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Abstract 
Learning a complex dynamic robot maneuver from a 
single human demonstration is difficult. This paper 
explores an approach to learning from demonstration 
based on learning an optimization criterion from the 
demonstration and a task model from repeated at- 
tempts to perform the task, and using the learned 
criterion and model to compute an appropriate robot 
movement. A preliminary version of the approach has 
been implemented on an anthropomorphic robot arm 
using a pendulum swing up task as an example. 

I Introduction 
One approach to programming robots is to have them 
learn a task by watching the task being performed by 
a human or by another robot. The robot can either 
mimic the motion of the demonstrator, or learn how 
the demonstrator acts in many situations (a policy). 
We are interested in exploring techniques for learning 
from demonstration in cases where the robot may not 
be doing exactly the same task as the demonstrator 
and where there are a small number of task demon- 
strations available. In these cases exactly imitating 
the motion of the demonstrator may not, arhieve the 
task, and there may be too little training data to learn 
an adequate policy. This paper explores an approach 
based on learning a task model and an optimization 
criterion for the task, and using the model and crite- 
rion to compute an appropriate policy. A preliminary 
version of the approach has been implemented on an 
anthropomorphic robot arm using a pendulum swing 
up task as an example. This paper describes that ex- 
ample implementation, the lessons learned, and the 
applicability of various approaches to learning from 
demonstration. 

Learning from demonstration, also known as (‘pro- 
gramming by demonstration”, (‘imitation learning”, 
and “teaching by showing” is a topic that has received 
significant attention in automatic robot assembly over 
the last 20 years. Recent reviews include Bakker and 

Kuniyoshi (1996); Dillmann et al. (1996); Hirzinger 
(1996) and Ikeuchi et al. (1996). The goal is to re- 
place the time-consuming manual programming of a 
robot by an automatic programming process, driven 
by showing the robot the task performed by an ex- 
pert. Approaches include direct teaching (teaching by 
showing) in which the robot imitates human motions 
or teleoperated motions, directly learning a demon- 
strated policy (Widrow and Smith, 1964; Pomerleau, 
1991; Nechyba and Xu, 1995; Grudic and Lawrence, 
1996), and the approach followed in this paper: learn- 
ing the intent of the demonstrator and using that in- 
tention model to plan or generate a policy (Friedrich 
and Dillmann, 1995; Tung and Kak, 1995; Delson and 
West, 1996). Using the same robot as the one used 
in this work, learning from demonstration was inves- 
tigated by Kawato et al. (1994) and Miyamoto et al. 
(1996). 

2 The Human Demonstration 
The goal of the swing up task is to move the hand 
so that a pendulum, initially hanging down, swings 
up to the inverted position and then is balanced in 
the inverted position (Spong, 1995). The hand holds 
the axis of the pendulum, and the pendulum rotates 
about this hinge in an angular movement (Figure 1). 
A general version of this task allows both horizontal 
and vertical hand motion perpendicular to the pen- 
dulum axis. However, to simplify the task for this 
first implementation, we restricted the hand motion 
to a horizontal line with the pendulum axis perpen- 
dicular to this line. Humans naturally use both hor- 
izontal and vertical hand motion to do the task, but 
can restrict their motion to mostly horizontal hand 
motions if asked. Adding additional degrees of free- 
dom to the hand motion makes the t,ask easier for 
the human demonstrator, but more difficult for the 
robot learner, as assessing the demonstrator’s intent, 
building a model, and generating a policy are all more 
complex. Figure 2 shows the hand motion and pendu- 
lum motion from several human demonstrations, and a 
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Figure 1: The SARCOS robot arm with a pendulum 
gripped in the hand. The pendulum axis is aligned 
with the fingers and with the forearm in this arm con- 
figuration. 

“movie” of one of the human motions. Human motion 
was measured using a stereo vision system (QUICK- 
MAG) running at a 60Hz sampling frequency. The 
pendulum is marked by two colored balls that can be 
tracked in real-time. Note that the demonstration fo- 
cuses on the variables important to the task, and the 
variables relevant only to the human arm such as joint 
angles are ignored. Our goal is task level learning from 
demonstration, rather than imitating or following pat- 
terns of arm movements. 

