upon the speed and distance of cars, whereas when hailing a taxi, you should 

represent the color of the car, and whether or not the medallion light is on. How does the 

brain construct a representation for each of our numerous tasks? Summarizing a decade of 

our own research, here we discuss findings that suggest that two processes are critical to 

learning task representations: selective attention to only the relevant observable aspects of a 

task [1,2], and augmentation of these with hidden (unobservable) aspects from memory 

[3,4]. The learned task state, we will then argue, resides in the orbitofrontal cortex [5,6], 

which relays to other brain areas a pared down task representation tailored for each decision.

Reinforcement learning as a framework for decision making

In recent years, ideas from the computational field of reinforcement learning (RL; [7,8]) 

have revolutionized the study of learning and decision-making in the brain. In RL, tasks are 

defined as a set of states with action-dependent transitions between them, and with rewards 

(that can also be zero or negative) for each state. The agent starts at some state of the 

environment and traverses states based on (potentially probabilistic) transitions, collecting 

reward (or paying costs) throughout. Tasks do not have unique state representations, for 

instance, Figure 1B,C details two alternative representations of the same street crossing task. 

In Figure 1B, the representation includes four states (ovals), each defined by a location. 

Figure 1C represents the location “south sidewalk” as two distinct states, depending on 

whether a car is approaching or not, thus expanding the representation to five states. As can 

be seen from the action-dependent transitions in the figure (arrows, with actions in 

rectangles and probabilities of each transition), and as we detail below, some representations 

are more useful than others. In particular, by using the representation in Figure 1C to select 

actions, one can ensure reaching home safely, by choosing A2 (“wait”) while in state S1b 

(car approaching) until such as time as a transition to S1a (no car approaching) occurs, at 

which point one can choose A1 (“go”). In contrast, given the state representation in Figure 

1B, there is no action policy that will get you home while ensuring you don’t get hit by a car 

(and therefore hospitalized).

RL algorithms provide a host of asymptotically converging methods for learning optimal 

behavioral policies that will maximize reward and minimize punishment within a given state 

representation [7–8]. Several reviews have detailed the correspondence between these 

algorithms and putative neural substrates, as well as challenges to this framework as an 

explanation of learning and decision making by humans and other animals (e.g., [9–11]). 

Briefly, in model-free RL, most algorithms are variants on the idea of using prediction errors 

to learn from experience a value for each state (or for each action in each state; so-called 

state-action Q values [12]) that summarizes the sum of future rewards that can be expected if 

one is in this state (and takes a particular action). Actions are then chosen that have a higher 

value and thus are expected to ultimately lead to more reward. In model-based RL, instead 

of learning values from experience, one uses experience to learn a model of the task – the 

transition probabilities between states, and the probability of reward in each state (e.g., the 

diagram in Figure 1B). The internal model is then used in a mental simulation to calculate 

the expected long-term return from different action options, and to choose the most 

rewarding one [13]. Evidence suggests that the brain uses both model-free and model-based 
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RL [14–15], with dopamine-dependent learning in the dorsal parts of the basal ganglia 

implementing the former [16–17], and prefrontal-hippocampal-medial basal ganglia 

circuitry implementing the latter [18–22], perhaps aided by dopamine released from the 

noradrenergic locus coeruleus [23–24]. However, the strict division between the two 

algorithms in the brain, and their neural substrates, has recently been challenged [25].

Reinforcement learning relies on representation of tasks as sequences of 

states

Designing the correct state space for each task is critical in RL [26–28]. First, different state 

representations will lead to different optimal action policies, some of which may never lead 

to the desired goal. For example, if you represent the street crossing task as in Figure 1B, 

you will stay on the curb forever, whereas the representation in Figure 1C will get you home 

safely. Second, RL methods suffer from the curse of dimensionality whereby the time (or 

iterations of learning) needed to solve the task scales exponentially with the number of states 

of the task [29]. If the state representation in Figure 1 included all pixels in the visual field, 

there would be numerous alternatives for S1, and it would take very many street crossings to 

estimate the values of different actions for each of the states accurately. Thus, to make 

learning in RL simulations feasible, state representations are typically crafted by hand, by an 

expert, so as to accurately describe the task with as few states as possible [27,28] (for 

example, [30]). The overwhelming majority of RL implementations, whether used to play 

backgammon [31] or to model animal learning (e.g., [32]), assume a state space, and are not 

concerned with learning it (but see [28,33]). A question then remains regarding how do 

living agents know what to represent [28] in order to use neural RL to solve these (and 

other) tasks?

