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Abstract—We formulate and study a multi-user multi-armed
bandit (MAB) problem that exploits the temporal-spatial oppor-
tunistic spectrum access (OSA) of primary user (PU) channels
so that secondary users (SUs) who do not interfere with each
other can make use of the same PU channel. We first propose
a centralized channel allocation policy that has logarithmic
regret, but requires a central processor to solve an NP-complete
optimization problem at exponentially increasing time intervals.
To overcome the high computation complexity at the central
processor, we also propose heuristic distributed policiesthat
however have linear regrets. Our first distributed policy utilizes a
distributed graph coloring and consensus algorithm to determine
SUs’ channel access ranks, while our second distributed policy
incorporates channel access rank learning in a local procedure
at each SU at the cost of a higher regret. We compare the
performance of our proposed policies with other distributed
policies recently proposed for temporal (but not spatial) OSA. We
show that all these policies have linear regrets in our temporal-
spatial OSA framework. Simulations suggest that our proposed
policies have significantly smaller regrets than the other policies
when spectrum temporal-spatial reuse is allowed.

Index Terms—Cognitive radio, spectrum reuse, multi-armed
bandit.

I. I NTRODUCTION

Static spectrum allocation has been shown to result in
spectrum under-utilization [3]. In cognitive radio networks
(CRNs), opportunistic spectrum access (OSA) alleviates the
problem by allowing unlicensed secondary users (SUs) to
identify and exploit the unused spectrum owned by primary
users (PUs) opportunistically while limiting the interference to
PUs below a predefined threshold. OSA finds application as
the underlying communication paradigm in sensor networks
and the Internet of Things [4]–[8].

OSA has been extensively studied at the physical (PHY)
and medium access control (MAC) layers, and various tempo-
ral [9]–[13], spatial [14]–[20], or temporal-spatial [21]–[26]
spectrum-sensing algorithms have been proposed to detect
and utilize spectrum opportunities temporally and spatially
with acceptable interference to PUs. In [20], a two-phase
cooperative spectrum sensing algorithm based on low-rank
matrix completion is proposed to efficiently detect the spec-
trum opportunities by utilizing the spatial diversity of multiple
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SUs. To exploit the temporal and spatial diversities in CRNs,
in [23], [24], cooperative spectrum sensing methods are pro-
posed to allow SUs to determine if they fall within the PU
radio coverage region, while in [21], [25], [26], collaborative
boundary estimation methods are developed to allow SUs to
estimate the PU radio coverage region. In [21], a cooperative
boundary detection scheme is proposed, which intelligently
incorporates the cooperative spectrum sensing concept andthe
recent advances in support vector machine (SVM) [27]. In
[26], a nonlinear SVM algorithm is implemented to perform
irregular coverage boundary detection of a licensed digital TV
transmitter, which then helps to build a location-specific TV
white space database for opportunistic spatial reuse. However,
all the before mentioned works do not address the sharing
of PU spectrum by SUs inside the PU radio coverage region
when the PU is idle. To study the interactions among SUs in
a distributed manner, game theory has been used to design
efficient distributed OSA mechanisms [28]–[32]. However,
most of these works do not exploitspatial spectrum reuse and
assume that each SU interferes with every other SU in the
CRN. To allow for spatial spectrum sharing amongst the SUs,
graphical game algorithms have formulated spatial reuse ofthe
spectrum as a local bargaining process [33], a local minority
game [34], a pricing game [35], a spatial congestion game
[36] or a MAC-layer interference minimization game [37].
However, these works assume that some information about
PUs like their locations or PU channel idle probabilities are
known by all SUs.

Multi-armed bandit (MAB) techniques have been applied
for OSA when PU channel information is unknown. A no-
regret learning method was proposed in [29], assuming that
the channel selection of each SU is known among all SUs.
Accordingly, the learning problem could be simplified as
a single-user MAB problem. Several distributed multi-user
MAB policies have also been proposed when the reward of
each SU is not observable by other SUs. Each SU needs
to sense and access channels by learning the channel states
independently. In [38], all SUs are assumed to interfere with
one another, and a time-division fair share (TDFS) policy
was used to orthogonally divide SUs temporally. The TDFS
policy was shown to achieve logarithmic regret under spectrum
temporal reuse. Instead of partitioning SUs into differenttime
slots, a distributed channel access policy has been proposed in
[39] to incorporate adaptive randomization to subdivide SUs
into different channels. The total regret is also order-optimal
logarithmic. The work in [40] considers the setting where
SUs have prioritized rankings and proposed a distributed
policy based on the well-known UCB1 policy [41], which
yields a uniformly logarithmic regret over time. In [42], the
same channel yield different rewards for different SUs. By
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(a) An edge between two SUs indicate that they interfere with
each other. When a channel is sensed idle, SUs 1, 2 and 3 cannot
use it simultaneously. However, SUs 1 and 4 can reuse the same
channel.
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Fig. 1. Spatial spectrum reuse in a CRN with multiple SUs.

embedding a bipartite matching algorithm, an on-line index-
based distributed learning policy was proposed to achieve
order log2 n regret over time horizonn. All these methods
assume that all SUs interfere with each other if they use the
same channel, and spatial reuse of channels was not addressed.

In this paper, we investigate temporal-spatial spectrum reuse
in a CRN, where PU channel idle probabilities are unknown
to the SUs. This can be formulated as a multi-user MAB
problem. SUs need to perform spectrum sensing for temporally
reusing the spectrum without harmful interference to PUs.
We also consider the case where SUs are geographically
dispersed over a large area, and that not all SUs interfere
with each other when using the same channel. If SUs are
constrained to using different channels at the same time due
to interference between them, as assumed in [29], [38], [39],
then the optimal allocation is to assign each SU a different
channel with the best availability. However, if SUs are spatially
separated so that it is possible for some SUs to share the same
channel without significant interference with each other, then
it becomes optimal for some SUs to share the same channels
with the highest idle probabilities. For example, considerthe
scenario depicted in Figure 1, where the expected network
reward is given by the expected total number of interference-
free channel uses by the SUs. Because SU 1 and SU 4 do
not interfere with each other, they can be assigned the same
PU channel with the highest idle probability. It can be shown
that scenario (iii) in Figure 1(b) achieves the highest expected
network reward. To the best of our knowledge, this is the first
paper to consider temporal-spatial spectrum reuse in a MAB
formulation.