3 Implementing The Task 
We implemented learning from demonstration on a 
hydraulic seven degree of freedom anthropomorphic 
robot arm (SARCOS Dextrous Arm located at ATR, 
Figure 1). The robot observed its own performance 
with the same stereo vision system that was used to 
observe the human demonstrations. The combined vi- 
sion and robot control system has about a 0.12s delay 
between an event and the response to the perception of 
that event, We implemented redundant inverse kine- 
matics as well as real time inverse dynamics (An et al., 
1988) to allow the robot to follow desired hand mo- 
tions. The inverse kinematics implementation is based 
on a modified version of the extended Jacobian method 
(Baillieul, 1985). It uses a second order local optimiza- 
tion technique, incorporating an optimization criterion 
suggested for biological motor control in Cruse and 
Bruewer (1987). 
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Figure 2: The human hand positions and pendulum 
angles for several demonstration swing ups, and pen- 
dulum configurations during one of the human demon- 
strations. The pendulum starts at 6’ = --K and a suc- 
cessful swing up moves the pendulum to 0 = 0. The 
hand motions are quite similar to each other during 
the swing up portion of the task, while the pendulum 
motions are quite similar to each other throughout the 
demonstration. 
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We decided to structure this task with two parts: 
1. Learning to swing the pole up. The goal of this 
subtask is to move the hand so that the pole becomes 
upright with a small angular velocity. This motion is 
done without feedback (open loop). 
2. Learning to balance the pole upright. This 
phase of the task is entered when the pole is nearly up- 
right with a small angular velocity. Feedback is used to 
balance the unstable inverted pendulum. If the pen- 
dulum is within the capture region of the feedback 
controller the task has been completed successfully. 

The most obvious approach to learning from 
demonstration is to have the robot imitate the hu- 
man motion, by following the human trajectory x ( t )  
(x is the state of the task and t is time) and apply- 
ing the correct commands u(t) (U is the control in- 
put to the task). The dashed line in Figure 3 shows 
the robot hand motion as it attempts to follow the 
human demonstration of the swing up task, and the 
corresponding pendulum angles. Figure 3 also shows 
a movie of the corresponding motion. Clearly, direct 
imitation failed to swing the pendulum up, as the pen- 
dulum did not get even halfway up to the vertical po- 
sition, and then oscillated about the hanging down 
position. 

Another approach is to mimic the human response 
to each situation (a policy u(x), where U is the action 
and x is the task state). This typically requires large 
amounts of demonstration data, which is not avail- 
able in this case and is usually expensive to collect. 
Also, expert human demonstrations tend to have lim- 
ited variability (Figure 2) so the training data is too 
limited to cover enough states to learn an adequate 
policy. The discussion section explores this issue fur- 
ther. 

The approach we will use is to apply optimal con- 
trol to finding a swing up trajectory that works for the 
robot, based on learning both a model and and opti- 
mization criterion and using the human demonstration 
to initialize the optimization process. 

0 Learning a model. The robot learns a model 
of the task (xk+l  = f(xk,uk)) from its attempts to 
perform the task. 

Learning an optimization criterion. 
The robot learns an optimization criterion 
C = Ck ~ ( x k ,  u k ,  k) from the demonstration that 
ranks performance similar to human performance as 
more optimal. 

0 Using the human performance to seed and 
limit the optimization process. Most optimization 
processes only find local optima, and require an initial 
point or trajectory to seed the search. We use the hu- 
man demonstration as the initial seed. The existence 
of a demonstration focuses the optimization process on 
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Figure 3: The hand positions and pendulum angles 
during robot learning from demonstration, pendu- 
lum configurations during robot imitation of a human 
demonstration (1st trial), and pendulum configura- 
tions after learning (5th trial). 
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a small volume of state space, and greatly reduces the 
need for exploration. 

4 Learning a Model 
This paper describes a knowledge-based parametric 
approach to learning a model. A knowledge-based 
parametric model is based on a priori knowledge of the 
physics of the task. A dynamic model of an idealized 
pendulum (all mass concentrated at  the tip) attached 
on a horizontally moving hand is: 

&+I = (1 - 01) & + a2 (sin(@,) + 2 k  cos(ek)/g) (1) 

where 0 is the pendulum angle, e is the pendulum an- 
gular velocity, x is the horizontal hand acceleration, al 
is the viscous damping, cy:! is Ag/l, A is the time step 
0.0167s, g is the gravitational acceleration 9.81m/s2, 
and I is the length of a pendulum 0.35m. Idealized val- 
ues for the a based on these parameters are cy1 = 0.0 
and a2 = 0.47. Identified values for the a based on 
large numbers of robot movements with the pendulum 
are a1 = 0.0094 and a2 = 0.56. Parametric models 
were constructed using linear regression in MATLAB. 
Note that the real pendulum did not have all of its 
mass concentrated at the tip, did not have ideal vis- 
cous friction, and the identified pendulum model in- 
cluded the robot dynamics between commanded hand 
accelerations and actual hand accelerations. 