Work in the booming field of deep learning has been specifically focused on learning useful, 

reduced representations – often not in the service of RL, but rather for classification tasks 

(e.g., labeling of images or face recognition). The marriage of deep learning and RL (that is, 

learning representations that are useful for goal-directed policy learning) has led to exciting 

breakthroughs in artificial intelligence, such as mastering the game Go [34], and playing 

Atari games better than humans [35]. However, these implementations require millions of 

iterations to learn representations, and therefore do not provide insight regarding how 

humans and animals learn task representations [36]. Moreover, even deep learning networks 

cannot flexibly solve new tasks that they have not been specifically programmed to learn 

[37], to the extent that these require a different representation of the same inputs (e.g., the 

task of hailing a taxi in Figure 1D).

A useful state representation for RL can be derived from the true causal structure of the task

—it should include all the environmental features that determine (causally) whether actions 

will lead to (long term) task-relevant outcomes (rewards and punishments), while any 

dimension or feature of the environment that is not causal to these outcomes can be ignored 

and generalized over [27]. Learning such a minimal representation from trial and error is not 

trivial due to the large number of features that are potentially relevant to each task [28,38]. 

These include not only all the currently observed features, but also past events and actions 
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that may be causally relevant to future outcomes, for example, the fact that you hurt your 

foot yesterday and thus can only walk slowly across the street in Figure 1A. Moreover, while 

the environment typically provides feedback (rewards or punishments) for actions, there is 

no direct feedback for the representations underlying these actions, making it harder to 

determine if our current state representation is suitable for the task at hand, or can be further 

improved. Nevertheless, the brain seems to learn appropriate representations for new tasks 

almost effortlessly and in few trials [39]. How is representation learning achieved in the 

brain of humans and animals? Below, we summarize findings from several studies that were 

aimed at elucidating basic principles of neural representation learning, making note of open 

questions where progress can be made in the near term.

Dimensionality reduction of task representations using attention

As a highly-simplified laboratory analogue of a task such as street-crossing, where only few 

dimensions of the environment determine the outcome for actions, we developed the 

Dimensions Task ([1–2]; Figure 2A). On each trial, the participant was asked to choose one 

of three visual stimuli defined along three dimensions (e.g., shape, color and texture), in 

order to obtain reward. Importantly, participants were instructed that only one dimension 

(e.g., shape) is relevant to determining rewards, and within this dimension one ‘target’ 

feature (e.g., circle) will lead to a reward 75% of the time while other features will lead to 

reward with only 25% chance. Every few (e.g., 30) trials, the relevant dimension and the 

target feature changed, and the participant was notified (‘a new game is now starting’). This 

task, similar to the extradimensional/intradimensional set-shifting task in animals [40], is a 

multidimensional extension of the multiple-option choice task (n-armed bandit task) used in 

many neuroeconomics studies [e.g., 41–42], and a probabilistic version of the Wisconsin 

card sorting task [43], albeit with rapid, signaled, changes of relevant dimension. Our goal 

was to use this task, together with a host of computational models, to investigate in detail 

how humans learn by trial and error what is the relevant dimension for representing task 

stimuli.

Findings from the Dimensions Task have shown that participants employ attention 

mechanisms to create a lower-dimensional representation that constrains learning and 

decision making to dimensions that are deemed relevant for obtaining reward [1,2]. In 

particular, formal model comparison showed that participants do not learn as Bayesian ideal 

observers on the one extreme, nor do they apply RL to each stimulus as a whole on the other 

extreme (e.g., learning a value for a green triangle with stripes and a separate value for a 

green triangle with polka dots) [1]. Instead, participants learn the task using attention-

weighted RL [2,28]: stimulus dimensions are selectively weighted by attention both when 

determining the value of each option, and when learning from prediction errors (Figure 2B). 

These weights can be seen as constructing a lower-dimensional task representation. For 

instance, if the weight for one dimension (e.g., color) is 1 and the other two weights are 0, 

the task representation will include only the color of the stimuli, ignoring shape and texture. 

Other weights will prioritize dimensions less exclusively, for instance strongly representing 

shape, and ignoring color for the most part, but not completely. In this way, attention 

dynamically generates a representation that focuses on the dimensions that are deemed most 

relevant to task performance at any given timepoint [44].
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This work has highlighted the involvement of the fronto-parietal attention network 

(including the intraparietal sulcus, precuneus and dorsolateral prefrontal cortex; [45–46]), 

classically associated with attentional control, in changing attention from one dimension of 

the task to another during learning [2], and therefore for switching between alternative task 

representations. BOLD signals in both value-sensitive areas in the dlPFC and prediction-

error-sensitive areas in the ventral striatum showed significantly higher correlation with 

values and prediction errors (respectively) derived from the attention-weighted model as 

compared to a model that attends equally to all three dimensions ([2]; Figure 2C), further 

supporting the idea that task representations are dynamically modified using attention 

[44,47,48]. However, it is not yet clear how humans determine what to attend to, and how 

attention changes from trial to trial based on actions and outcome feedback (Box 1).