We say that a SU has been allocated a channel access rank
k if it is assigned to use only thek-th best channel (in terms
of idle probability). Our main contributions are the following:

1) We propose a centralized policy that uses a central
processor to optimize the channel access ranks of the
SUs at exponentially increasing time intervals, based on
the idle probability estimates of an arbitrary SU. We call
this the Centralized Channel Allocation (CCA) policy.

2) To overcome the requirement for a central processor, we
propose a distributed three-stage policy to enable SUs
to learn their channel access ranks and the channel idle
probabilities. In our proposed policy, we adopt distributed
graph coloring, consensus andǫ-greedy learning ap-
proaches. We call this the Collaborative Access Ranking
and Learning (CARL) policy.

3) To avoid the need for SU synchronization and the over-
head incurred by the CARL policy, we also propose a
distributed channel learning and allocation policy that
integrates the first two stages of CARL into theǫ-greedy
learning process. We call this the Distributed Access
Rank Learning (DARL) policy.

4) We provide theoretical bounds on the regrets achieved
by our proposed CCA, CARL and DARL policies, the
random access policy [39], the time-division fair shar-
ing (TDFS) policy [38], and the adaptive randomization
policy [39]. We show the CCA policy has logarithmic
regret, while all other policies have linear regret. We
provide simulation results to verify the performance of
our proposed CCA, CARL and DARL policies. Our
simulation results suggest that CCA, CARL and DARL
perform significantly better in terms of average regret
than the random access policy, the TDFS policy and the
adaptive randomization policy.

This paper focuses on spatial spectrum reuse, in contrast
to other MAB formulations for spectrum reuse like those in
[38], [39], which only considers temporal spectrum reuse.
However, in a practical CRN, both temporal and spatial
spectrum reuse need to be implemented in order to maximize
the spectrum usage; and in many cases (e.g., when using
distributed spectrum sensing methods) spatial spectrum reuse
cannot be achieved independently of temporal spectrum reuse
due to lack of prior information about interference between
different SUs and PU channel idle probabilities. Therefore, our
algorithms targettemporal-spatial spectrum reuse. We note
that the algorithms in [38], [39] cannot be easily adapted
for spatial spectrum reuse since solving the spatial spectrum
reuse problem exactly even when channel idle probabilities
are known, is a NP-complete problem, as explained later in
Section II.

The rest of this paper is organized as follows. In Section II,
we introduce our system model and problem formulation. In
Section III, we propose a centralized channel allocation policy
and we show that the regret of this policy is order-optimal
with logarithmic regret if the channel access rank optimiza-
tion procedure is performed at exponentially increasing time
intervals. In Section IV, we propose two distributed learning
policies that enable SUs to find their channel access ranks and
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independently learn the channel statistics. We then provide
simulation results in Section V and conclude in Section VI.

II. PROBLEM FORMULATION

Suppose that there areM ≥ 2 SUs, and letM denote the
set of SUs. We model the SU network as a graphG = (V,E),
whereV is the set of SUs, andE is a set of edges. Two SUs are
connected by an edge if the mutual interference between them
is above a predefined threshold. If two SUs are not connected
via an edge, then we assume that they can utilize the same
PU channel simultaneously.

Let N be the set ofN ≥ 1 orthogonal PU channels.
We divide time into equal intervals. In each time slotn,
each channelj ∈ N is idle with probability µj ∈ (0, 1],
independent of all other channels. Without loss of generality,
we assume thatµ1 > µ2 > . . . > µN (SUs are not aware of
this ordering). For eachj, we useSj(n) to denote the channel
state of a channelj in time slot n with Sj(n) = 1 if the
channelj is idle and 0 otherwise. To simplify our formulation
and algorithm descriptions, we include a sufficient number of
null channels each with idle probability zero and letN+ be
the set of channelsN augmented with the null channels such
that |N+| ≥M . A SU allocated a null channel simply means
that it is not able to perform OSA in practice. This allows us
to include cases where there are insufficient number of PU
channels to be allocated to all the SUs.

Since the PU channel idle probabilities are unknown to
all SUs, each SU needs to learn them through their sensing
observations. In each time slotn, each SU can only sense and
access one channel. LetXi,j(n) = 1 if SU i chooses channel
j ≥ 1 and senses that it is idle, andXi,j(n) = 0 otherwise.
We assume that channel sensing is perfect for all SUs so that
Xi,j(n) = Sj(n) if channelj is chosen by SUi at time slot
n.

LetYi,j(n) be the reward of a SUi from accessing a channel
j ∈ N+ in slot n after sensing it free. LetMi be the set of
neighboring SUs of the SUi in the graphG, not including SU
i itself. If any SUk ∈ Mi uses the same channel as that of
SU i, packet collisions occur. We adopt the following reward
model:

Yi,j(n) =





1 if channelj is idle and no otherk ∈ Mi

transmits over it in the same time slotn,
0 otherwise.

(1)
This reward model is similar to one used in [38], [39], the
only difference being thatMi = M for all i in that model,
i.e., every SU interferes with each other when using the same
channel.