5 Learning to Balance 
The robot learned to balance the inverted pendulum 
using methods described in Schaal (1997). 30 seconds 
of human balancing data allowed the robot to identify 
a model of the pendulum dynamics. The RFWR non- 
parametric modeling approach was particularly useful 
in producing a local linear model of the inverted pen- 
dulum dynamics (Schaal and Atkeson, 1996; Atkeson 
et al., 1996) 

Bk+l = 0.0051~~+0.0058~~+0.478~+0.9978~+0.052f~  
(2) 

Based on previous work on learning pole balancing 
from demonstration (Schaal, 1997) the following one 
step cost criterion was minimized: 

T(X, U, IC) = 1 2 5 ~ ~  + 50x2 + 1200~9~ + 25i’ + 1.52’ (3) 

This optimization criterion produces the following bal- 
ance controller, calculated using the discrete linear 
quadratic regulator design routine dlqr in MATLAB: 

fcommanded = -6.92 - 9.3j: + 538 + 9.68 (4) 

whose gains are similar to human gains identified from 
the balancing data. The 0.12s visual sensing delay can 

be handled in two ways. Either the state of the system 
can be augmented by delayed commands, or a predic- 
tive controller can be used to predict the state of the 
system 0.12s in the future and apply the feedback con- 
troller to those states. The former method increases 
the complexity of a policy significantly, while the lat- 
ter method requires a model to predict the state of 
the system. We used a predictive controller to com- 
pensate for the delay. The balance controller provided 
stringent constraints on the performance of the swing 
up controller because the robot workspace limited the 
capture region for successful balancing. 

6 Learning to Swing Up 
Given the failure of direct imitation to swing up the 
pendulum, some other approach must be considered. 
We used optimal control to automatically design a 
swing up trajectory for the pendulum. The robot 
learned an optimization criterion C = Ck ~ ( x k ,  u k ,  k) 
that penalizes deviations from the demonstration tra- 
jectory: 

d 
T(Xk, uk, I C )  = (xk - x$)TQ(Xk - X k )  3. U T R u k  ( 5 )  

where the state is x = (0,8,t,i), xd is the demon- 
strated motion, and the control is U = (2). The 
penalty matrices were adjusted to make the robot tra- 
jectory similar to the human demonstration by increas- 
ing the penalty on the deviation in hand position, and 
were: 

/ 1  0 0 o \  

Note that the hand acceleration used in the demon- 
stration is not included in the learned criterion. We 
found that including it allowed the optimized accelera- 
tions to exceed the capabilities of the robot, so setting 
the nominal control to zero helped reduce the size of 
the planned accelerations. 

The first trial (direct imitation of the human mo- 
tion) provided data that was used to build a model 
of the robot (01 = 0.0073,az = 0.55). Standard sec- 
ond order trajectory optimization techniques (Dyer 
and McReynolds, 1970) were used to compute a lo- 
cally optimal trajectory, using the human trajectory 
as the initial trajectory to refine. This optimization 
generated a new hand trajectory for the robot to fol- 
low. The executed hand motion and the corresponding 
pendulum motion are indicated EW the 2nd trial in Fig- 
ure 3. The hand motion had a larger excursion, and 
the pendulum motion came closer to the goal, but did 
not reach it. 
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The model of the robot was re-identified using only 
data from the 2nd trial (a1 = 0.010, a2 = 0.57). This 
trajectory is closer to the data distribution of a suc- 
cessful trajectory, so it may more accurately predict 
the hand motions necessary to swing the pendulum 
up. Again, optimization techniques were used to plan 
a new trajectory, using the previously planned tra- 
jectory to seed the optimization process. The exe- 
cuted hand motion and pendulum motion are indi- 
cated as the 3rd trial in Figure 3. The pendulum 
motion reached closer to the goal, but again failed to 
reach the capture region of the balance controller. 