The role of inference and context in shaping task representations

Dimensionality reduction through selective attention addresses one aspect of the 

representation learning problem: the existence of extraneous information in sensory input. 

An opposite problem is that of missing data: not all task-relevant information is readily 

available. For instance, in some countries you should look to the other direction in search of 

oncoming traffic; still in others, to cross the street you should not wait for a gap in traffic but 

rather walk at a steady, slow pace, and cars will slow down and create a gap around you, 

though a crosswalk may look deceptively similar in all cases. More generally, context – 

location, time, phase of the task, as well as internal goals and past knowledge – is often 

critical to learning and decision making, but is not necessarily perceptually observable.

Put differently, a ubiquitous problem in learning a task representation is that externally 

similar situations can require different action policies in different contexts, and thus should 

be represented as separate states depending on context. Conversely, some seemingly 

different situations may be equivalent in terms of the causal structure of the task, and thus 

should be aliased into a single state to allow generalization [27–28,49–50]. In real-world 

tasks, incoming information is rarely delineated into trials with clear, punctate, stimuli that 

flash on and off to signal the current state, thus a fundamental problem in learning is 

determining which experiences should be considered together (i.e., represented as the same 

state, allowing learning from one experience to affect behavior in the other) or learned about 

separately [4,51]. For instance, in the example in Figure 1, the question is whether instances 

of standing on the south sidewalk should be delineated into two states based on the presence 

or absence of oncoming traffic, as in Figure 1C (when attempting to go home), or rather they 

can all be considered as a single state (as is the case if Figure 1D, when going to work, 

although in that case instances in which a taxi is approaching need to be represented as a 

separate state). Regardless of whether the context is observable or not (in the example in 

Figure 1, the task goal can be considered a context), it is clear that situations must be 

grouped into states differently for different contexts, and this context- or task-specific 

grouping must be learned.

Since no two experiences are exactly alike, one idea is that incoming information is 

clustered according to similarity (i.e., similar experiences are assigned to the same cluster), 

with each cluster effectively forming a state on which RL operates (Figure 3A). This 
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intuitive but powerful idea has been formalized within a statistically optimal theory (based 

on Bayesian inference) of how an animal or human might generate task states in their 

internal representation of the world, based on experience. The idea is that we start from a 

single state (cluster), and expand our representation as needed when new events differ 

substantially from what we have experienced so far [3,52]. In this way, the high-level 

contextual structure of a task can be learned.

Such clustering-based representation learning, together with traditional associative learning 

that treats each cluster as a distinct state (e.g., learning a single association or value based on 

all stimuli assigned to that cluster), can explain why it is difficult to change old associations. 

Consider the notorious ineffectiveness of extinction procedures in fear conditioning: after a 

rat is exposed to pairing of a tone and a shock such that the tone comes to elicit freezing 

behavior due to prediction of an upcoming shock, attempts to weaken the association 

between the tone and the shock by repeatedly presenting the tone without shocks reduce fear 

only temporarily. Studies demonstrate that the fear response returns over time (‘spontaneous 

recovery’) [53], with changes in context (‘renewal’) [54], or after a reminder shock 

(‘reinstatement’) [55]. Our framework explains the ineffectiveness of extinction as resulting 

from the animal’s inference that extinction trials and acquisition trials are likely generated 

by different ‘latent causes,’ and thus should be clustered into separate states (Figure 3A) [3]. 

This idea provides a normative explanation for the long-held view that in extinction the 

animal learns a new ‘tone→no shock’ association, rather than modifying the old ‘tone 

→shock’ association [54].