We are interested to design a policyψ to learn the channel
idle probabilities so as to maximize the total expected number
of successful transmissions of all SUs by exploiting spatial
channel reuse among SUs. The policyψ is a rule that de-
termines which channelψi(n) ∈ N SU i chooses to sense
in time slotn. The choiceψi(n) can be made based on the
sensing results of SUi at previous time slots1, 2, . . . , n− 1,
and on the previous channel choices{ψi(l) : for l < n}. If
the channelψi(n) is idle, SUi will transmit over the channel.

At the end of each time slotn, each SU is assumed to know
whether it has transmitted successfully or not (e.g., through
an acknowledgment from the SU receiver). LetTi,j(n) be the
total number of time slots that the SUi has sensed the channel
j in n time slots, and letVi,j(n) =

∑
l≤n Yi,j(l) be the total

number of time slots that the channelj is successfully accessed
by SU i up to time slotn. After n time slots, the total network
reward is

∑
i∈M

∑
j∈N+ µjE[Vi,j(n)], which is proportional

to the network throughput.
The regret of the policyψ until time slot n is defined as

the difference between the total reward of a genie-aided rule
and the expected reward of all SUs given by

R(n, ψ) = n
∑

i∈M

µπ∗(i) −
∑

i∈M

∑

j∈N+

µjE[Vi,j(n)], (2)

whereπ∗ : M 7→ N+ is an optimal channel allocation if all
channel idle probabilities are known. Letx∗ij be an indicator
variable with value 1 iffπ∗(i) = j, i.e., x∗ij = 1 iff SU i
is allocated channelj. Then (x∗ij)i∈M,j∈N+ is an optimal
solution to the following optimization problem:

(P0) max
xij

∑

i∈M

∑

j∈N+

xijµj (3)

s.t. xij +
∑

k∈Mi

xkj ≤ 1, ∀i ∈ M, j ∈ N+, (4)

∑

j∈N+

xij ≤ 1, ∀i ∈ M, (5)

xij ∈ {0, 1}, ∀i ∈ M, j ∈ N+. (6)

In the above optimization problem,xij is an indicator variable
that takes value one if channelj is allocated to SUi. The
constraint (4) ensures that neighboring SUs do not use the
same channel, while the constraint (5) ensures that each SU
is allocated at most one PU channel.

(P0) is an integer linear program, which corresponds to a
NP-complete decision problem (of which finding if there exists
an independent set in the graphG for a given size is a special
case [43]). In general, even if the channel idle probabilities are
known a priori, it is analytically difficult for a genie to find
the optimal channel allocations. To ensure that optimization is
done within a reasonable amount of time, the genie can adopt
an approximate method [44], which however leads to a linear
regret as the number of time slotsn → ∞. For a distributed
policy that does not know the channel idle probabilities a
priori, the problem is even harder, and in general we cannot
hope to learn the channel probabilities and an optimal channel
allocation with sub-linear regret, unlike other MAB problems
in which logarithmic regrets are common [38], [39].

For any channel allocationπ : M 7→ N+, we say thatπ(i)
is thechannel access rank of SU i because of the assumption
that µ1 > µ2 > . . . > µN . Our main idea is to learn
the optimal channel access rank of each SU and the idle
probability of each channel in order to optimize the regret.1 In
the following, we propose a centralized policy that we show
to have asymptotic logarithmic regret, but requires solving an

1Channel access rank corresponds to spatial spectrum reuse,while the
channel idle probability corresponds to temporal spectrumreuse.
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analytically difficult optimization problem like (P0) at expo-
nentially increasing time intervals. We also propose heuristic
distributed policies, which have linear regret in general.We
compare our distributed policies to those in [38], [39] when
applied to an incomplete graphG, and show that those policies
also have linear regrets since they do not consider spatial reuse
of channels. Our simulation results however indicate that our
distributed policies have smaller regret than the existingones
in [38], [39].

For the convenience of the reader, we list some commonly
used notations in Table I. Some of these notations have been
defined in this section, while the remaining ones will be
defined formally in the sequel where they first appear. In
addition, for non-negative functionsf and g, we say that
f(n) ∈ O(g(n)) if lim sup

n→∞
f(n)/g(n) < ∞, f(n) ∈ Ω(g(n))

if lim inf
n→∞

f(n)/g(n) > 0, and f(n) ∈ Θ(g(n)) if f(n) ∈

O(g(n)) and f(n) ∈ Ω(g(n)). The notationP(A) is the
probability of the eventA.

TABLE I
SUMMARY OF NOTATIONS USED

Symbol Definition
M set ofM SUs

N set ofN channels

µj idle probability of channelj

Xi,j(n) sensing decision of SUi for channelj in time slotn

Yi,j(n) reward of SUi from accessing channelj in time slotn

R(n, ψ) regret of policyψ until time slotn

number of time slots SUi has sensed channelj
Ti,j(n) up to time slotn

number of time slots SUi has successfully
Vi,j(n) accessed channelj up to time slotn

∆1 lower bound for min
1≤j<N

|µj − µj+1|

ri(n) channel access rank of SUi in time slotn

ρi(n) channel sensed by SUi in time slotn

III. C ENTRALIZED CHANNEL ALLOCATION POLICY

In this section, we propose a centralized policyψCCA, and
show that it has asymptotic log regret. We assume that there
is a central processor in the CRN capable of solving problem
(P0) with the true channel idle probabilitiesµj , j = 1, . . . , N ,
replaced by empirical estimates from an arbitrary SU. We
call this optimization problem(P̂0). However, since(P̂0)
corresponds to a NP-complete decision problem, we suppose
that the central processor only performs this optimizationat
specific irregular time instances (see Figure 2) instead of at
every time slot. For a time horizonn, let tk, k = 1, . . . , ξ(n),
be theξ(n) time instances at which the central processor solves
(P̂0) with updated empirical estimates ofµj , j = 1, . . . , N .
We assumet1 < ∞, i.e., there is at least one optimization
time instance.