Re-identifying the model using only data from the 
3rd trajectory did not result in significantly different 
model parameters. Because the model structure was 
not capable of fully representing the complexity of the 
task dynamics, the planner must compensate for resid- 
ual modeling error. There are many possible ways for 
the planner to do this compensation. In the data pre- 
sented in this paper the planner used binary search 
to adjust the viscous drag coefficient used in plan- 
ning so that the planned hand trajectory would add 
more energy to the pendulum, since the energy of the 
pendulum was too little for it to reach the inverted 
position. The first viscous drag adjustment was to set 
(&I = 0.015). A new optimized trajectory was planned 
and executed, resulting in the 4th trial of Figure 3. In 
this trial the pendulum reached vertical with an an- 
gular velocity of 4rad/sec, which wm too high for the 
feedback controller to  capture, so the pendulum con- 
tinued around and then oscillated around the down 
position with an angle of 7r. The second viscous drag 
adjustment was to  set (&I = 0.0125), which resulted 
in the 5th trial of Figure 3. In this trial the pendulum 
reached vertical with a low enough angular velocity 
that the feedback controller was able to capture it. 
Figure 3 shows a movie of this trial. Subsequent tri- 
als with the same planned hand trajectory were also 
successful. Another modeling error compensation ap- 
proach adjusts the desired velocity at the end of the 
swing up movement. This gives a similar performance 
to the approach presented here. 

7 Discussion 

The major lesson from this work is that it is difficult 
to learn a model well enough or fast enough to success- 
fully perform the swing up task after only a few trials. 
Therefore, the planner must compensate for signifi- 
cant modeling error. The planner adjusted the task 
specification to increase the energy pumped into the 
pendulum motion. This discussion section addresses 
some of the questions raised by this implementation. 

7.1 Why did direct imitation of human 
motion fail? 

In our experiments direct imitation of human motion 
failed to swing the pendulum up. There are several 
possible reasons for this. 

0 The robot controller is imperfect. The robot 
does not exactly reproduce the human motion. We use 
a real time inverse dynamics model of the robot arm to 
provide feedforward control. This rigid body dynamics 
model is identified from actual robot motion (An et al., 
1988). There are many effects it does not account for, 
including the dynamics of the hydraulic actuation sys- 
tem. Also, we do not take into account the effect of the 
pendulum on the robot motion, as in direct imitation 
it is assumed that a model of the pendulum dynamics 
is not available. Because we use low feedback gains 
comparable to human feedback gains, modeling errors 
have a substantial effect. 

0 The task is different. It is not clear that the 
response of the pendulum will be the same even if the 
robot hand motion matches the demonstrated hand 
motion. The robot grip of the pendulum axis is not 
exactly the same as the human’s grip and the orien- 
tation of the pendulum axis relative to the motion of 
the hand is slightly different in the two cases. The hu- 
man demonstration included slight deviations from a 
straight line and constant hand orientation, which the 
robot did not replicate in its movements. 

.Unstable tasks often require feedback con- 
trol. Open loop imitation of demonstrated motion 
will often not suffice to control an unstable system 
such as an inverted pendulum, bicycle, or unicycle. 
We note that there are vertical hand motions that 
will stabilize an inverted pendulum without feedback 
control (Blackburn et al., 1992) but in our work the 
only robot hand motion is horizontal. A feedback con- 
troller must therefore be learned, either directly from 
the demonstration data or indirectly as suggested in 
this paper. 

7.2 
As discussed previously, another approach is to learn a 
policy directly from demonstration by mimicking the 
human response to each situation. There are several 
reasons why this is not appropriate for this form of 
learning from demonstration. 

0 The robot controller may be imperfect. The 
robot may not be capable of exactly replicating human 
motion, and the task level learning approach of this 
paper may help compensate for the robot’s lower level 
execution errors. 

0 The task may be different. In addition to 
the small task differences discussed previously, there 
may be large task differences. We have also used hu- 

Why not learn a policy directly? 
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man demonstrations with another pendulum with a 
subst antially different mass, mass distribution, length, 
moment of inertia, and friction. These demonstrations 
can be used to train optimization criteria and to pro- 
vide initial trajectories for optimization, but not to 
train models or directly train policies or motions. 

0 Expert performance generates limited 
training data. Good human performance does 
not usually include errors, so it is difficult to 
learn responses to errors from expert demonstrations 
(Friedrich and Dillmann, 1995). Not enough states 
are visited to build an adequate policy. The robot’s 
attempts to learn a task model also suffer from the 
limited training data, but data from the robot’s at- 
tempts can be used to improve the model, while robot 
data cannot be used to improve a directly learned hu- 
man policy. Expert performance must be degraded or 
perturbed to adequately train a robot policy directly. 
Also, because of the limited demonstration data col- 
lected, learning a policy from this data would have 
lead to motions similar to the demonstrated human 
hand motion, which is unlikely to have worked for the 
reasons discussed in Section 7.1. 