Indeed, increasing the similarity between the acquisition phase and the extinction phase 

through gradual extinction can increase the effectiveness of extinction. Gershman and 

colleagues [56] used the principle of similarity-based representation learning to modify fear 

memories in rats by making the change from shock to no shock gradual (in contrast to the 

commonly used abrupt extinction paradigm; Figure 3B). Their goal was to prevent the rats 

from generating a new task state in the extinction phase, and thus cause the ‘tone →no 

shock’ experiences to influence the previously acquired ‘tone→shock’ association. Gradual 

extinction resulted in more persistent loss of fear, as measured by lack of reinstatement or 

spontaneous recovery of fear at test (Figure 3C). In human fear conditioning, a meta-

analysis showed that individuals who extinguished a fear association faster showed more 

spontaneous recovery of fear [57]. This may be because those who showed faster extinction 

had more readily inferred a new latent cause in extinction. As a result, they attributed fewer 

extinction trials to the acquisition cause, leaving the original fear memory intact, as was 

evident in the later recovery of fear.

Similarity-based clustering as a general principle of representation learning

Clustering of experience according to similarity for the purposes of delineating task states 

seems to be a general phenomenon in learning, going beyond situations that involve strong 

aversive reinforcers. For instance, in a perceptual decision-making task [58], humans were 

asked to quickly estimate the number of circles on a screen (Figure 4A). The true number of 

circles was then revealed, such that participants could estimate the number of circles on 

subsequent trials by learning the mean number of circles in the task (the number of circles 
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was drawn from a Gaussian distribution, making the mean of previous trials the best 

estimate for the next trial). Unbeknownst to participants there were two types of trials 

signaled by different colors of the circles (e.g., blue circles in one trial type and green circles 

in the other; Figure 4B) and drawn from different Gaussian distributions (Figure 4A). The 

resulting number estimates (Figure 4C) suggested that when the distributions associated with 

the two trial types were similar, participants grouped the different colored trials together and 

averaged their statistics during learning, as if they all belonged to one color-blind state. In 

contrast, when the two means were dissimilar, participants seemed to separate trials into 

single-color states (as in Figure 4B), separately learning about circles of each color [58].

Beyond their effect on delineating learning, clusters of experiences that are blended together 

in one state can be viewed as comprising a single multi-event ‘memory trace’. The 

boundaries of memory traces may therefore also reflect the process of representation 

learning: if the current experience is similar enough to previous experiences, it should be 

added to a previous memory trace (thereby modifying that memory, i.e., causing learning 

[59]), whereas a novel experience should spur the creation of a new memory trace. To test 

this, participants were presented with line segments that changed gradually throughout a 

block of the experiment. Critically, in half of the blocks, among the small trial to trial 

changes of the line segment, one larger change (‘jump’) was embedded. The authors 

hypothesized that this jump would cause a splitting of memory traces, thereby protecting the 

memories of the line segments in the beginning of the block from interference from the 

segments later in the block. Indeed, when tested for memory of one of the initial line 

segments in the block, participants were more accurate in blocks that involved a jump as 

compared to blocks that only involved gradual changes. Computational modeling suggested 

that in the jump condition, two memory traces were created whereas blocks with no jump 

resulted in a single memory trace [60]. The idea that latent-cause inference determines not 

only RL, but also the organization and modification of memories, can explain many extant 

phenomena in the literature on ‘reconsolidation’ of memory [61].

The neural substrates of representation learning

Lesion and developmental data in rodents suggest that the hippocampus plays an important 

role in determining when to create a new state (cluster) or update an old one [3,61–65]. The 

hippocampus is important for detecting novelty [66–67] and therefore may participate in 

computing and signaling the (dis-)similarity of different experiences. Animals with 

hippocampal lesions do not show context sensitivity of extinction [62] or other related 

conditioning phenomena such as latent inhibition [63], instead behaving as if extinction and 

acquisition trials are all clustered in one state. Animals with an under-developed 

hippocampus (e.g., young humans and rodents) also generalize learning widely [64–65,68–

69], consistent with an over-simplified representation with a small number of states [3].

Other work implicates a different brain area – the orbitofrontal cortex (OFC) – in the 

representation of learned task states [70–71]. Many decision-making related functions have 

been attributed to the OFC, including response inhibition, somatic markers, and most 

dominantly: outcome and/or economic value expectancies [5,71]. However, lesions [72–75], 

inactivation [76], electrophysiological recording data [77–81], and fMRI findings [6,82–84] 
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suggest that the OFC is critical for representing the current state of the task when this state is 

not immediately evident from sensory information and conveying this representation to the 

striatum for RL [5]. For instance, in an fMRI study in which human participants were asked 

to infer what quadrant of a safari they were in based on evidence of animals recently seen, 

the similarity structure of optimal location inferences over time correlated best with the 

similarity structure of activations in the OFC [83]. In electrophysiological recordings from 

OFC in an odor-guided go/no go task in rodents where different odors appeared in sequences 

that made the task equivalent to traversing a (virtual) T-maze, state similarity showed that 

OFC represented the detailed state structure of the task, above and beyond other quantities 

such as expected rewards that could also be extracted from the neural dynamics [81].