For k = 0, . . . , ξ(n), let lk = tk+1 − tk, where t0 = 1
and tξ(n)+1 = n, be the number of time slots starting from
the k-th optimization up to before the next optimization by
the central processor. Let̄Xi,j(n) =

∑n
k=1Xi,j(k)/Ti,j(n)

be the empirical estimate of the idle probability of channelj
by SU i.

t1 t2 t3 tξ(n)−1 tξ(n) tξ(n)+1 = n

l0 l1

...

lξ(n)−1 lξ(n)l2

t0 = 1

Fig. 2. Optimization time instances forψCCA.

At each time instancetk, k = 1, . . . , ξ(n), an arbitrarily
chosen SUi sends{X̄i,j(tk) : j ∈ N} to the central processor,
which replacesµj with X̄i,j(tk) in problem (P0), and finds the
optimal or near-optimal solution using the branch and bound
algorithm [44]. Let{ri(tk) : i ∈ M} be the optimal channel
access ranks found by the central processor (i.e.,ri(tk) = j
iff xij = 1 in the solution of(P̂0)). These ranks are then
communicated to the SUs, which utilizes their assigned ranks
in a local randomǫ-greedy channel learning algorithm: In each
time slot t ∈ [tk, tk+1) of the channel learning period, each
SU i chooses to sense a random channel inN (notN+ since
there is no need to learn the null channels) with probabilityǫt,
and with probability1− ǫt chooses theri(tk)-th best channel
according to its empirical idle probability estimates{X̄i,j(tk) :
j ∈ N+}. Let ρi(t) be the channel chosen by SUi in time
slot t. This learning algorithm is an extension of the work in
[41]. The probabilityǫt is chosen to be decreasing int with
a specific form as shown in Algorithm 1. To do this, we need
the following assumption.

Assumption 1: A positive lower bound ∆1 ≤
min1≤j<N |µj − µj+1| is known to the SUs.
Note that for Assumption 1 to hold, SUs do not need to
know the channel idle probabilities, but an estimate of how
different the PU channel utilization rates are from each other.
In practice, one can always choose a sufficiently small∆1.

We call the above procedure the Centralized Channel Al-
location PolicyψCCA, and its formal description is given in
Algorithms 1 and 2. Note that if for somei ∈ M, the central
processor returnsri(tk) > N , then SUi is allocated a null
channel and it does not engage in OSA fort ∈ [tk, tk+1).

Algorithm 1 Centralized Channel Allocation policyψCCA

1: Input: SU interference network.
2: The following two for loops are executed in parallel at the

central processor and SUs.
3: for t ∈ {t1, t2, . . . , tξ(n)} do
4: Central processor chooses an arbitrary SUi, which

sends it{X̄i,j(t) : j ∈ N}.
5: Central processor solves the optimization problem(P̂0),

and for eachi ∈ M, setsri(t) = j if xij = 1.
6: Central processor sendsri(t) to each SUi, i ∈ M.
7: end for
8: for each SUi ∈ M do
9: SU i performs the randomǫ-greedy channel learning

algorithm in Algorithm 2 with channel access rank at
time slot t set asri(t) = ri(tk), wherek = max{q ≥
1 : tq ≤ t}.

10: end for

In the following proposition, we show that for any policy
ψ, the regret is at leastΩ(logn). The proof is provided in
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Algorithm 2 Randomǫ-greedy channel learning at a SUi

1: Input: Channel access ranks{ri(t) : t ≥ 1}.
2: Choose0 < γ < min{1,∆1} andδ > max{2, 5γ2}.
3: for t ≥ 1 do
4: Set ǫt = min{1, δN

γ2t
}.

5: With probability1− ǫt, let ρi(t) be a channel with the
ri(t)-th highest empirical idle probability estimate (with
ties broken randomly), otherwise letρi(t) be chosen
uniformly at random from the channel setN .

6: if channelρi(t) is sensed to be PU-freethen
7: SU i transmits over channelρi(t) and sets

Xi,ρi(t)(t) = 1.
8: else
9: SetXi,ρi(t)(t) = 0.

10: end if
11: Set

Ti,ρi(t)(t) = Ti,ρi(t)(t− 1) + 1,

X̄i,ρi(t)(t) =
X̄i,ρi(t)(t− 1)Ti,ρi(t)(t− 1) +Xi,ρi(t)(t)

Ti,ρi(t)(t)
.

12: For all j 6= ρi(t), setTi,j(t) = Ti,j(t−1) andX̄i,j(t) =
X̄i,j(t− 1).

13: end for

Appendix A.
Proposition 1: For any policyψ, R(n, ψ) ∈ Ω(logn).
The next result, whose proof is in Appendix B, shows that

the regret usingψCCA is order-optimal for appropriately chosen
optimization time instances.

Theorem 1: If lk > lk−1 for 1 < k < ξ(n) and lk ≤ clk−1

for all k ≥ 2 and somec > 0, thenR(n, ψCCA) ∈ Θ(logn).
Theorem 1 shows that the central processor needs to per-

form a re-optimization of(P̂0) only at exponentially increasing
time intervals to achieve order optimality. However, since
(P̂0) is an NP-complete problem, the central processor incurs
high computation cost at each optimization time instance if
the number of SUs is large. Furthermore, the CRN is also
vulnerable to the failure of the central processor. In the next
section, we propose heuristic distributed policies that donot
have such drawbacks, but which are no longer order optimal.