7.3 Why not use “learning control”? 
Learning control, which learns to follow a desired tra- 
jectory through repeated attempts to execute the tra- 
jectory, can be applied in two ways to the swing up task 
(see An et al. (1988) for further references to learning 
control). The robot can learn to follow the human 
hand trajectory more closely by adjusting the torques 
at its joints. This strategy is unlikely to swing the pen- 
dulum up for the reasons discussed in Section 7.1. The 
robot can learn to mimic the demonstrated pendulum 
motion by adjusting its hand trajectory. Learning con- 
trol to match pendulum motion is difficult because the 
relationship between pendulum motion and hand ac- 
celeration is ill-conditioned when the pendulum is near 
horizontal (horizontal hand acceleration has little or 
no effect on the pendulum angle in this configuration). 
Errors in the executed pendulum trajectory while the 
pendulum is near horizontal can only be compensated 
for by large changes in hand acceleration, exceeding 
the capabilities of the robot. 

Introducing an optimal control framework to learn- 
ing from demonstration allows the robot not only to 
replicate the human demonstration, but perhaps to 
find a better or easier way to  do the task. 

7.4 What model is learned? 
The balance controller learned a relationship between 
the measured hand acceleration and the pendulum mo- 
tion, while the swing up controller learned a relation- 
ship between the commanded hand acceleration and 

the pendulum motion. There are arguments for each 
approach. The relationship of the measured hand ac- 
celeration to the pendulum motion is closer to the ide- 
alized physics, and should be invariant over who is 
moving the pendulum base, a human demonstrator or 
a robot. The relationship between commanded and 
actual robot accelerations may be complex, may de- 
pend on the entire state of the robot, and may in- 
troduce additional state such as actuator dynamics 
that might not be included in the identified model. 
The commanded acceleration is known perfectly, while 
the actual acceleration may be difficult to measure, 
often requiring filtering to reduce noise, which intro- 
duces a delay in the measurement. Discrepancies be- 
tween the actual and commanded hand acceleration 
must be eliminated if accurate trajectory following is 
required. Models based on actual hand acceleration 
produced stable feedback controller designs more often 
than models based on commanded acceleration for the 
balance controller. The swing up controller was open 
loop, so the issues were quite different and compen- 
sating for the relationship between commanded and 
actual hand accelerations was important. 

7.5 Why isn’t the learned robot hand 
motion more similar to the demon- 
st ration? 

0 Humans used more capabilities than were 
available to the robot. Even when asked to make 
only horizontal hand movements, the human demon- 
strations included small vertical movements and small 
changes in the orientation of the pendulum axis, which 
may have had a large effect on the pendulum motion. 
The robot ignored these vertical and rotational hand 
movements in the demonstration. Also, humans have 
higher acceleration and jerk (rate of change of acceler- 
ation) capabilities, so it was difficult to get the robot 
to exactly execute the human trajectory. 

0 The task dynamics were different. The hu- 
man demonstrator and the robot used a different grip 
where the pendulum axis might have been oriented 
differently, so the pendulum dynamics may have been 
different. For the robot, the task dynamics included 
the relationship between the commanded robot hand 
acceleration and the actual robot hand acceleration. 
These dynamics were not present in the human demon- 
stration. 

0 The optimization criterion changed the 
robot motion. The human hand acceleration was not 
included in the optimization criterion, so exact repli- 
cation of the human motion was penalized relative to 
similar motions with smaller hand accelerations. With 
the optimization criterion that was used the robot was 
able to find a way to do the task that was easier for it 
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to execute due to the smaller hand accelerations, but 
still managed to swing the pendulum up with a pendu- 
lum trajectory similar to the pendulum trajectory of 
the human demonstration. If a more exact imitation of 
the demonstrated human hand motion was desired the 
penalty on deviations between the robot and human 
hand motion could be increased in the optimization 
criterion. 

7.6 Why wasn’t feedback used during 
the swing up? 

The second order trajectory optimization process pro- 
duces a time varying feedback controller for use during 
trajectory execution as well as a locally optimal tra- 
jectory (Dyer and McReynolds, 1970). However, we 
had difficulties applying feedback gains during pendu- 
lum swing up, due to the need to compensate for the 
sensing delay and since the feedback commands often 
exceeded the capabilities of the robot. 

8 Conclusion 
Human demonstration of a pendulum swing up task 
accelerated robot learning of the task in an initial im- 
plementation of programming by demonstration. The 
robot used optimal control to learn the task, based on 
only a single demonstration of the task. The human 
demonstration provided the optimization criterion and 
an initial trajectory to seed the optimization process. 
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