Both electrophysiological [77] and lesion data [5] suggest that even without a functioning 

OFC, the striatum has access to a state representation that is bound to external stimuli 

(‘observable states’; although unobservable information about timing is also likely computed 

in the striatum [85]). In contrast, inferred states that incorporate internal information from, 

e.g., working memory, intended actions, or future goals, and are based on latent-cause 

inference as discussed above (‘partially observable states’) seem to require the OFC [5,86–

87]. This can explain why decision making becomes more OFC-dependent as tasks rely 

more on inference processes necessary to determine the underlying hidden state of a task.

To test this hypothesis, Schuck and colleagues designed a task in which correct performance 

required partially observable states [6]. Human participants had to judge the age (old/young) 

of either a face or a house presented overlaid on each other, with the category to be judged 

determined by the previous trial (Figure 5A). The initial category to be judged was 

instructed. Thereafter, participants were asked to continue judging that same category as 

long as the age of the stimuli in the judged category remained the same. Once the age of the 

currently-judged category differed from the age in the previous trial, they were instructed to 

switch to judging the alternative category on the next trial. Participants performed the task 

well (<5% errors) suggesting that they correctly represented, at each timepoint, the state of 

the task (Figure 5B). A multivariate classifier for the 16 task states could reliably decode the 

current state of the task from the OFC, and from that area only (Figure 5C), despite the fact 

that there were no rewards or reward-expectations in the task. The fidelity of task 

representations in the OFC correlated with behavioral performance (Figure 5C), and on error 

trials the correct state was decoded significantly below chance. Moreover, irrelevant aspects 

of the task (e.g., information from two trials back) were not decodable in the OFC (Figure 

5D), supporting the selectivity of the orbitofrontal representation to only task-relevant 

information, as is required from a minimal state representation. This was in contrast to other 

brain areas, for instance, the hippocampus and the dorsolateral prefrontal cortex, that 

represented some (but not all) task-relevant aspects and some task-irrelevant information [6] 

(Figure 5D). However, recent evidence suggests that replay of sequences of task states in the 

hippocampus at rest improves orbitofrontal representations [88].

As befits such a critical brain function, the above findings implicate a variety of brain areas 

in representation learning: attention networks determine perceptual similarity, which is 

augmented with previously remembered information (e.g., to determine novelty) in the 

hippocampus, and segmented into latent causes that are represented as separate states in the 
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OFC. The dorsolateral prefrontal cortex, in turn, is implicated in switching between state 

spaces when the global task representation changes [89]. Even with these clues in place, 

however, it is not clear what brain areas coordinate the online learning of a task-state 

representation – the elusive process for which we don’t yet know the computational 

algorithm either (Box 1).

Carving the world at its task-relevant joints

Reinforcement learning – how feedback from the world, and particularly unexpected 

feedback, is incorporated into future predictions – is fairly well understood in the brain. 

What is less clear is the fundamental process of representation learning – how we learn to 

carve streams of ongoing experience into task states that correctly encompass all that is 

relevant to the task at hand in a minimal representation that generalizes learning as widely as 

possible [27,28]. RL cannot occur without a state representation, and different 

representations can render a task extremely simple or exquisitely complex. Moreover, since 

only actions are given feedback in the form of rewards and punishments, the all-important 

task representation must be learned without direct feedback, extracted from the overall 

statistics of the task, the environment, and the agent’s performance.

In this Perspective, we focused on three lines of work attempting to elucidate the algorithms 

and neural substrates of representation learning. We first suggested that selective attention, 

rather than arising from neural constraints, can in fact be viewed as a mechanism that allows 

rapid learning: selective attention solves the curse of dimensionality in RL by reducing the 

dimensionality of task states and focusing only on those dimensions that are causally 

important for the task at hand. By blurring out irrelevant dimensions, selective attention 

allows us to generalize over them and employ our learning and decision making processes 

more efficiently. Thus, selective attention helps overcome what is perhaps the most 

fundamental constraint: we can afford only a limited amount of experience because our lives 

are finite, and the passage of time is irreversible.