IV. D ISTRIBUTED CHANNEL ACCESSRANKING AND

LEARNING

In this section, we propose two heuristic distributed policies
to perform channel access ranking and learning. Note that
to optimize (P0), neighboring SUs in the interference graph
have to be allocated different channels. Therefore, the genie-
aided channel allocation in (P0) is a graph coloring problem
in which we wish to partition the graph into disjoint maximal
independent setsI1, . . . , Iχ(G), whereχ(G) is known as the
chromatic number of the graphG [45]. The SUs assigned
to the same independent set are allocated the same channel,
with a larger independent set being assigned a channel with
a higher idle probability. Partitioning the graphG into χ(G)
independent sets is not unique, and some partitions are non-

optimal for (P0). Finding an optimal partition is again difficult,
and we have to resort to heuristics.

Our first policy, which we call CARL, is a three-stage
distributed channel access ranking and learning policy, which
however incurs overheads in SU synchronization. The second
policy, which we call DARL, does not require SU synchro-
nization, but is expected to have higher regret than CARL. We
also derive performance bounds for both policies.

A. CARL policy

The CARL policy is a three-stage distributed channel access
ranking and learning policy denoted byψCARL, and which
performs the following procedures:

1) distributed graph coloring algorithm (Algorithm 3);
2) distributed channel access rank determination method

(Algorithm 4); and
3) randomǫ-greedy channel learning (Algorithm 2) at each

SU.

The first two stages enable each SU to find its optimal channel
access rank, which will be utilized in the last stage to find the
optimal channel allocation for maximizing the total network
reward.

The graph coloring algorithm is described in Algorithm 3,
which aims to cluster SUs into a minimal number of maximal
independent sets so that channels with higher idle probabilities
are spatially reused by more SUs. We adopt a distributed
greedy graph coloring algorithm [46], [47] to color the graph
G using the smallest number of colors. Suppose that SUs are
colored using a set of colors{1, . . . , |N+|}, with SUs labeled
the same color belonging to the same maximal independent
set. In the graphG, let d(i) denote the degree of SUi and
u(i) be the palette of forbidden colors, which are used by
its colored neighbors. Letα(i) = |u(i)| be the number of
different colors used by the SUs in the neighborhood of SU
i. A color is said to be legal for SUi if it is not contained
in u(i). In each round, each SU generates a random valueλi
and the SU with the highestα(i) will be colored. If two SUs
have the sameα(i), the SU with a higherλi will be colored
first.

The graph coloring algorithm in Algorithm 3 is heuristic
and is not guaranteed to find an optimal coloring for a general
graph. It can use up to△(G) + 1 colors to color a general
graph, where△(G) is the maximum vertex degree. However,
in practice, CRNs are usually sparse satisfying△(G)+1 ≪M
and Algorithm 3 has been shown to find the chromatic number
of such graphs effectively [47]. Furthermore, it produces
optimal colorings for complete graphs and bipartite graphslike
trees [48]. Since in each time slot, at least one uncolored node
in the graph is colored, Algorithm 3 requires at mostO(M)
rounds to color all nodes. In each round, at mostO(M2)
messages are exchanged among nodes so that the message
complexity of Algorithm 3 isO(M3).

After performing the distributed graph coloring step, SUs
are clustered into different color groups identified byc(i) ∈
{1, . . . , |N+|} for eachi ∈ M. To maximize the total network
reward, the group having more SUs should be assigned a
smaller channel access rank so that more SUs can access a
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Algorithm 3 Distributed graph coloring algorithm
1: Initialization: for eachi = 1 : M , define

• u(i) = ∅,
• d(i) = degree of SUi,
• α(i) = d(i).

2: for n = 1 : T1 do
3: for each SU i do
4: if SU i is uncoloredthen
5: Setc(i) = min({1, . . . , N}\u(i)).
6: Generate a random numberλi uniformly dis-

tributed in [0, 1].
7: Broadcast toMi the parametersα(i), λi andc(i).

8: if
(
α(i) > α(j) OR (α(i) = α(j) AND λi > λj )

for all uncoloredj ∈ Mi

)
then

9: SU i is colored withc(i).
10: else
11: SU i updatesu(i) = u(i) ∪ {c(i)} andα(i) =

|u(i)|.
12: end if
13: end if
14: end for
15: end for

PU channel with higher idle probability. Therefore, we need
to relabel the group identities according to their group sizes.
In each time slotn, each SUi maintains two variable vectors
zi,n = [zi,n(1), . . . , zi,n(|N+|)] andwi,n, where we initialize
wi,1 = zi,1, and setzi,1(c(i)) = 1 and all other entries inzi,1
to 0. We use an average consensus algorithm [49] to compute
z =

∑M
i=1 zi,1/M in a distributed manner (see Algorithm 4).

From the time slotn > 1, each SUi updateszi,n andwi,n

according to:

wi,n+1 = zi,n +
1

2

∑

j∈Mi

zj,n − zi,n

max(d(i), d(j))
,

zi,n+1 = wi,n+1 +

(
1−

2

9M + 1

)
(wi,n+1 −wi,n).

By ordering the entries ofwi,n at the end of Algorithm 4,
each SUi can then determine its channel access rankri. Note
that if ri > N , then SUi does not engage in OSA. In general,
because of spatial spectrum reuse, the number of PU channels
required for allM SUs to perform OSA isχ(G) ≤ M . The
valueχ(G) depends on the sparsity of the interference graph.

From Theorem 1.1 in [49], we have

‖wi,n − z‖22 ≤ 2

(
1−

1

9M

)n−1

‖wi,1 − z‖22

≤ 2M

(
1−

1

9M

)n−1

. (7)

Therefore, to ensure that each SU’s local estimate ofwi,n con-
verges toz, we can set the upper bound in (7) to1/(2M)2 to
obtain an upper bound on the number of iterationsT2 required
for Algorithm 4 to be3 log(2M)/ log(9M/(9M − 1)).

Finally, each SUi sets for all time slotst, ri(t) = ri from
Algorithm 4 as the random access rank in theǫ-greedy channel

Algorithm 4 Distributed channel access rank determination
1: Initialization: for eachi = 1 :M , let wi,1 = zi,1, where

zi,1 is a vector of length|N+| consisting of all zeros
except for a 1 in thec(i)-th entry.