Indeed, within the non-relenting stream of experiences, no two are exactly alike. Thus, 

learning from past experience entails generalization—using experience from one situation to 

inform us about a (slightly) different situation. In learning the boundaries of generalization, 

we implicated a clustering process that assumes that similar experiences belong to the same 

state (cluster), while also allowing for a growing representation when faced with novel 

experiences [3,52]. We presented empirical evidence suggesting that this similarity-based 

clustering process is intertwined with learning, and that the learned representations affect 

both memory and decision making. Learned attention interacts with the clustering process 

by affecting similarity such that attention to a dimension, e.g., speed of cars, effectively 

stretches that perceptual axis so that situations with slightly different speeds may be 

separated into distinct clusters, whereas ignoring a dimension, e.g., color of cars, will mean 

that different colors will not be considered dissimilar. This similarity then affects both the 

organization of memory and how new experience is combined with old knowledge, through 

learning.
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One conclusion from these studies is that, in some cases, slower learning is better. This is 

particularly important when the goal of learning is to modify previous knowledge when the 

environment has changed (e.g., from threatening to safe). Fast learning can easily be 

achieved by postulating a new state of the task, but this prevents the modification of 

previously held beliefs, associated with the old task states. Our framework suggests that new 

states are initialized when we are confronted with information that is not similar to previous 

experience. This unpredictable information would presumably generate a prediction error. A 

small prediction error will lead to little learning. However, a very large prediction error will 

lead to generation of a new state. Thus, to impact an old state with new information, the 

information must be unexpected, but not too much so. This principle of activating the old 

state and providing non-confirming information to update the predictions contingent on that 

state, which we took advantage of in our gradual extinction experiment [56], is also the basis 

of memory-modification methods in cognitive behavioral therapy for post-traumatic stress 

disorder [90].

The learned state representations are multimodal, potentially incorporating information from 

any sensory modality, as well as from memory. We reviewed evidence suggesting that the 

OFC, a prefrontal brain area that receives widespread sensory, limbic and high order 

afferents [91], is well-poised to represent the abstract identification of the current state [88]. 

The idea is that the representation in the OFC is akin to a ‘pointer’ in computer science – an 

abstract link to information represented in other brain areas, which identifies the current 

state. Information that is irrelevant to the current state (e.g., the color of oncoming cars) 

would not affect the orbitofrontal representation. In contrast, information that, if different, 

would change the current state (e.g., the speed of the closest car), would presumably be 

decodable in the OFC [92]. Importantly, according to our theory, this is not necessarily 

because the OFC represents this information per se, but because different settings of this 

variable lead to different states. This hypothesis, different from the dominant view that the 

OFC represents expected (reward) outcomes [e.g., 93–96], suggests that expected reward 

will be decodable in the OFC only to the extent that it is part of the state representation 

(which, in fact, it often is).

In sum, we suggest a dynamic interplay between RL in the basal ganglia, adaptive attention 

processes in the frontoparietal attention control network, and memory processes that reflect 

the learned structure of the environment and shape orbitofrontal state representations. In this 

framework, selective attention is not a limitation of the neural learning system, but an 

adaptive mechanism that allows rapid learning. Memory is similarly seen as an active 

process that does not simply mirror the external environment, but rather reflects inference 

regarding causal relationships in the environment.

Research on representation learning is still in its infancy both in neuroscience, and in 

machine learning, where a shift is underway from solving specific problems (like playing Go 

or designing a self-driving car) to designing general artificial intelligence that can adaptively 

learn to represent and solve new tasks. As such, many critical questions are yet unanswered 

(Box 1). The findings we have discussed suggest that representation learning involves the 

dynamic interplay of cognitive functions that have traditionally been studied separately from 

each other. Understanding how information flows between these systems will help explain 
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the amazing adaptive capabilities of humans that go orders of magnitude above and beyond 

simplified laboratory tasks. In any case, understanding representation learning – this 

computationally daunting task that our brain so marvelously excels at – will be fundamental 

to any complete theory of learning in the brain.
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Box 1.

Open questions: representation learning in real time, in the brain

A major outstanding question regards how trial by trial feedback shapes attention (which, 

in turn, shapes task representations). Our findings show that the interaction between 

attention and learning is bidirectional, with high-value features attracting attention and 

attention determining how value is accrued to different features [2]. Still, they do not 

explain how attention is determined trial-by-trial, that is, how feedback (e.g., rewards and 

prediction errors) is used to determine whether to switch the focus of attention on the 

next instance [27–28,48].

Computationally, it is not known what statistics of the task (and our performance on it) 

convey that we are focusing on the wrong task dimensions [97]? What evidence is 

indicative of too narrow a focus of attention that must be widened, and vice versa? It is 

likely that this type of evidence transcends a single trial. For instance, one way to define 

the quality of a representation is by the entropy of motivationally important outcomes 

predicated on that representation, with lower entropy (i.e., more deterministic 

predictions) being preferable. For example, the representation in Figure 1B is less 

effective than that in Figure 1C in predicting our chances of reaching the other side of the 

street safely. However, this, and similar hypotheses, require testing.

Neurally, it is not yet known whether selective attention operates directly to shape the 

funneling-in cortical afferents to the striatum (so that irrelevant, unattended, input 

dimensions do not contribute to striatal RL as the striatum does not “know” that these 

dimensions existed in stimuli), computations within the striatum (e.g., through weighting 

the contribution of different input dimensions to the valuation of the current state), or 

cortical representations (e.g., in the OFC) which, in turn, affect what the striatum 

represents and learns about. In perception, expectations and attention affect neural 

responses to stimuli both before (with elevated activity for predicted stimuli) and after 

stimulus onset (with predicted stimuli eliciting less activation than surprising ones due to 

‘expectation suppression’) [98]. These neural effects have been formalized within the 

computational framework of predictive coding, as effects on initial starting points and 

drift rates in Bayesian evidence accumulation models [98]. While we have shown that 

attention to input dimensions influences both valuation and updating in RL [2], an 

understanding of how this manifests neurally, and indeed a detailed comparison of 

computational models of this influence, await future work.

Other open questions include what brain areas are involved in learning new 

representations (rather than representing known task states), and how arbitrary ‘pointers’ 

to task states that can differ radically from task to task are implemented in the OFC. 

Better insight into the nature of state representations in the OFC will hopefully help 

explain how the OFC can switch rapidly and dynamically between representations of 

different tasks, and, indeed, how completely new task representations can be generated in 

the OFC in moments, as people are explicitly instructed about the structure of a new task 

(e.g., as was done in [6]). Ideas about how the hippocampus represents spatial maps that 

differ from environment to environment [99–100] may provide important clues regarding 
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the representation of abstract cognitive maps of tasks. Moreover, understanding how 

unexpected feedback shapes learning of task representations may shed light on, for 

example, the role of dopamine in prefrontal cortices and in the hippocampus.

An important question that the surveyed research has not addressed is how does the 

general structure of inputs (some of which are not task-relevant), which is learned 

through unsupervised learning, interact with learning of task-relevant representations. For 

instance, in the Dimensions Task, all features are present on every trial, but this is not the 

case when crossing the street. An important hint that the barking dog is irrelevant for the 

latter task is probably the fact that street crossing is seldom accompanied by a barking 

dog.

Finally, we do not yet know what constraints our brain has adapted to and been able to 

take advantage of: what are the statistics of natural tasks? Can the brain safely assume 

that even in highly multidimensional environments only a few dimensions are relevant to 

any given task? Presumably, decision-making systems evolved to be tailored to the set of 

tasks that we are routinely faced with. Similar to the breakthroughs in understanding 

vision that followed the quantification of statistics of natural scenes, a clear description of 

the statistics of natural tasks might revolutionize our understanding of the neural basis of 

high-level learning and decision making.
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Figure 1. Task representations.
A) The setting: a street corner. You are on the south side just outside the picture. B) State 

diagram of the task of “going home” from your egocentric point of view. States are in 

circles, actions in gray rectangles, arrows denote state transitions, reward outcomes in color 

within the respective state (r=0 if not stated). At the first state (S1, yellow: south sidewalk), 

choosing A1 (go) will result in a transition to S2 (light green; north sidewalk) with 

probability 0.6, and a transition to S3 (red; hospital, due to being run over) with probability 

0.4. Since hospitalization is accompanied by a very aversive outcome (r=−100) that 

overwhelms the appetitive outcome of making it home safely (S4, green, r=10), the optimal 

policy is to wait at S1 indefinitely. C) An alternative state representation for the task of 

“going home” that separates S1, the state of standing on the south sidewalk, to two states: 

S1a where no car is in sight and crossing the street is perfectly safe, and S1b where a car is 

approaching and crossing the street is dangerous (only p=0.2 for the transition to the north 

sidewalk when choosing A1, and p=0.8 for the transition to the hospital). Waiting is the 

optimal policy in S1b, and going is optimal at S1a. Eventually, you will get home safely. D) 
Representation of an alternative task in the same exact setting: hailing a taxi to go to work. 

Transitions in S1 occur regardless of your chosen action (to hail or to wait), however, in S2 

the action of hailing a taxi will get you to work whereas waiting will bring you back to S1.