2: for n = 1 : T2 do
3: for i = 1 :M do
4: wi,n = zi,n−1 +

1
2

∑
j∈Mi

zj,n−1−zi,n−1

max(d(i),d(j))

zi,n = wi,n + (1 − 2
9M+1 )(wi,n −wi,n−1)

5: SU i broadcastszi,n and d(i) to all its neighbors
j ∈ Mi.

6: end for
7: end for
8: for i = 1 :M do
9: Set ri = r if group c(i) has ther-th largest value in

wi,T2
.

10: end for

learning process in Algorithm 2.

B. DARL policy

The policyψCARL uses its first two stages to determine the
appropriate channel access ranks to assign to each SU. This
requires that SUs are synchronized between each of its three
stages, and may incur significant communication overhead
if the number of SUs is large. To mitigate this problem,
we propose another distributed policy DARL, denoted as
ψDARL, which embeds the channel access rank determination
procedure in the channel statistics learning process (see Al-
gorithm 5). Since there is a higher likelihood for DARL to
assign incorrect channel access ranks to the SUs, we expect
DARL to have higher regret than CARL, as verified by the
simulation results in Section V.

At the start of DARL, the channel access ranks of SUs
ri(1), i ∈ M are all set to be 1. In subsequent time slots
n > 1, if there is no collision for SUi in the previous
time slot, it continues to use the same channel access rank
as ri(n − 1). Otherwise, it generates a random numberλi
uniformly distributed in[0, 1] and keeps on using the same
channel access rank ifλi has the largest value among all
its neighbors who also have collisions in the previous time
slot. If its random numberλi is not the largest value, SU
i is allocated the smallest channel access rank not used by
its neighbors. DARL is somewhat similar to the adaptive
randomization policy proposed in [39] for temporal spectrum
reuse (see Section IV-C for a brief description), and can be
viewed as a greedy version of the latter since each SU tries to
acquire the smallest channel access rank available insteadof
choosing a random channel. SUi then performs theǫ-greedy
channel learning process as given in Algorithm 2.

Through this process, with an increasing likelihood over
time, each SU is allocated the minimal available channel
access rank that is different from its neighbors and the channel
statistics are learned at the same time. The DARL policy
does not require two separate initial stages to learn the access
ranks. However, since the access ranks are assigned somewhat
randomly and do not take into consideration the number of
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Algorithm 5 Distributed access rank learning (DARL)ψDARL

1: Initialization:
• Choose0 < γ < min{1,∆1} andδ > max{2, 5γ2}.
• Set channel access rankri(1) = 1, for all i ∈ M.

2: for t ≥ 1 do
3: if there was a collision in previous time slott− 1 then
4: Broadcastri(t− 1) to all j ∈ Mi.
5: Generate a random numberλi uniformly distributed in[0, 1]

and broadcastsλi to all j ∈ Mi.
6: Let M̄i be the set of SUsj ∈ Mi that also have collisions

in time slot t− 1.
7: if λi ≥ maxj∈M̄i

λj then
8: Setri(t) = ri(t− 1).
9: else

10: Setri(t) = min
{

N+\{rj(t− 1) : j ∈ M̄i}
}

.
11: end if
12: else
13: Setri(t) = ri(t− 1).
14: end if
15: Execute lines 4 – 12 of Algorithm 2.
16: end for

SUs with the same access rank, it is likely to have a higher
regret compared to the CARL policy.

C. Regret bounds

In this section, we derive theoretical bounds on the regret
(2) achieved by our proposed CARL and DARL policies. As
benchmark comparisons, we also derive bounds under our
spatial spectrum reuse framework for the random access policy
[39], the TDFS policy [38] and the adaptive randomization
policy [39], which we denote byψrand, ψTDFS and ψadapt,
respectively. We first describe these policies briefly below.

1) Random access policyψrand: In each time slot, each SU
randomly chooses a channelj ∈ N to sense. The SU
transmits if the channel is found to be idle.

2) TDFS policyψTDFS: As describing the policy accurately
requires some technical details, we refer the reader to
[38]. We summarize the policy here briefly. Without
going into the technical details, the TDFS policy is
intuitively similar to a policy in which each SU accesses
theM best channels in a round-robin fashion. A different
offset, based on each SU’s identity, in the channel access
sequence is used to ensure that every SU is assigned a
different channel access rank in each time slot. Each SU
determines theM best channels by running parallel Lai-
Robbins single-player policies [50]. To determine thek-th
best channel, a SU removes thek−1 channels it considers
to be the best (these are channels it has attempted to
access in the previousk− 1 time slots). It then considers
the subsequence of time slots that also have the same
set ofk − 1 best channels removed, and performs a Lai-
Robbins single-player policy on this subsequence of time
slots, using only the remainingN − k + 1 channels to
find the best channel amongst these. For the purpose of
our discussion, the main point to note is that each SU is
assigned the channel access ranks1, . . . ,M in a round-
robin fashion over time slots. This ensures “fairness” in

accessing the best channel, which we do not address in
this paper.

3) Adaptive randomization policyψadapt: Every SU is ini-
tially assigned the channel access rank of 1. Then, in each
time slot, each SUi randomizes its channel access rank
only if there is a collision in the previous slot, otherwise it
retains its channel access rank from the previous time slot.
Suppose the channel access rank isr. The r-th highest
channel based on SUi’s sample-mean statistics [41] given
by

X̄i,j(n) +

√
2 logn

Ti,j(n)
,

for each channelj ∈ N , is chosen to be sensed. The SU
transmits if the channel is found to be idle.

It is clear that since there is a positive probability that the
optimal channel access ranks are not found inψCARL and
ψDARL, these policies haveΘ(n) regret in general. The same
can be said of our benchmark policies as shown below.