Niv Page 18

Nat Neurosci. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The Dimensions Task.
A) Two variants of the Dimensions Task, one with overlaid color, shape and texture 

dimensions (top), and another with rectangle stimuli comprising of face, tool and scene 

dimensions (bottom) that allow direct measurement of attention via eye-tracking and 

multivariate pattern analysis from visual areas responsive to faces, tools and scenes. B) 
Attention weighted reinforcement learning. A value is learned for each of the 9 features. The 

values are combined, weighted by attention to each of the face, tool and scene dimensions, 

to determine the total value (expected reward) of a rectangle stimulus. Once the outcome is 

observed, a prediction error is calculated as the difference between the outcome to the 

expected reward (value). This prediction error is used to update the values of each of the 

chosen features, weighed by attention to each dimension. ϕ, attention weight; δ, prediction 

error; η, learning rate or step size parameter. C) than Neural activations corresponding to 

areas that correlate with values (left) and prediction errors (right) from the attention-

weighted algorithm significantly better than from a similar algorithm with uniform (1/3) 

weights for each of the dimensions. Figure adapted from [1–2].
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Figure 3. Latent-cause inference in representation learning suggests a mechanism for altering 
fear memories.
A) When confronted with the first extinction trial, the animal determines, based on the 

(dis)similarity of this trial to previous experiences (acquisition trials) whether to attribute it 

to the acquisition cluster or a new cluster. Clusters correspond to states, and are determined 

based on inferred latent causes. In the inference process, cluster assignment is probabilistic 

such that an event can be partially assigned to more than one cluster. B) A gradual extinction 

protocol aimed at making extinction more similar to acquisition, and thus coaxing the 

animal to assign all trials to a single cluster. Top: standard extinction, with no shocks in the 

extinction phase. Bottom: gradual extinction where shocks taper off gradually in the 

extinction phase. C) In two experiments, rats showed significant return of fear after 

reinstatement with a reminder shock (left), or due to spontaneous recovery (right) following 

standard extinction (freezing at test compared to last 4 trials of extinction), whereas after 

gradual extinction rats show no increase of fear at test. Figure adapted from [56].
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Figure 4. Humans spontaneously use similarity to infer the latent structure of task.
A) The Circles Task [58]. Human participants were asked to key in a double-digit guess for 

the number of circles on the screen (bottom). In condition 1, the number of circles was 

drawn either from a Gaussian of mean 65 or from a Gaussian of mean 35 (top left). In 

condition 2 means were 65 and 55 (top right). Conditions occurred in blocks, with each 

Gaussian associated with a different color of the circles. Blocks of the two conditions were 

randomly intermixed within participant (8 blocks of each, 20 stimuli per block). Each block 

involved two different colors. We use only blue and green to illustrate that the mean-65 trials 

were identical in both conditions. B) Participants’ guesses on the mean-65 trials in the two 

conditions suggested that they spontaneously inferred from the whether the task involved 

two latent causes (states), each generating stimuli of one color (depicted) or rather there was 

only one latent cause generating all trials in a block. C) Because of the greater overlap 

between the distributions in condition 2, which resulted in stimuli that were more similar 

across colors, in that case participants tended to infer a single latent cause, thus ignoring the 

color of stimuli and guessing the number of circles on blue trials as closer to the global mean 

of 60. In condition 1, stimuli were sufficiently different to warrant two latent causes, such 

that learning about blue circles was segregated from learning about green circles, and the 

estimate on blue trials was closer to their true mean of 65.
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Figure 5. The orbitofrontal cortex represents the current state of the task.
A) An age-judgement task with hidden states. Participants must judge the age (young/old) of 

one category (e.g., faces) until the age in that category changes. The subsequent trial then 

starts a miniblock of judging the alternate category (e.g., houses) until the age in that 

category changes, and so forth. B) These instructions create a 16-state task where each state 

includes the current category to be judged, the age of the current stimulus in that category, 

the age in the previous trial (for comparison with current age) and the category in the 

previous trial (as age comparison is not needed in the beginning of a miniblock). All state 

components are unobservable except for current age. Each state transitions to one of two 

other states, with equal probability. C) The orbitofrontal cortex (left) was the only brain area 

from which all unobservable components could be classified, and classification accuracy 

there (in an anatomically defined region of interest including the whole OFC) correlated 

with lower behavioral error rates (right). D) Only unobservable, task relevant, features were 

decodable in the OFC (left) in contrast to the hippocampus where only category was 

decodable, for several trials back (right). Error bars: SEM; dashed horizontal: chance 

baseline; * p<0.05 compared to chance, one-tailed. Figure adapted from [6] and [87].
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