Proposition 2: Under spatial spectrum reuse, if the graph
G is incomplete and has a connected component of size at
least two, thenψrand, ψTDFS, andψadapt each hasΘ(n) regret.

Proof: See Appendix C.
Although ψCARL has Θ(n) regret, it is able to achieve

Θ(logn) regret if its distributed graph coloring step in Al-
gorithm 3 produces an optimal graph coloring. The proof of
Proposition 3 is similar to that for Theorem 1 and is omitted
here. As explained in Section IV, Algorithm 3 is likely to
produce an optimal graph coloring for a sparse graphG. This
explains our observation in our simulation results thatψCARL

has better regret performance than the benchmark policies
although all of them have worst-case linear regret.

Proposition 3: Suppose that the output from Algorithm 4
satisfy ri = π∗(i) for all i ∈ M, then the policyψCARL has
Θ(logn) regret.

V. SIMULATION RESULTS

In this section, we verify the performance of our proposed
policies by simulations. We first consider small size simple
graphs, and then provide simulation results on large size
random graphs.

A. Small size graphs

Suppose that there areM = 9 SUs andN = 9 orthogonal
PU channels. The idle probabilities of the PU channels are
evenly spaced values from 0.1 to 0.9. We apply our proposed
policy in three connected interference graphs, which are the
nine-node ring graph, a grid graph and a randomly generated
graph (See Figure 3). Similar types of graphs have been
adopted to evaluate spatial channel reuse performance in [36].

In Algorithms 2, 3 and 4, we setT1 = 9, T2 = 300, δ = 5.1
and γ = 0.1. For ψCCA, we let l0 = 2 and lk = 2lk−1 for
k ≥ 1. The following results are averaged over 500 simulation
runs.

In Figures 4, 5 and 6, we observe thatψCCA, ψCARL and
ψDARL outperform the policiesψrand [39], ψTDFS [38] and
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Fig. 3. Interference graphs of three CRNs (a) a ring graph (b)a grid graph
(c) a randomly generated graph.

ψadapt [39] in all three interference graphs, where the regrets
of ψCCA andψCARL are approximately a constant multiple of
logn. Moreover, the regret ofψCARL is close to that ofψCCA

because Algorithm 4 manages to find optimal or near-optimal
channel access ranks for all SUs in these graphs. We also note
that ψDARL has worse regret thanψCARL, but still performs
better than the benchmark algorithms.
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B. Large size random graphs

In this subsection, we consider large size random graphs
that have M = 100 SUs and N = 100 orthogonal
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vs. time slotn on randomly generated
graph.

PU channels. The idle probabilities of the PU channels
are [0.9, 0.8, 0.7, 0.6, 0.5, 0.495, 0.490, . . . , 0.025]. In Algo-
rithms 2, 3 and 4, we setT1 = 100, T2 = 3500, δ = 5.1
and γ = 0.1. We evaluate the performance of our proposed
policies and that of the benchmark policies on the following:

(i) Erdös-Rényi (ER) graphs: 500 instances of Erdos-Renyi
random graphs withM nodes and different probabilities
of attachment [51]

(ii) Random connection (RC) graphs: 500 random graphs
with M nodes and different number of edges. Edges
are generated sequentially, and each edge is formed by
choosing two distinct nodes uniformly at random and
connecting them if they are not already connected.

Table II shows the percentage of simulation runs in which
ψCARL found the correct graph chromatic numberχ(G). We
can see thatψCARL estimates the chromatic numberχ(G)
better when the network is sparse.

TABLE II
PERFORMANCE OFψCARL IN FINDING THE CORRECT CHROMATIC

NUMBER.

ER attachment probability 0.05 0.1 0.2
Percentage instances where cor-
rectχ(G) is found

71.1% 53.7% 34%

RC number of edges 200 500 1000
Percentage instances where cor-
rectχ(G) is found

60.4% 51% 36%

For the instances in whichψCARL estimated the correct
chromatic number, let

D =
1

M

M∑

i=1

|ri − π∗(i)|,

be the average error in finding the correct channel access
ranks. Table III shows that policyψCARL could allocate channel
access ranks for sparse random graphs with a small error.

Finally, we show the regrets in Figure 7 and Figure 8 when
the graph is a randomly generated ER graph with attachment
probability0.05 and a RC graph with200 edges. We compare
the average regrets using 500 trials for all the policies. We
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TABLE III
PERFORMANCE OFψCARL IN FINDING THE CORRECT CHANNEL ACCESS

RANKS.

ER attachment probability 0.05 0.1 0.2

D 0.268 0.379 0.664

RC number of edges 200 500 1000

D 0.219 0.398 0.658

observe that the regret ofψCCA is again approximately a
constant multiple oflogn and regrets using other policies
on both types of random graphs increase linearly over time.
However, our policiesψCARL andψDARL give a much smaller
regret than the benchmark policies.
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VI. CONCLUSION

In this paper, we have investigated temporal-spatial channel
reuse in cognitive radio networks using a multi-user MAB
approach. We have proposed a centralized channel allocation
policy for finding an optimal channel allocation and learning
the statistics of the channels. We showed that this policy is
order-optimal with logarithmic regret, but requires solving a

NP-complete optimization problem at exponentially increasing
time intervals. To avoid that and to overcome the requirement
of centralized processing, we also proposed heuristic dis-
tributed policies, which however have linear regrets. The first
distributed policy utilizes a distributed greedy graph coloring
method and a distributed average consensus method in the
learning process to find the optimal channel access rank for
each SU. This requires synchronization amongst the SUs. In
the second distributed policy, we let each SU determine their
channel access ranks locally, which removes the requirement
for synchronization. Simulation results suggest that our pro-
posed policies outperform current policies in the literature,
which do not consider spatial channel reuse amongst SUs.
Future work includes designing policies for mobile SUs and
where channel availabilities differ across the SU network.
Another interesting future research direction is to allow SUs
to not only cooperatively learn channel access ranks, but also
channel statistics.

APPENDIX A
PROOF OFPROPOSITION1

If two SUs use the same channel in the same time slot, a
collision occurs and both SUs have rewards of 0. Therefore,
R(n, ψ) ≥ R′(n), whereR′(n) denotes the regret if SUs are
still rewarded with a reward of 1 even if collisions occur.
This regretR′(n) is then equivalent toM times the regret
of a single-user MAB problem, which has been shown to be
Ω(logn) in [39].

APPENDIX B
PROOF OFTHEOREM 1

The following lemma can be shown using the exact same
argument in Theorem 3 of [41], and its proof is thus omitted
here.

Lemma 1: Suppose in Algorithm 2,δ > 5 and 0 < γ <
min{1,∆} for some∆ > 0. Then, for all i ∈ M, n ≥ δN

γ

andj ∈ N , we have

P(|X̄i,j(n)− µj | ≥
∆

2
) ≤

a

n1+ε
,

wherea andε are positive constants.
Let R(k) be the total regret underψCCA in the time slots

[tk, tk+1). Let A(tk) = {ri(tk) = π∗(i), ∀i ∈ M} be the
event that the central processor returns the optimal channel
allocation at timetk. Then, for each timem ∈ [tk, tk+1),
conditioned onA(tk), a packet collision occurs only if for
somei ∈ M, either |X̄i,π∗(i)(m) − µπ∗(i)| ≥ ∆1/2 or SU i
chooses a random channelρi(m) 6= π∗(i). On the other hand,
the eventAc(tk) occurs only if|X̄i,π∗(i)(tk)−µπ∗(i)| ≥ ∆2/2
for somei ∈ M, where∆2 is the minimum sensitivity range
of theµj coefficients,j = 1, . . . , N , in (P0) with respect to the
optimal solution. Note that∆2 > 0 since (3) is a continuous
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function. Therefore, we have

R(k) ≤ µ1

tk+1−1∑

m=tk

(
P
(
A(tk) and

{
|X̄i,π∗(i)(m)− µπ∗(i)| ≥

∆1

2
or ρi(m) 6= π∗(i)

})
+ P(Ac(tk))

)

≤ µ1

tk+1−1∑

m=tk

∑

i∈m

(
P(|X̄i,π∗(i)(m)− µπ∗(i)| ≥

∆1

2
)+

2ǫm

)

+ µ1

tk+1−1∑

m=tk

∑

i∈m

P(|X̄i,π∗(i)(m)− µπ∗(i)| ≥
∆2

2
),

(8)

where the last inequality follows from the union bound. From
Lemma 1, the right hand side of (8) is upper-bounded by

c1

(
tk+1−1∑

m=tk

(
1

m1+ǫ
+

1

m
) +

tk+1−1∑

m=tk

1

m1+ǫ

)

≤ c2
lk
tk
,

for some constantsc1 andc2 sufficiently large. Therefore, we
have for some constantc3 > 0,

R(n, ψCCA) ≤ c3t1 + c2

ξ(n)∑

k=1

lk
tk

≤ c3t1 + c2

ξ(n)∑

k=1

lk
lk−1

≤ c3t1 + c2cξ(n), (9)

where the second inequality follows becausetk =∑k−1
m=0 lm ≥ lk−1. Sincelk > lk−1 for 1 < k < ξ(n) andlk ≤

clk−1 for all k ≥ 2, we haveξ(n) ≤ c4 log(n) for some con-
stantc4 > 0. Then from (9), we haveR(n, ψCCA) ∈ O(log n),
and together with Proposition 1, the theorem follows.

APPENDIX C
PROOF OFPROPOSITION2

For any policyψ, we have

R(n, ψ) = n
∑

i∈M

µπ∗(i) −
∑

i∈M

∑

j∈N+

µjE[Vi,j(n)]

≥
∑

i∈M

∑

j>π∗(i)

(µπ∗(i) − µj)E[Ti,j(n)]. (10)

In the policyψrand, each SU randomly chooses a channel to
sense in each time slot. Consider a SUi′ with π∗(i′) = 1.
From (10), we have

R(n, ψrand) ≥ (µ1 − µ2)

N∑

j=2

E[Ti′,j(n)]

= (µ1 − µ2)
N − 1

N
n.

Therefore,ψrand hasΘ(n) regret.

We next consider the policyψTDFS. Every SU uses the Lai-
Robbins single-player policy to determine the best channel.
For all time slotsn sufficiently large, the probability that all
SUs identify channel 1 as the best channel is bounded away
from zero. From the proposition assumptions, there is a SUi
in G with degree less thanM − 1. Since the TDFS policy
assigns to each SU channel access ranks in a round-robin
fashion over time slots, there exists at least one time slot out
of everyM slots such that all SUs ini ∪ Mi do not have
channel access rank 1. Consider a policyψ′ that is the same
asψTDFS but which assigns channel access rank 1 to SUi in
each of these time slots starting from some timen sufficiently
large. Then,R(n, ψTDFS)/n ≥ R(n, ψ′)/n + c(µ1 − µ2)/M
for some positive constantc > 0. This implies thatψTDFS has
Θ(n) regret.

In the policy ψadapt, each SU randomizes the channel
selection fromN+ only if there is a collision in the previous
time slot. Since the graphG has a connected component of size
at least two, not all feasible solutions in (P0) are optimal. There
is a positive probability that at the second iteration ofψadapt,
the SUs are assigned channel access ranks corresponding to
a feasible but suboptimal solution of (P0). Subsequently, the
channel access ranks do not change. Therefore,ψadapthasΘ(n)
regret. The proof of the proposition is now complete.
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